Proceedings of the International Conference on Theory and Application of Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

SKEW ELEMENTS IN N-SEMIGROUPS

Adrian Petrescu

ABSTRACT. We introduce the notions of a polyadic inverse and a skew element in n-groupoids and prove that an n-semigroup has skew elements iff it is H-derived from a monoid with invertible elements (a generalization of classical Gluskin-Hosszú theorem). Based on this result some properties of skew elements are presented.

2000 Mathematics Subject Classification: 20N15

1. INTRODUCTION

A nonempty set A together with one *n*-ary operation $\alpha : A^n \to A, n > 2$, is called an *n*-groupoid and is denoted by (A, α) .

Traditionally in the theory of *n*-groupoids we use the following abbreviated notation: the sequence x_i, \ldots, x_j is denoted by x_i^j (for j < i this symbol is empty). If $x_{i+1} = x_{i+2} = \cdots = x_{i+k} = x$ then instead of x_{i+1}^{i+k} we write $(x)^k$. For $k \leq 0$ $(x)^k$ is the empty symbol.

Let (A, α) be an *n*-groupoid. We say that this groupoid is *i*-solvable if for all $a_1, \ldots, a_n, b \in A$ there exists $x_i \in A$ such that

$$\alpha(a_1^{i-1}, x_i, a_{i+1}^n) = b \tag{1}$$

If this solution is unique, we say that this *n*-groupoid is uniquely *i*-solvable. An *n*-groupoid which is uniquely *i*-solvable for every i = 1, 2, ..., n is called an *n*-quasigroup.

We say that the operation α is (i, j)-associative if

$$\alpha(a_1^{i-1}, \alpha(a_i^{i+n-1}), a_{i+n}^{2n-1}) = \alpha(a_1^{j-1}, \alpha(a_j^{j+n-1}), a_{j+n}^{2n-1})$$
(2)

holds for all $a_1, \ldots, a_{2n-1} \in A$. If α is (i, j)-associative for every $i, j \in \{1, \ldots, n\}$ then it is called *associative*.

An *n*-groupoid with an associative operation is called an *n*-semigroup.

39

An *n*-semigroup which is also an *n*-quasigroup is called an *n*-group (cf. [10]).

Let (A, α) be an *n*-groupoid and let $M \subseteq A$ be a nonempty set. We say that α is *M*-*i*-cancellative if

$$\alpha(m_1^{i-1}, x, m_{i+1}^n) = \alpha(m_1^{i-1}, y, m_{i+1}^n) \Rightarrow x = y$$
(3)

for all $m_1, \ldots, m_n \in M$. If α is *M*-*i*-cancellative for every $i \in \{1, \ldots, n\}$ then it is called *M*-cancellative.

In the theory of n-groupoids the following identities

$$\alpha(a_1, a_2^{n-1}, a_n) = \alpha(a_n, a_2^{n-1}, a_1)$$
(4)

and

$$\alpha(\alpha(a_{11}^{1n}), \dots, \alpha(a_{n1}^{nn})) = \alpha(\alpha(a_{11}^{n1}), \dots, \alpha(a_{1n}^{nn}))$$
(5)

play a very important role.

The first of them is called *semicommutativity* or (1, n)-commutativity. The second is a special case of the abelian law for general algebras (see [6]).

Glazek and Gleichgewicht [4] proved

THEOREM 1. Each semicommutative n-semigroup is abelian.

and

THEOREM 2. An n-group is abelian if and only if it is semicommutative.

2. Polyadic inverses

Let (A, α) be an *n*-groupoid. The unit in a groupoid has several generalizations. One of them is the following (see [7]): an (n-1)-tuple a_1^{n-1} of elements from A is called a *left* (*right*) *identity* if

$$\alpha(a_1^{n-1}, x) = x \quad (\alpha(x, a_1^{n-1}) = x) \tag{6}$$

for all $x \in A$. A *lateral identity* is one which is both a left and right identity. It is called an *identity* if any cyclic permutation of it is a lateral identity.

Now we extend the notion of the inverse element in a groupoid.

DEFINITION 1. An element $a \in A$ is called a **polyadic inverse** of the ordered system (a_1, \ldots, a_{n-2}) if

$$\alpha(a, a_1^{n-2}, x) = \alpha(x, a_1^{n-2}, a) = x$$
(7)

for all $x \in A$.

An ordered system has at most one polyadic inverse. Let a and \tilde{a} be a polyadic inverses of (a_1, \ldots, a_{n-2}) . Then $\alpha(\tilde{a}, a_1^{n-2}, a) = \tilde{a}$ since a is a polyadic inverse of (a_1, \ldots, a_{n-2}) . But $\alpha(\tilde{a}, a_1^{n-2}, a) = a$ since \tilde{a} is a polyadic inverse too. Therefore the notation

$$a = (a_1, \ldots, a_{n-2})^{-1}$$

is consistent. If (a_1, \ldots, a_{n-2}) has polyadic inverse we say that it is **polyadic** invertible.

Let (A, α) be an *n*-semigroup *derived* from a monoid (A, \cdot) , i.e.

$$\alpha(x_1^n) = x_1 \cdot x_2 \cdot \ldots \cdot x_n.$$

Then (a_1, \ldots, a_{n-2}) is polyadic invertible in (A, α) iff the product $a_1 \cdot a_2 \cdot \ldots \cdot a_{n-2}$ is invertible in (A, \cdot) and

$$(a_1, a_2, \dots, a_{n-2})^{-1} = (a_1 a_2 \dots a_{n-2})^{-1}$$

In particular, for n = 3 an element $a \in A$ is polyadic invertible in (A, α) iff is invertible in (A, \cdot) .

In [8] we proved

THEOREM 3.Let (A, α) be an n-semigroup and $a = (a_1, \ldots, a_{n-2})^{-1}$. Then both $(a, a_1, \ldots, a_{n-2})$ and $(a_1, \ldots, a_{n-2}, a)$ are lateral identities. A result of Monk and Sioson [7] can be reformulated as

THEOREM 4. An *n*-semigroup is an *n*-group iff every (n-2)-tuple is polyadic invertible.

DEFINITION 2. The polyadic inverse $(a, \ldots, a)^{-1}$ is called the **skew ele**ment to a and is denoted by \bar{a} . In this case a is called **skewable**.

Let (A, α) be an *n*-semigroup derived from a monoid (A, \cdot) . The element *a* is skewable iff a^{n-2} is invertible in (A, \cdot) . Then $\bar{a} = a^{2-n}$. It is easy to see that *a* is skewable iff *a* is invertible in (A, \cdot) .

In [8] we proved

THEOREM 5. If \bar{a} is the skew element to a in the n-semigroup (A, α) then $(a)^{n-2}, \bar{a}$ is an identity.

COROLLARY 1.Let a be a skewable element in the n-semigroup (A, α) with n > 3. Then

$$((a)^{i}, \bar{a}, (a)^{n-3-i})^{-1} = a \tag{8}$$

for all $i, 0 \leq i \leq n - 3$.

A result of Dudek, Glazek and Gleichgewicht [1] can be reformulated as

THEOREM 6. An n-semigroup is an n-group iff all its elements are skewable.

3. H-derived n-semigroups

We extend a definition of [2] (see also [8], [9]).

An *n*-groupoid (A, α) is said to be *H*-derived from a monoid (A, \cdot) if there exist an invertible element $a \in A$ and an automorphism f of (A, \cdot) such that

$$f(a) = a, (9)$$

$$f^{n-1}(x) = a \cdot x \cdot a^{-1} \tag{10}$$

and

$$\alpha(x_1^n) = x_1 \cdot f(x_2) \cdot \ldots \cdot f^{n-1}(x_n) \cdot a \tag{11}$$

We also say that (A, α) is $H_{\langle f, a \rangle}$ derived from (A, \cdot) and it is denoted by $(A, \alpha) = H_{\langle f, a \rangle}(A_1, \cdot).$

If (A, \cdot) is a group we have the notion of *H*-derived from a group (see [2]). The Gluskin-Hosszú theorem say (see [2], [5]): an *n*-groupoid is an *n*-group iff it is *H*-derived from a group.

We will describe the *H*-derived *n*-semigroups (see [9]).

THEOREM 7. Let (A, α) be an n-groupoid H-derived from a monoid,

$$(A, \alpha) = H_{\langle f, a \rangle}(A, \cdot).$$

Then (A, α) is an n-semigroup with skewable elements.

Proof. (For details see [9]) The equalities (9) and (10) imply the associativity of the operation α . If e is the unit of (A, \cdot) then $a^{-1} = \bar{e}$.

Let (A, α) be an *n*-groupoid and a_1, \ldots, a_{n-2} be fixed elements of A. Then (A, \cdot) where $x \cdot y = \alpha(x, a_1^{n-2}, y)$ is called a *binary retract* of (A, α) and is denoted by $(A, \cdot) = \operatorname{ret}_{a_1^{n-2}}(A, \alpha)$.

Suppose that a is a skewable element in an n-semigroup (A, α) . We will use some ideas from the proof of Gluskin-Hosszú theorem given by Sokolov [11]. For details see [9].

 $(A, \cdot) = \operatorname{ret}_{(a)^{n-2}}(A, \alpha)$ is a monoid having \bar{a} as unit. The mapping $f : A \to A$, $f(x) = \alpha(\bar{a}, x, (a)^{n-2})$ is an automorphism of (A, \cdot) . For $u = \alpha((\bar{a})^n)$ we have

$$f(u) = u,$$

$$f^{n-1}(x) \cdot u = u \cdot x$$
(12)

and

$$\alpha(x_1^n) = x_1 \cdot f(x_2) \cdot \ldots \cdot f^{n-1}(x_n) \cdot u.$$

Since f(a) = a from (12) we get $a \cdot u = u \cdot a$. From

$$\bar{a} = \alpha(\bar{a}, \bar{a}, (a)^{n-2}) = \bar{a} \cdot \bar{a} \cdot a^{n-2} \cdot u = a^{n-2}u = u \cdot a^{n-2}$$

it follows that u is invertible in (A, \cdot) . Now from (12) we get

$$f^{n-1}(x) = u \cdot x \cdot u^{-1}$$
(13)

In conclusion $(A, \alpha) = H_{\langle f, u \rangle}(\operatorname{ret}_{(a)^{n-2}}(A, \alpha)).$

Thus the following theorem is true

THEOREM 8. Each n-semigroup with skewable elements is H-derived from a monoid.

Now from the above theorems we obtain the following characterization of H-derived n-semigroups.

THEOREM 9. An *n*-semigroup is *H*-derived from a monoid iff it has skewable elements.

We finish this section by the following characterization of semicommutative n-semigroups.

THEOREM 10. [9]Let $(A, \alpha) = H_{\langle f, a \rangle}(A, \cdot)$. Then (A, α) is semicommutative iff (A, \cdot) is commutative.

Proof. Suppose that (A, α) is semicommutative. From $\alpha(x_1(e)^{n-3}, a^{-1}, y) = x \cdot y$ where e is the unit of (A, \cdot) we obtain, taking into account $(4), x \cdot y = y \cdot x$ for all $x, y \in A$.

Let now (A, \cdot) be commutative. Then

$$\begin{aligned} \alpha(x_1, x_2^{n-1}, x_n) &= x_1 \cdot f(x_2) \cdot \ldots \cdot f^{n-2}(x_{n-1}) \cdot a \cdot x_n \\ &= x_n \cdot f(x_2) \cdot \ldots \cdot f^{n-2}(x_{n-1}) \cdot a \cdot x_1 \\ &= \alpha(x_n, x_2^{n-1}, x_1), \end{aligned}$$

i.e., (A, α) is semicommutative.

4. Properties of skew elements

Let (A, α) be an *n*-semigroup.

THEOREM 11. If $a = (a_1, \ldots, a_{n-2})^{-1}$ then a is skewable. Proof. The technical details were omitted.

It is easy to prove that $(A, \cdot) = \operatorname{ret}_{a_1^{n-2}}(A, \alpha)$ is a monoid with a as unit element. The mapping $f : A \to A$, $f(x) = \alpha(a, x, a_1^{n-2})$ is an automorphism of (A, \cdot) $(f^{-1}(x) = \alpha(a_1^{n-2}, x, a)$. For $u = \alpha((a)^n)$ we have f(u) = u,

$$f^{n-1}(x) \cdot u = u \cdot x \tag{14}$$

and

$$\alpha(x_1^n) = x_1 \cdot f(x_2) \cdot \ldots \cdot f^{n-1}(x_n) \cdot u.$$

We prove that u is invertible. From $a = \alpha(a, a_1^{n-2}, a)$ we get

$$a = f(a_1) \cdot f^2(a_2) \cdot \ldots \cdot f^{n-2}(a_{n-2}) \cdot u$$
(15)

i.e. u has a left inverse $^{-1}u = f(a_1) \cdot f^2(a_2) \cdot \ldots \cdot f^{n-2}(a_{n-2})$. Applying f in (15) we obtain

$$a = f^{2}(a_{1}) \cdot f^{3}(a_{2}) \cdot \ldots \cdot f^{n-2}(a_{n-3}) \cdot f^{n-1}(a_{n-2}) \cdot f(u)$$

= $f^{2}(a_{1}) \cdot \ldots \cdot f^{n-2}(a_{n-3}) \cdot u \cdot a_{n-2}.$

Applying f we get

$$a = f^{3}(a_{1}) \cdot \ldots \cdot f^{n-2}(a_{n-4}) \cdot u \cdot a_{n-3} \cdot f(a_{n-2})$$

and finally $a = u \cdot a_1 \cdot f(a_2) \cdot \ldots \cdot f^{n-3}(a_{n-2})$ i.e. u has a right inverse $u^{-1} = a_1 \cdot f(a_2) \cdot \ldots \cdot f^{n-3}(a_{n-2})$. Therefore u is invertible.

From (8) we obtain $f^{n-1}(x) = u \cdot x \cdot u^{-1}$.

In conclusion $(A, \alpha) = H_{\langle f, u \rangle}(A, \cdot)$ and from the proof of Theorem 7 we have $u^{-1} = \bar{a}$.

Let now *a* be a skewable element in (A, α) . Then $(A, \alpha) = H_{\langle f, u \rangle}(A, \cdot)$, where $(A, \cdot) = \operatorname{ret}_{(a)^{n-2}}(A, \alpha)$, $u = \alpha((\bar{a})^n)$ and $f(x) = \alpha(\bar{a}, x, (a)^{n-2})$.

THEOREM 12. An element x is skewable in (A, α) if and only if it is invertible in (A, \cdot) .

Proof. Let x be skewable. We prove that

$$x^{-1} = \alpha(\bar{a}, \bar{x}, (x)^{n-3}, \bar{a}).$$
(16)

We have

$$\begin{aligned} x \cdot x^{-1} &= \alpha(x, (a)^{n-2}, \alpha(\bar{a}, \bar{x}, (x)^{n-3}, \bar{a})) \\ &= \alpha(\alpha(x, (a)^{n-2}, \bar{a}), \bar{x}, (x)^{n-3}, \bar{a}) \\ &= \alpha(x, \bar{x}, (x)^{n-3}, \bar{a}) = \bar{a} \end{aligned}$$

and

$$\begin{aligned} x^{-1} \cdot x &= & \alpha(\alpha(\bar{a}, \bar{x}, (x)^{n-3}, \bar{a}), (a)^{n-2}, x) \\ &= & \alpha(\bar{a}, \bar{x}, (x)^{n-3}, \alpha(\bar{a}, (a)^{n-2}, x)) \\ &= & \alpha(\bar{a}, \bar{x}, (x)^{n-3}, x) = \bar{a}. \end{aligned}$$

Hence $x \cdot x^{-1} = x^{-1} \cdot x = \bar{a}$ (the unit of (A, \cdot)).

Now suppose that x is invertible in (A, \cdot) . We prove that x is skewable in (A, α) and \bar{x} verify (16). The equality (16) is equivalent to $x^{-1} = f(\bar{x}) \cdot f^2(x) \cdot \dots \cdot f^{n-2}(x) \cdot u$. Since u is invertible we get $x^{-1} \cdot u^{-1} = f(\bar{x}) \cdot f^2(x) \cdot \dots \cdot f^{n-2}(x)$ which implies $f^{-1}(x^{-1} \cdot u^{-1}) = \bar{x} \cdot f(x) \cdot \dots \cdot f^{n-3}(x)$ and finally

$$\bar{x} = f^{-1}(x^{-1}) \cdot u^{-1} \cdot f^{n-3}(x^{-1}) \cdot \ldots \cdot f(x^{-1})$$
(17)

Now we prove that indeed \bar{x} is the skew element to x. From $f^{n-1}(x) = u \cdot x \cdot u^{-1}$ we get $f^{n-1}(x^{-1}) = u \cdot x^{-1} \cdot u^{-1}$ and applying f^{-1} we obtain

$$f^{n-2}(x^{-1}) = u \cdot f^{-1}(x^{-1}) \cdot u^{-1}$$
(18)

Now

$$\begin{aligned} \alpha(y,(x)^{n-2},\bar{x}) &= y \cdot f(x) \cdot \ldots \cdot f^{n-2}(x) \cdot u \cdot \bar{x} \\ &= y \cdot f(x) \cdot \ldots \cdot f^{n-2}(x) \cdot u \cdot f^{-1}(x^{-1}) \cdot u^{-1} \cdot f^{n-3}(x^{-1}) \cdot \ldots \cdot f(x^{-1}) \\ &= y \cdot f(x) \cdot \ldots \cdot f^{n-2}(x) \cdot f^{n-2}(x^{-1}) \cdot f^{n-3}(x^{-1}) \cdot \ldots \cdot f(x^{-1}) = y \end{aligned}$$

From (18) we obtain $f^{-1}(x^{-1}) \cdot u^{-1} = u^{-1} \cdot f^{n-2}(x^{-1})$ and then $\alpha(\bar{x}, (x)^{n-2}, y) = f^{-1}(x^{-1}) \cdot u^{-1} \cdot f^{n-3}(x^{-1}) \cdot \dots \cdot f(x^{-1}) \cdot f^{2}(x) \cdot \dots \cdot f^{n-3}(x) \cdot f^{n-2}(x) \cdot u \cdot y = f^{-1}(x^{-1}) \cdot u^{-1} \cdot f^{n-2}(x) \cdot u \cdot y = u^{-1} \cdot f^{n-2}(x^{-1}) \cdot f^{n-2}(x) \cdot u \cdot y = y.$ As a simple consequence we obtain the Gluskin-Hosszú theorem.

COROLLARY 2. An *n*-groupoid is an *n*-group iff it is *H*-derived from a group. Proof. Follows directly from Theorem 6. Let now $S(A) = \{x \in A \mid x \text{ is skewable}\}.$

THEOREM 13. If $S(A) \neq \emptyset$ then (A, α) is S(A)-cancellative.

Proof. Let be $s_1, \ldots, s_n \in S(A)$. The equality $\alpha(s_1^{i-1}, x, s_{i+1}^n) = \alpha(s_1^{i-1}, y, s_{i+1}^n)$ is equivalent to

$$s_1 \cdot f(s_2) \cdot \ldots \cdot f^{i-2}(s_{i-1}) \cdot f^{i-1}(x) f^i(s_{i+1}) \cdot \ldots \cdot f^{n-1}(s_n) \cdot u$$

= $s_1 \cdot f(s_2) \cdot \ldots \cdot f^{i-2}(s_{i-1}) \cdot f^{i-1}(y) \cdot f^i(s_{i+1}) \cdot \ldots \cdot f^{n-1}(s_n) \cdot u$

Since s_1, \ldots, s_n are invertible in (A, \cdot) and f is an automorphism we get x = y.

THEOREM 14. If $x \in S(A)$ then x is infinitely skewable.

Proof. From the proof of Theorem 8 we get $(A, \alpha) = H_{\langle f, u \rangle}(A, \cdot)$, where $(A, \cdot) = \operatorname{ret}_{(x)^{n-2}}(A, \alpha)$ and $u = \alpha((\bar{x})^n)$. Now from the proof of Theorem 7 we have $u^{-1} = \overline{(\bar{x})} = \overline{\bar{x}}$, i.e. \bar{x} is skewable. Using this fact we have $(A, \alpha) = H_{\langle g, v \rangle}(A, +)$, where $(A, +) = \operatorname{ret}_{(\bar{x})^{n-2}}(A, \alpha)$ and $v = \alpha((\bar{x})^{n-2})$. Again by Theorem 7 we get $v^{-1} = \overline{(\bar{x})} = \overline{\bar{x}}$, etc.

Following Post [10] (see also [3]), we define the *n*-ary power putting

$$x^{\langle k \rangle} = \begin{cases} \alpha(x^{\langle k-1 \rangle}, (x)^{n-1}) & \text{for } k > 0\\ x & \text{for } k = 0\\ y : \alpha(y, x^{\langle -k-1 \rangle}, (x)^{n-2}) = x & \text{for } k < 0 \end{cases}$$

It is easy to verify that the following exponential laws hold

$$\alpha(x^{}, \dots, x^{}) = x^{},$$

$$(x^{})^{~~} = x^{} = (x^{~~})^{}~~~~$$

Let $\bar{x}^{(0)} = x$ and let $\bar{x}^{(k+1)}$ be the skew element to $\bar{x}^{(k)}$, $k \ge 0$. Using the above laws we can see that $\bar{x} = x^{<-1>}$ and, in the consequence $\bar{x}^{(2)} = (x^{<-1>})^{<-1>} =$

$$x^{< n-3>}$$
. Generally, $\bar{x}^{< k>} = x^{< S_k>}$ for $S_k = -\sum_{i=0}^{k-1} (2-n)^i$.

THEOREM 15. If $S(A) \neq \emptyset$ then $(S(A), \alpha)$ is an n-subgroup of (A, α) .

Proof. If $x_1, \ldots, x_n \in S(A)$ they are invertible in (A, \cdot) and $\alpha(x_1^n) = x_1 \cdot f(x_2) \cdot \ldots \cdot f^{n-1}(x_n) \cdot u$ having all factors invertible is invertible too. Hence, by Theorem 12, $\alpha(x_1^n)$ is skewable. Therefore $(S(A), \alpha)$ is an *n*-subsemigroup of (A, α) . Since all elements of $(S(A), \alpha)$ are skewable is an *n*-group.

We finish by a simple consequence of this theorem.

COROLLARY <u>3.Let</u> $x, x_1, \ldots, x_n \in S(A)$. Then $\overline{\alpha((x)^n)} = \alpha((\bar{x})^n)$ and if (A, α) is abelian $\overline{\alpha(x_1^n)} = \alpha(\bar{x}_1^n)$.

Proof. These equalities hold in n-groups (see [3], [4]).

References

[1] Dudek, W. A., Glazek, K. and Gleichgewicht, B., A note on the axioms of *n*-groups, Colloquia Math., Soc. J. Bolyai 29 "Universal Algebra", Esztergom (Hungary) 1977, 192-202. (North-Holland, Amsterdam 1982).

[2] Dudek, W. A. and Michalski, J., On a generalization of Hosszú theorem, Demonstratio Math. 15 (1982), 783-805.

[3] Dudek, W. A., On some old and new problems in *n*-ary groups, Quasigroups and Related Systems 8 (2001), 15-36.

[4] Glazek, K. and Gleichgewicht, B., Abelian *n*-groups, Colloquia Math. Soc. J. Bolyai 29 "Universal Algebra", Esztergom (Hungary) 1977, 321-329. (North-Holland, Amsterdam 1982).

[5] Hosszú, M., On the explicit form of *n*-group operations, Publ. Math. Debrecen 10 (1963), 88-92.

[6] Kuros, A.G., General algebra, Lecture notes, 1969-1970, Nauka, Moscow, 1974 (in Russian).

[7] Monk, J. D. and Sioson, F. M., On the general theory of *n*-groups, Fund. Math. 72 (1971), 233-244.

[8] Petrescu, A., Polyadic semigroups with skew elements, Univ. "Petru Maior" Târgu-Mureş, Buletin ştiinţific vol. XVII, 2004, 303-308.

[9] Petrescu, A., *H*-derived polyadic semigroups, Algebra Symposium, Cluj-Napoca, May 27-28, 2005 (to appear in Proceedings of the Algebra Symposium).

[10] Post, E. L., Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208-330.

47

[11] Sokolov, E.I., On the Gluskin-Hosszú theorem for Dörnte n-groups, (Russian), Math. Issled. 39 (1976), 187-189.

Adrian Petrescu Department of Mathematics "Petru Maior" University of Tg. Mureş Nicolae Iorga street nr.1, 540088 email:*apetrescu@uttgm.ro*

48