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1. THE P-LAPLACE EQUATION

The equation

Apu=0 on Q 1<p<oo, (1.1,

is called p-Laplace’s equation.
Here, Q C RV is an open set, u : Q@ — R is the unknown, and A, is the
p-Laplace operator defined by

Apu = div(|VulP 7 Vu), (1.2.)
The previous investigations have led to the equation’s critical points
D, (u; Q) :/]Vu|pd:1: (1.3.)
Q

are weak solutions for (1.1.), thus they can be named p-harmonic functions.
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2.FUNDAMENTAL SOLUTIONS FOR P-LAPLACE EQUATION

We will first construct a simple radial solution of p-Laplace’s equation. To
look for radial solutions of p-Laplace’s equation on Q = R¥ of the form

u(x) =v(r); r=|z| = {2+ ... + 2%, (2.1.)

Here, v : [0,00) — R
We note that

ov(r) LT
Uy, = oz, v (7“)7, (2.2.)
and
62'0(7") xQ ” 1, 1‘2 ’
o _ 4 () = 2 <i< 3.
Uz, 9 v <T)+7“U (r) TSU(T),Vl <1 <N, (2.3.)
and summation yields
" N - 1 !
Aou(z) =v (1) + v (r),r #0. (2.4.)

We have

(2.5.)
and
9 ../ P—2 9 2/ 2 P .
oo [0 = () =
R (2.6.)
w-2 (o) L,
But (1.1.) equivalently
IVu’ Agu + V (|Vulf ) - Vu = 0. (2.7.)
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We have
) ’ p—2
V (|[Vul” )-Vu:V(v(r) )-Vv(r):
(9 ’ p—2 8 ’ p—2 aU
<(9_x1 ) e Dy ‘U (r) ) ( oz’ 833N )
0= O OO e, =D O 02 0) ey _
W' (r)] r [v'(r)] r
(=2 ') W) ), _
W' (r)] r? (w1 + - +oy) =
’ —3 ’ 2 n
=2 |0 () o5
[0 (r)]
So (2.7.) equivalently
’ -2 " N - 1 i
v (r) ' [(p — v (r)+ —v (r)| = 0. (2.9.)
Assume |v'(r)| # 0.
Hence, we have
Apu=0for xz #0
if and only if
1" N - ]. /
(p—1)v (r)+ v (r) =0, (2.10.)
In the case (2.10.) note v = z, follows
(p—1)2 + X 0 ly=0=
(p—1)% = ;Ndr =
(p— 1)1 | |=(1—=N)lnr+In|CP" <= (2.11.)
z(r) = |C]\‘,p__1 =
We conclude that
V() = (2.12.)
-l
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for an arbitrary constant C' € R, and thus

- >0, 2.13.
gjjlvr%+ol, it N>p+1 7 (213,

{ Clnr+C, it N =p
o(r) =

with constants C; € R.

3.GAUSS-GREEN, GAUSS-OSTROGRADSKI AND GREEN’'S FORMULAS FOR
THE P-LAPLACE' OPERATOR

DEFINITION 3.1. Let Q C RY  be open and bounded
i) We say that Q has a C*-boundary, k € N U {oo}, if for any x € 9Q
there exists r > 0 and a function 3 € C*(RN) such that

QN B(x;r)={y € B(z;r) :yn > B(Y1, -y Un-1)},

ii)If OQ is C* then we can define the unit outer normal field v : 0Q —
RN, where, v(x), |v(x)| =1, is the outward pointing unit normal of 0S) at x.
iii) Let 92 be C*. We call the directional derivative

ou
%(x) =v(x)- Vu(z),z € 09,

the normal derivative of wu.
In addition to C*(€2) we define the function space

C*(©) := {u € C*(Q) : D*u can be continuously extended to 9% for |a| <k},

where

aa1+...+aN

N

D= ————u, |a|= E Q;

(o5} QN 7 T
0x{"...0zy —

We recall the Gauss-Green theorem.
THEOREM 3.2. Let Q@ C RN be open and bounded with C*-boundary.
Then for all u € C'(Q)

/ wy (2)d = / w(@)oi(x)do(x).

Q onN
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REMARK(GAUSS-OSTROGRADSCKI): Let Q C RN be open and bounded
—_ — —_
with C'-boundary. Then for all f : Q — RN such that f € C(Q)NCHQ).

We have
— —
/divfda: = /f -vdo(x).
0

Q
THEOREM 3.3. If u € C*(Q) such that Ayu € C(Q) then

/ Aude = g—“ IVl do(z). (3.1)
v
Q o0

Proof. In theorem Gauss-Ostrogradscki let 7) = |Vul[""* Vu.
We have

fdw (V™ 2Vu) dx = f (V™ QVU) vdo (z pruda:—
f|vu|p 2A2uda;+fv(|vu|p %) - Vudz =

ou |VulP~? do(x fv(vu|p %) - Vudz+
fV (VuP™) - Vuds = [ 3% Vup dofa)

Moreover, we easily obtain Green’s formulas for the p-Laplace operator:

THEOREM 3.4. Let Q) C RN be open and bounded with C-boundary.
Then for all u,v € C*(Q) such that A,u € C(Q), we have

G1) [ (Apu)vde = [v|Vul’ 2do(z va (IVu’~ Vu) dx
62)[ (B — () ulde = [ (v W’ v ) doe)
’ . . (3.2.)
Proof. G1) Let f =wv (|Vu|p_2 Vu) .We have
div [v (|Vu|p_2 Vu)| = vdiv (|Vu|p_2 Vu) + Vo - (|Vu|p_2 Vu) .

So

p25u

/[vApu—l—VU- (|Vu|p_2 Vu)| dx :/ |Vu| 50 do(z).

Q onN
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Proof. G2) By G1) we have

/(Apu)vdx:/v|vu|pQg—Zda(x)—/W-(Wquu) dr  (3.3)

Q o0 Q

we inverse the role u and v,so

/(Apv) ud:p:/u|Vv|p_2 g—Zda(x)—/vu- (Vo2 Vo) de  (3.4)
Q Q

o

Using (3.3.) and (3.4.) we deduce G2)
4.GREEN FUNCTION, KELVIN TRANSFORM, OR P0OISSON KERNEL?

The following ideas are from [3]: From a physical standpoint equation
(1.1.), or rather its generalizations, arises naturally, e.g., in the steady rectilin-
ear motion of incompressible non-Newtonian fluids or in phenomena of phase
transition. A glimpse at (1.1.) immediately reveals two unfavorable features:

(7) the operator is badly nonlinear;

(1) ellipticity is lost at points where Vu = 0.

The strong nonlinearity makes it impossible to develop a potential theory
along the lines of classical one. p-harmonic functions do not enjoy integral
representation formulas such as

u(z) :7{ udo :j{ udy,
OBr(x) B (x)

there is no Green function, or Kelvin transform, or Poisson Kernel. p-subharmonicity
is not preserved by the clasical mollification processes, as is the case for sub-
harmonic functions. This makes it impossible to regularize p-subharmonic
functions. In retrospect, this obstruction is also deeply connected with (i7)
above. The lack of ellipticity results in loss of regularity of p-harmonic func-
tions.

By results of Lewis [4], solutions to the p-Laplacian are C* for some a > 0,
for instance the function

u(x) = [T

satisfies the equation

A,u = const,but u ¢ C* when p > 2.
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In particular [Vu| is C* in any region where u satisfies the p-Laplace equation
Ayu = 0.

However the operator L,,, defined above, may fail to have the maximum /comparison
principle. The weak maximum principle for the p-Laplace operator is well
known and can be find in standard literature in this filed; see [3], [5] and [1],
the latter treats the parabolic case.

5. THE EXISTENCE OF POSITIVE SOLUTIONS IN CQ(RN) FOR THE PROBLEM
WITH P-LAPLACIAN

Consider the problem

Ay =pla)f(u) i RY
u>0 in RY (5.1.)
u(x) - 0 as |z |— o0,

where N > 2, Aju (1 < p <2) is the p-Laplacian operator and
-the function p(x) fulfills the following hypotheses:
(p1) p(z) € C(RN) and p(x) >0 in RY.
(p2) we have

> 1 1
/ rr=1®r1(r)dr <oo if 1<p<2
0

where ®(r) := I‘nzixp(x).

-the function f € C'((0,00), (0,00)) such that lin%f(u) = oo and satisfies
the following assumptions:
(f1) mapping u« — L is decreasing on (0, c0);
im L@ — :
(f2) }}{%up—l +OO7

(f3)1ir%inff(u) > 0.
It easy to prove that

THEOREM 5.1. If j: 1 C R — R s a integrable nonnegative function,
then

<bia/abj(x)da:)h§ bia/abjh(x)dx
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Va,bel,a<b and 1 < h < 400

THEOREM 5.2. Under hypotheses (f1)—(f3), (pl), (p2), the problem (5.1.)
has a radially symmetric solution u € C*(RV\{0}) N C*(RY).

Proof. By Theorem 1.3. in [2] the problem

~AU = pa)f(U), if |a] <,
U =0, if |z| = k.

has a radially symmetric solution in C' (By) N C* (By) N C? (B, \(0))
We now prove the existence of a positive function u € C? (RN ) . Asin [2]
we construct first a positive radially symmetric function w such that —A,w =

®(r), (r =|z|) on RN and lim w(r) = 0.
We obtain

o [T an ¢ N ril
=K /0 [f /Ocr d(0)do d§,

1

K= / {glN/ N‘@(a)da]pld@

We first show that (p2) implies that

+00 ¢ =
/ [fl_N/ O'N_I(I)(O')do} dg,
0 0
is finite.

Let 1<p<2/s00<p—1<1, follows that 1§}ﬁ<+oo.
Using Theorem 5.1. for any r > 0, we have
1

fofp [€f0£N1(I)() } de = ffplgpl 1f0€ N1 )da]pjdfg

fo gp T fo o1 P 1( )dad§:f0 ¢t (S0 0 (o) dode =
Kl e fyo pl@pl()dadﬁz

p—jQ[ o 0T ()do + [y P e (§)dg| < B f7 67T 0RT (€)de,

SO

where

2[s

1

/OT [gl—N /OgaN—lcp( )da} CdE <o
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as r — 00.
Then we obtain

p—1 RN N U .
K=——- p—1Pp- f1 <2

clearly, we have

—1 o0 1 1
w(r) < ﬁ 5 A £ T (E)dE if 1<p<2.

An upper-solution to (5.1.) will be constructed.
Consider the function

() = (F(t) + 1)77,¢ > 0.

il

Note that _ 1
f(t) = f(t)>1
IO g decreasing, (f)

tP— 17

lim /19 — oo, (f2)

t—0
Let v be a positive function such that
1 o) -1

w(r) = c T )dt where C' >0

will be chosen such that

C’ﬁ tpfl
KC < / —dt.
o f()

We prove that we can find C' > 0 with this property. By our hypothesis (f,)
we obtain that

T 2fp—l
z—+o0 [q f(t)
Now using L’Hopital’s rule we have
i :
lim = lim ———— = +.

T——00 J}p_l

v (p—1) f(z)
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From this we deduce that there exists z; > 0 such that

T tp_l )
——dt > KaP " for all x > ;.

o [f(t)

It follows that for any C' > x; we have

Cpiil tp—l
KC < / ——dt.
o f)

But w is a decreasing function, and this implies that v is a decreasing function

too.
Then
o(r) 4p—1 v(0) 4p—1 oFT p—1
o f(t) o f(t) 0 f(t)

It follows that v(r) < C#1 forall r > 0. From w(r) — 0 asr — 400

we deduce v(r) — 0 as r — +oc.
By the choice of v we have

1
Vw=—=" =
¢ flv)

follows that

A= % <%)IH A+ (p—1) Oi—l Vol (;?U;)H (?1201)25:2‘)

From (5.2.) and u — zﬁ)l is a decreasing function on (0,400), we deduce

that
— -1 — p—1
S (T 1 (f(v)
Ay <Pt (% Ayw = —CP1 s O(r) < —f(v)®(r). (5.3.)
It follows that v is a radially symmetric solution of the problem:
Ay > p(a)f(w) in RV
u>0 in RY (5.4.)

uw(z) - 0 as |z|— o0,
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By the proof of Theorem 1.1. in [2] the problem (5.1.) has positive solu-
tions.
Now using

W(r) = [PV [T oNp(o) f(u(o))do] 7T

" ) f(u(r 1-N)r=N [T oN=1p(o) f(u(o))do _ r _
W' (r) = _ p(r)f(u(r))+(1-N) p,{o p(0) f(u(o)) [rl Nfo oN 1p(0)f(u<0))da}p

N
|
i}

|
i

2—
[)Tf20<:>1<p§2

lim J52" o) oo _

r—0

lim 07‘ UN—11:§\73{(U(J))dJ —0

r—s0

we deduce lim v’ (r) is finite, so u(r) € C2(RN).

r—0
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