Proceedings of the International Conference on Theory and Application of Mathematics and Informatics ICTAMI 2005-Alba Iulia, Romania

A FEW RESULTS ABOUT THE P-LAPLACE'S OPERATOR

Covei C. Dragos-Patru

Abstract. The aim of this paper is to obtain few results for p-Laplace's operator and these representation an extension of the very know results for laplacian.

2000 Mathematics Subject Classification: 3505,35J60.

1.The p-Laplace equation

The equation

$$
\begin{equation*}
\triangle_{p} u=0 \quad \text { on } \Omega, \quad 1<p<\infty, \tag{1.1.}
\end{equation*}
$$

is called p-Laplace's equation.
Here, $\Omega \subset \mathbb{R}^{N}$ is an open set, $u: \Omega \longrightarrow \mathbb{R}$ is the unknown, and \triangle_{p} is the p-Laplace operator defined by

$$
\begin{equation*}
\triangle_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), \tag{1.2.}
\end{equation*}
$$

The previous investigations have led to the equation's critical points

$$
\begin{equation*}
D_{p}(u ; \Omega)=\int_{\Omega}|\nabla u|^{p} d x \tag{1.3.}
\end{equation*}
$$

are weak solutions for (1.1.), thus they can be named p-harmonic functions.

2.FUNDAMENTAL SOLUTIONS FOR P-LAPLACE EQUATION

We will first construct a simple radial solution of p-Laplace's equation. To look for radial solutions of p-Laplace's equation on $\Omega=\mathbb{R}^{N}$ of the form

$$
\begin{equation*}
u(x)=v(r) ; r=|x|:=\sqrt[2]{x_{1}^{2}+\ldots+x_{N}^{2}} \tag{2.1.}
\end{equation*}
$$

Here, $v:[0, \infty) \longrightarrow \mathbb{R}$
We note that

$$
\begin{equation*}
u_{x_{i}}=\frac{\partial v(r)}{\partial x_{i}}=v^{\prime}(r) \frac{x_{i}}{r} \tag{2.2.}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{x_{i} x_{i}}=\frac{\partial^{2} v(r)}{\partial x_{i}^{2}}=\frac{x_{i}^{2}}{r^{2}} v^{\prime \prime}(r)+\frac{1}{r} v^{\prime}(r)-\frac{x_{i}^{2}}{r^{3}} v^{\prime}(r), \forall 1 \leq i \leq N \tag{2.3.}
\end{equation*}
$$

and summation yields

$$
\begin{equation*}
\Delta_{2} u(x)=v^{\prime \prime}(r)+\frac{N-1}{r} v^{\prime}(r), r \neq 0 . \tag{2.4.}
\end{equation*}
$$

We have

$$
\begin{align*}
& |\nabla u|=\sqrt[2]{\left(\frac{\partial u}{\partial x_{1}}\right)^{2}+\ldots+\left(\frac{\partial u}{\partial x_{N}}\right)^{2}}=\sqrt[2]{\left(v^{\prime}(r) \frac{x_{1}}{r}\right)^{2}+\ldots+\left(v^{\prime}(r) \frac{x_{N}}{r}\right)^{2}}= \\
& \sqrt[2]{\left(v^{\prime}(r)\right)^{2}}=\left|v^{\prime}(r)\right| \tag{2.5.}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\partial}{\partial x_{i}}\left|v^{\prime}(r)\right|^{p-2}=\frac{\partial}{\partial x_{i}}\left(\sqrt[2]{\left(v^{\prime}(r)\right)^{2}}\right)^{p-2}= \tag{2.6.}\\
& (p-2)\left(\sqrt[2]{\left(v^{\prime}(r)\right)^{2}}\right)^{p-3} \frac{v^{\prime}(r) \frac{x_{i}}{v^{\prime \prime}}(r)}{\left|v^{\prime}(r)\right|}
\end{align*}
$$

But (1.1.) equivalently

$$
\begin{equation*}
|\nabla u|^{p-2} \Delta_{2} u+\nabla\left(|\nabla u|^{p-2}\right) \cdot \nabla u=0 . \tag{2.7.}
\end{equation*}
$$

We have

$$
\begin{gather*}
\nabla\left(|\nabla u|^{p-2}\right) \cdot \nabla u=\nabla\left(\left|v^{\prime}(r)\right|^{p-2}\right) \cdot \nabla v(r)= \\
\left(\frac{\partial}{\partial x_{1}}\left|v^{\prime}(r)\right|^{p-2}, \ldots, \frac{\partial}{\partial x_{N}}\left|v^{\prime}(r)\right|^{p-2}\right) \cdot\left(\frac{\partial v(r)}{\partial x_{1}}, \ldots, \frac{\partial v(r)}{\partial x_{N}}\right)= \\
\frac{(p-2)\left|v^{\prime}(r)\right|^{p-3} v^{\prime}(r) \frac{x 1}{r} v^{\prime \prime}(r)}{\left|v^{\prime}(r)\right|} \frac{v^{\prime}(r) x_{1}}{r}+\ldots+\frac{(p-2)\left|v^{\prime}(r)\right|^{p-3} v^{\prime}(r) \frac{x_{N}}{r} v^{\prime \prime}(r)}{\left|v^{\prime}(r)\right|} \frac{v^{\prime}(r) x_{N}}{r}= \\
\frac{(p-2)\left|v^{\prime}(r)\right|^{p-3}\left(v^{\prime}(r)\right)^{2} v^{\prime \prime}(r)}{\left|v^{\prime}(r)\right| r^{2}}\left(x_{1}^{2}+\ldots+x_{N}^{2}\right)= \\
\frac{(p-2)\left|v^{\prime}(r)\right|^{p-3}\left(v^{\prime}(r)\right)^{2} v^{\prime \prime}(r)}{\left|v^{\prime}(r)\right|} . \tag{2.8.}
\end{gather*}
$$

So (2.7.) equivalently

$$
\begin{equation*}
\left|v^{\prime}(r)\right|^{p-2}\left[(p-1) v^{\prime \prime}(r)+\frac{N-1}{r} v^{\prime}(r)\right]=0 . \tag{2.9.}
\end{equation*}
$$

Assume $\left|v^{\prime}(r)\right| \neq 0$.
Hence, we have

$$
\Delta_{p} u=0 \text { for } x \neq 0
$$

if and only if

$$
\begin{equation*}
(p-1) v^{\prime \prime}(r)+\frac{N-1}{r} v^{\prime}(r)=0 \tag{2.10.}
\end{equation*}
$$

In the case (2.10.) note $v^{\prime}=z$, follows

$$
\begin{align*}
& (p-1) z^{\prime}+\frac{N-1}{r} z=0 \Longleftrightarrow \\
& (p-1) \frac{d z}{z}=\frac{1-N}{r} d r \Longleftrightarrow \\
& (p-1) \ln |z|=(1-N) \ln r+\ln |C|^{p-1} \Longleftrightarrow \tag{2.11.}\\
& z(r)=\sqrt[p-1]{\frac{\mid C C^{p-1}}{r^{N-1}}}=\frac{|C|}{r^{\frac{N-1}{p-1}}} .
\end{align*}
$$

We conclude that

$$
\begin{equation*}
v^{\prime}(r)=\frac{C}{r^{\frac{N-1}{p-1}}}, \tag{2.12.}
\end{equation*}
$$

for an arbitrary constant $C \in \mathbb{R}_{+}$and thus

$$
v(r)=\left\{\begin{array}{ll}
C \ln r+C_{1}, & \text { if } N=p \tag{2.13.}\\
C \frac{p-1}{p-N} r^{p-N} p^{p-1}
\end{array} C_{1}, \quad \text { if } \quad N \geq p+1, r>0\right.
$$

with constants $C_{1} \in \mathbb{R}$.

3.Gauss-Green, Gauss-Ostrogradski and Green's formulas for the p-Laplacé operator

Definition 3.1. Let $\Omega \subset \mathbb{R}^{N}$ be open and bounded
i) We say that Ω has a C^{k}-boundary, $k \in N \cup\{\infty\}$, if for any $x \in \partial \Omega$ there exists $r>0$ and a function $\beta \in C^{k}\left(R^{N}\right)$ such that

$$
\Omega \cap B(x ; r)=\left\{y \in B(x ; r): y_{N}>\beta\left(y_{1}, \ldots, y_{N-1}\right)\right\}
$$

ii)If $\partial \Omega$ is C^{k} then we can define the unit outer normal field $v: \partial \Omega \longrightarrow$ R^{N}, where, $v(x),|v(x)|=1$, is the outward pointing unit normal of $\partial \Omega$ at x.
iii)Let $\partial \Omega$ be C^{k}. We call the directional derivative

$$
\frac{\partial u}{\partial v}(x):=\nu(x) \cdot \nabla u(x), x \in \partial \Omega
$$

the normal derivative of u.
In addition to $C^{k}(\Omega)$ we define the function space
$C^{k}(\bar{\Omega}):=\left\{u \in C^{k}(\Omega): D^{\alpha} u\right.$ can be continuously extended to $\partial \Omega$ for $\left.|\alpha| \leq k\right\}$, where

$$
D^{\alpha} u=\frac{\partial^{\alpha_{1}+\ldots+\alpha_{N}}}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{N}^{\alpha_{N}}} u, \quad|\alpha|=\sum_{i=1}^{N} \alpha_{i} .
$$

We recall the Gauss-Green theorem.
THEOREM 3.2. Let $\Omega \subset \mathbb{R}^{N}$ be open and bounded with C^{1}-boundary. Then for all $u \in C^{1}(\bar{\Omega})$

$$
\int_{\Omega} u_{x_{i}}(x) d x=\int_{\partial \Omega} u(x) v_{i}(x) d \sigma(x)
$$

Remark(Gauss-Ostrogradscki): Let $\Omega \subset R^{N}$ be open and bounded with C^{1}-boundary. Then for all $\vec{f}: \bar{\Omega} \longrightarrow R^{N}$ such that $\vec{f} \in C(\bar{\Omega}) \cap C^{1}(\Omega)$. We have

$$
\int_{\Omega} d i v \vec{f} d x=\int_{\partial \Omega} \vec{f} \cdot v d \sigma(x)
$$

Theorem 3.3. If $u \in C^{2}(\bar{\Omega})$ such that $\Delta_{p} u \in C(\bar{\Omega})$ then

$$
\begin{equation*}
\int_{\Omega} \Delta_{p} u d x=\int_{\partial \Omega} \frac{\partial u}{\partial v}|\nabla u|^{p-2} d \sigma(x) \tag{3.1.}
\end{equation*}
$$

Proof. In theorem Gauss-Ostrogradscki let $\vec{f}=|\nabla u|^{p-2} \nabla u$.
We have

$$
\begin{aligned}
& \int_{\Omega} d i v\left(|\nabla u|^{p-2} \nabla u\right) d x=\int_{\partial \Omega}\left(|\nabla u|^{p-2} \nabla u\right) \cdot v d \sigma(x)=\int_{\Omega} \Delta_{p} u d x= \\
& \int_{\Omega}|\nabla u|^{p-2} \Delta_{2} u d x+\int_{\Omega} \nabla\left(|\nabla u|^{p-2}\right) \cdot \nabla u d x= \\
& \int_{\partial \Omega} \frac{\partial u}{\partial v}|\nabla u|^{p-2} d \sigma(x)-\int_{\Omega} \nabla\left(|\nabla u|^{p-2}\right) \cdot \nabla u d x+ \\
& \int_{\Omega} \nabla\left(|\nabla u|^{p-2}\right) \cdot \nabla u d x=\int_{\partial \Omega} \frac{\partial u}{\partial \nu}|\nabla u|^{p-2} d \sigma(x)
\end{aligned}
$$

Moreover, we easily obtain Green's formulas for the p-Laplace operator:
Theorem 3.4. Let $\Omega \subset R^{N}$ be open and bounded with C^{1}-boundary. Then for all $u, v \in C^{2}(\bar{\Omega})$ such that $\Delta_{p} u \in C(\bar{\Omega})$, we have

$$
\begin{align*}
& G 1) \int_{\Omega}\left(\Delta_{p} u\right) v d x=\int_{\partial \Omega} v|\nabla u|^{p-2} \frac{\partial u}{\partial v} d \sigma(x)-\int_{\Omega} \nabla v \cdot\left(|\nabla u|^{p-2} \nabla u\right) d x \\
& G 2) \int_{\Omega}\left[\left(\Delta_{p} u\right) v-\left(\Delta_{p} v\right) u\right] d x=\int_{\partial \Omega}\left(v|\nabla u|^{p-2} \frac{\partial u}{\partial v}-u|\nabla v|^{p-2} \frac{\partial v}{\partial v}\right) d \sigma(x) . \tag{3.2.}
\end{align*}
$$

Proof. G1) Let $\vec{f}=v\left(|\nabla u|^{p-2} \nabla u\right)$. We have

$$
\operatorname{div}\left[v\left(|\nabla u|^{p-2} \nabla u\right)\right]=\operatorname{vdiv}\left(|\nabla u|^{p-2} \nabla u\right)+\nabla v \cdot\left(|\nabla u|^{p-2} \nabla u\right) .
$$

So

$$
\int_{\Omega}\left[v \Delta_{p} u+\nabla v \cdot\left(|\nabla u|^{p-2} \nabla u\right)\right] d x=\int_{\partial \Omega} v|\nabla u|^{p-2} \frac{\partial u}{\partial v} d \sigma(x) .
$$

Proof. G2) By G1) we have

$$
\begin{equation*}
\int_{\Omega}\left(\Delta_{p} u\right) v d x=\int_{\partial \Omega} v|\nabla u|^{p-2} \frac{\partial u}{\partial v} d \sigma(x)-\int_{\Omega} \nabla v \cdot\left(|\nabla u|^{p-2} \nabla u\right) d x \tag{3.3.}
\end{equation*}
$$

we inverse the role u and v,so

$$
\begin{equation*}
\int_{\Omega}\left(\Delta_{p} v\right) u d x=\int_{\partial \Omega} u|\nabla v|^{p-2} \frac{\partial v}{\partial v} d \sigma(x)-\int_{\Omega} \nabla u \cdot\left(|\nabla v|^{p-2} \nabla v\right) d x \tag{3.4.}
\end{equation*}
$$

Using (3.3.) and (3.4.) we deduce $G 2$)

4.Green function, Kelvin transform, or Poisson Kernel?

The following ideas are from [3]: From a physical standpoint equation (1.1.), or rather its generalizations, arises naturally, e.g., in the steady rectilinear motion of incompressible non-Newtonian fluids or in phenomena of phase transition. A glimpse at (1.1.) immediately reveals two unfavorable features:
(i) the operator is badly nonlinear;
(ii) ellipticity is lost at points where $\nabla u=0$.

The strong nonlinearity makes it impossible to develop a potential theory along the lines of classical one. p-harmonic functions do not enjoy integral representation formulas such as

$$
u(x)=\oint_{\partial B_{r}(x)} u d \sigma=\oint_{B_{r}(x)} u d y
$$

there is no Green function, or Kelvin transform, or Poisson Kernel. p-subharmonicity is not preserved by the clasical mollification processes, as is the case for subharmonic functions. This makes it impossible to regularize p-subharmonic functions. In retrospect, this obstruction is also deeply connected with (ii) above. The lack of ellipticity results in loss of regularity of p-harmonic functions.

By results of Lewis [4], solutions to the p-Laplacian are $C^{1, \alpha}$ for some $\alpha>0$, for instance the function

$$
u(x)=|x|^{\frac{p}{p-1}}
$$

satisfies the equation

$$
\Delta_{p} u=\text { const, but } u \notin C^{2}, \text { when } p>2 \text {. }
$$

In particular $|\nabla u|$ is C^{α} in any region where u satisfies the p-Laplace equation

$$
\Delta_{p} u=0
$$

However the operator L_{u}, defined above, may fail to have the maximum/comparison principle. The weak maximum principle for the p-Laplace operator is well known and can be find in standard literature in this filed; see [3], [5] and [1], the latter treats the parabolic case.

5.The existence of positive solutions in $\mathrm{C}^{2}\left(\mathbb{R}^{N}\right)$ for the problem WITH P-LAPLACIAN

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=p(x) f(u) \quad \text { in } \mathbf{R}^{N} \tag{5.1.}\\
u>0 \text { in } \mathbf{R}^{N} \\
u(x) \rightarrow 0 \quad \text { as } \quad|x| \rightarrow \infty
\end{array}\right.
$$

where $N>2, \Delta_{p} u(1<p \leq 2)$ is the p-Laplacian operator and
-the function $p(x)$ fulfills the following hypotheses:
($p 1$) $p(x) \in C\left(R^{N}\right)$ and $p(x)>0$ in \mathbb{R}^{N}.
($p 2$) we have

$$
\int_{0}^{\infty} r^{\frac{1}{p-1}} \Phi^{\frac{1}{p-1}}(r) d r<\infty \text { if } 1<p \leq 2
$$

where $\Phi(r):=\max _{|x|=r} p(x)$.
-the function $f \in C^{1}((0, \infty),(0, \infty))$ such that $\lim _{u \rightarrow 0} f(u)=\infty$ and satisfies the following assumptions:
($f 1$) mapping $u \longrightarrow \frac{f(u)}{u^{p-1}}$ is decreasing on ($0, \infty$);
(f2) $\lim _{u \searrow 0^{0}} \frac{f(u)}{u^{p-1}}=+\infty$;
(f3) $\lim _{u \rightarrow 0} \inf f(u)>0$.
It easy to prove that
THEOREM 5.1. If $j: I \subseteq R \longrightarrow R$ is a integrable nonnegative function, then

$$
\left(\frac{1}{b-a} \int_{a}^{b} j(x) d x\right)^{h} \leq \frac{1}{b-a} \int_{a}^{b} j^{h}(x) d x
$$

$\forall a, b \in I, a<b$ and $1<h<+\infty$
THEOREM 5.2.Under hypotheses $(f 1)-(f 3),(p 1),(p 2)$, the problem (5.1.) has a radially symmetric solution $u \in C^{2}\left(\mathbb{R}^{N} \backslash\{0\}\right) \cap C^{1}\left(\mathbb{R}^{N}\right)$.

Proof. By Theorem 1.3. in [2] the problem

$$
\left\{\begin{array}{lll}
-\Delta_{p} U=p(x) f(U), & \text { if } & |x|<k, \\
U=0, & \text { if } & |x|=k .
\end{array}\right.
$$

has a radially symmetric solution in $C\left(\bar{B}_{k}\right) \cap C^{1}\left(B_{k}\right) \cap C^{2}\left(B_{k} \backslash(0)\right)$
We now prove the existence of a positive function $u \in C^{2}\left(\mathbb{R}^{N}\right)$. As in [2] we construct first a positive radially symmetric function w such that $-\Delta_{p} w=$ $\Phi(r),(r=|x|)$ on \mathbb{R}^{N} and $\lim _{r \rightarrow \infty} w(r)=0$.

We obtain

$$
w(r):=K-\int_{0}^{r}\left[\xi^{1-N} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{\frac{1}{p-1}} d \xi
$$

where

$$
K=\int_{0}^{\infty}\left[\xi^{1-N} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{\frac{1}{p-1}} d \xi
$$

We first show that ($p 2$) implies that

$$
\int_{0}^{+\infty}\left[\xi^{1-N} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{\frac{1}{p-1}} d \xi
$$

is finite.
Let $1<p \leq 2$, so $0<p-1 \leq 1$, follows that $1 \leq \frac{1}{p-1}<+\infty$.
Using Theorem 5.1. for any $r>0$, we have

$$
\begin{aligned}
& \int_{0}^{r} \xi^{\frac{1-N}{p-1}}\left[\frac{\xi}{\xi} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{\frac{1}{p-1}} d \xi=\int_{0}^{r} \xi^{\frac{1-N}{p-1}} \xi^{\frac{1}{p-1}}\left[\frac{1}{\xi} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{\frac{1}{p-1}} d \xi \leq \\
& \int_{0}^{r} \xi^{\frac{2-N}{p-1}} \frac{1}{\xi} \int_{0}^{\xi} \sigma^{\frac{N-1}{p-1}} \Phi^{\frac{1}{p-1}}(\sigma) d \sigma d \xi=\int_{0}^{r} \xi^{\frac{2 N}{p-1}-1} \int_{0}^{\xi} \sigma^{\frac{N-1}{p-1}} \Phi^{\frac{1}{p-1}}(\sigma) d \sigma d \xi= \\
& -\frac{p-1}{N-2} \int_{0}^{r} \frac{d}{d \xi} \xi^{\frac{2 N}{p-1}} \int_{0}^{\xi} \sigma^{\frac{N-1}{p-1}} \Phi^{\frac{1}{p-1}}(\sigma) d \sigma d \xi= \\
& \frac{p-1}{N-2}\left[-r^{\frac{2 N}{p-1}} \int_{0}^{r} \sigma^{\frac{N-1}{p-1}} \Phi^{\frac{1}{p-1}}(\sigma) d \sigma+\int_{0}^{r} \xi^{\frac{1}{p-1}} \Phi^{\frac{1}{p-1}}(\xi) d \xi\right] \leq \frac{p-1}{N-2} \int_{0}^{r} \xi^{\frac{1}{p-1}} \Phi^{\frac{1}{p-1}}(\xi) d \xi,
\end{aligned}
$$

so

$$
\int_{0}^{r}\left[\xi^{1-N} \int_{0}^{\xi} \sigma^{N-1} \Phi(\sigma) d \sigma\right]^{\frac{1}{p-1}} d \xi<\infty
$$

as $r \longrightarrow \infty$.
Then we obtain

$$
K=\frac{p-1}{N-2} \cdot \int_{0}^{\infty} \xi^{\frac{1}{p-1}} \Phi^{\frac{1}{p-1}}(\xi) d \xi \text { if } 1<p \leq 2
$$

clearly, we have

$$
w(r) \leq \frac{p-1}{N-2} \cdot \int_{0}^{\infty} \xi^{\frac{1}{p-1}} \Phi^{\frac{1}{p-1}}(\xi) d \xi \text { if } 1<p \leq 2
$$

An upper-solution to (5.1.) will be constructed.
Consider the function

$$
\bar{f}(t)=(f(t)+1)^{\frac{1}{p-1}}, t>0 .
$$

Note that

$$
\begin{aligned}
& \bar{f}(t) \geq f(t)^{\frac{1}{p-1}} \\
& \bar{f}(t) \\
& \frac{\bar{t}}{t^{p-1}}, \text { is decreasing, } \quad\left(f_{1}^{\prime}\right) \\
& \lim _{t \rightarrow 0} \frac{\bar{f}(t)}{t}=\infty, \quad\left(f_{2}^{\prime}\right)
\end{aligned}
$$

Let v be a positive function such that

$$
w(r)=\frac{1}{C} \int_{0}^{v(r)} \frac{t^{p-1}}{\bar{f}(t)} d t \text { where } C>0
$$

will be chosen such that

$$
K C \leq \int_{0}^{C^{\frac{1}{p-1}}} \frac{t^{p-1}}{\bar{f}(t)} d t
$$

We prove that we can find $C>0$ with this property. By our hypothesis $\left(f_{2}^{\prime}\right)$ we obtain that

$$
\lim _{x \longrightarrow+\infty} \int_{0}^{x} \frac{t^{p-1}}{\bar{f}(t)} d t=+\infty
$$

Now using L'Hopital's rule we have

$$
\lim _{x \rightarrow \infty} \frac{\int_{0}^{x} \frac{t^{p-1}}{\bar{f}(t)} d t}{x^{p-1}}=\lim _{x \rightarrow \infty} \frac{x}{(p-1) \bar{f}(x)}=+\infty
$$

From this we deduce that there exists $x_{1}>0$ such that

$$
\int_{0}^{x} \frac{t^{p-1}}{\bar{f}(t)} d t \geq K x^{p-1}, \text { for all } x \geq x_{1}
$$

It follows that for any $C \geq x_{1}$ we have

$$
K C \leq \int_{0}^{C^{\frac{1}{p-1}}} \frac{t^{p-1}}{\bar{f}(t)} d t
$$

But w is a decreasing function, and this implies that v is a decreasing function too.

Then

$$
\int_{0}^{v(r)} \frac{t^{p-1}}{\bar{f}(t)} d t \leq \int_{0}^{v(0)} \frac{t^{p-1}}{\bar{f}(t)} d t=C w(0)=C K \leq \int_{0}^{C^{\frac{1}{p-1}}} \frac{t^{p-1}}{\bar{f}(t)} d t .
$$

It follows that $v(r) \leq C^{\frac{1}{p-1}}$ for all $r>0$. From $w(r) \longrightarrow 0$ as $r \longrightarrow+\infty$ we deduce $v(r) \longrightarrow 0$ as $r \longrightarrow+\infty$.

By the choice of v we have

$$
\nabla w=\frac{1}{C} \cdot \frac{v^{p-1}}{\bar{f}(v)} \nabla v
$$

follows that

$$
\begin{equation*}
\Delta_{p} w=\frac{1}{C^{p-1}}\left(\frac{v^{p-1}}{\bar{f}(v)}\right)^{p-1} \Delta_{p} v+(p-1) \frac{1}{C^{p-1}}|\nabla v|^{p}\left(\frac{v^{p-1}}{\bar{f}(v)}\right)^{p-2}\left(\frac{v^{p-1}}{\bar{f}(v)}\right)^{\prime} \tag{5.2.}
\end{equation*}
$$

From (5.2.) and $u \longrightarrow \frac{\bar{f}(u)}{u^{p-1}}$ is a decreasing function on $(0,+\infty)$, we deduce that

$$
\begin{equation*}
\Delta_{p} v \leq C^{p-1}\left(\frac{\bar{f}(v)}{v^{p-1}}\right)^{p-1} \Delta_{p} w=-C^{p-1}\left(\frac{\bar{f}(v)}{v^{p-1}}\right)^{p-1} \Phi(r) \leq-f(v) \Phi(r) \tag{5.3.}
\end{equation*}
$$

It follows that v is a radially symmetric solution of the problem:

$$
\left\{\begin{array}{l}
-\Delta_{p} u \geq p(x) f(u) \quad \text { in } \mathbf{R}^{N} \tag{5.4.}\\
u>0 \text { in } \mathbf{R}^{N} \\
u(x) \rightarrow 0 \text { as }|x| \rightarrow \infty
\end{array}\right.
$$

By the proof of Theorem 1.1. in [2] the problem (5.1.) has positive solutions.

Now using

$$
\begin{gathered}
u^{\prime}(r)=\left[r^{1-N} \int_{0}^{r} \sigma^{N-1} p(\sigma) f(u(\sigma)) d \sigma\right]^{\frac{1}{p-1}} \\
u^{\prime \prime}(r)=-\frac{p(r) f(u(r))+(1-N) r^{-N} \int_{0}^{r} \sigma^{N-1} p(\sigma) f(u(\sigma)) d \sigma}{p-1}\left[r^{1-N} \int_{0}^{r} \sigma^{N-1} p(\sigma) f(u(\sigma)) d \sigma\right]^{\frac{2-p}{p-1}} \\
\frac{2-p}{p-1} \geq 0 \Longleftrightarrow 1<p \leq 2 \\
\lim _{r \longrightarrow 0} \frac{\int_{0}^{r} \sigma^{N-1} p(\sigma) f(u(\sigma)) d \sigma}{r^{N}}=0 \\
\lim _{r \longrightarrow 0} \frac{\int_{0}^{r} \sigma^{N-1} p(\sigma) f(u(\sigma)) d \sigma}{r^{N-1}}=0
\end{gathered}
$$

we deduce $\lim _{r \longrightarrow 0} u^{\prime \prime}(r)$ is finite, so $u(r) \in C^{2}\left(\mathbb{R}^{N}\right)$.

References

[1] E. DiBenedetto, Degenerate and singular parabolic equations, Universitext, Springer-Verlag, New York, 1993.
[2] J.V. Goncalves and C.A. Santos, Positive solutions for a class of quasilinear singular equations, Journal of Differential Equations, Vol. 2004(2004), No. 56, pp 1-15.
[3] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, Oxford Science Publications
[4] J.L. Lewis, Capacitary functions in convex rings, Arch. Rat. Mech. Anal. 66 (1977), 201-224
[5] J. Maly, W. P. Ziemer, Fine regularity of solutions elliptic partial differential equations. Math. Surv. Monogr. 51, American Mathematical Society, Providence, RI, 1997.
[6] V. Radulescu, Partial Differential Equations, Repografia Univ. Craiova (http://inf.ucv.ro/~radulescu), Craiova, 2005.

Dragos-Patru Covei
Department of Science and General Culture
University of Targu-Jiu "Constantin Brancusi"
Bd. Republicii, No. 1, Tg. Jiu, Romania
dragoscovei77@yahoo.com

