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Abstract. The purpose of this paper is to reformulate in the setting
of topological groupoids the concept of morphism introduced by Zakrzewski
[8]. We shall also introduce a notion of openness for these generalized mor-
phisms and we shall prove that open generalized morphisms of locally compact
Hausdorff second countable groupoids carry topological amenability.
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1.Introduction

There are many equivalent definitions of the (algebraic) groupoid. The
shortest definition is : a groupoid is a small category with inverses. Since we
shall use the notion of amenability for groupoids introduced by Jean Renault
in [6] and extensively studied in [1], we shall prefer the same definition as in
[6] (and [1]):

A groupoid is a set Γ endowed with a product map (multiplication)

(x, y) → xy
[
: Γ(2) → Γ

]
where Γ(2) is a subset of Γ×Γ called the set of composable pairs, and an inverse
map

x → x−1 [: Γ → Γ]

such that the following conditions hold:

1. If (x, y) ∈ Γ(2) and (y, z) ∈ Γ(2), then (xy, z) ∈ Γ(2), (x, yz) ∈ Γ(2) and
(xy) z = x (yz).

2. (x−1)
−1

= x for all x ∈ Γ.

3. For all x ∈ Γ, (x, x−1) ∈ Γ(2), and if (z, x) ∈ Γ(2), then (zx) x−1 = z.

4. For all x ∈ Γ, (x−1, x) ∈ Γ(2), and if (x, y) ∈ Γ(2), then x−1 (xy) = y.
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M. Buneci - A notion of open generalized morphism ...

The maps r and d on Γ, defined by the formulae r (x) = xx−1 and d (x) =
x−1x, are called the range and the (domain) source maps. It follows easily from
the definition that they have a common image called the unit space of G, which
is denoted Γ(0). Its elements are units in the sense that xd (x) = r (x) x = x.
It is useful to note that a pair (x, y) lies in Γ(2) precisely when d (x) = r (y),
and that the cancellation laws hold (e.g. xy = xz iff y = z). The fibers of the
range and the source maps are denoted Γu = r−1 ({u}) and Γv = d−1 ({v}),
respectively.

Let Γ and G be groupoids. A function ϕ : Γ → G is a (groupoid) ho-
momorphism if (ϕ (γ1) , ϕ (γ2)) ∈ G(2) and ϕ (γ1) ϕ (γ2) = ϕ (γ1γ2) whenever

(γ1, γ2) ∈ Γ(2). Let us note that since ϕ
(
γ−1

1

)
ϕ (γ1) ϕ (γ2) = ϕ

(
γ−1

1 γ1γ2

)
=

ϕ (γ2), ϕ
(
γ−1

1

)
= ϕ (γ1)

−1. Hence ϕ
(
γ1γ

−1
1

)
= ϕ (γ1) ϕ (γ1)

−1 ∈ G(0). In the

sequel we shall denote by ϕ(0) : Γ(0) → G(0) the restriction of ϕ to Γ(0).
A topological groupoid consists of a groupoid Γ and a topology compatible

with the groupoid structure. This means that:

1. x → x−1 [: Γ → Γ] is continuous.

2. (x, y)
[
: Γ(2) → Γ

]
is continuous where Γ(2) has the induced topology

from Γ× Γ.

Let Γ and G be topological groupoids. By a topological homomorphism
from Γ to G we shall mean a homomorphism ϕ : Γ → G which is continuous.

We shall be exclusively concerned with topological groupoids which are
locally compact Hausdorff (and we shall call them locally compact Hausdorff
groupoids).

Zakrzewski introduced in [8] a notion of morphism between groupoids which
reduces to a group homomorphism if groupoids are groups and to an ordinary
map in the reverse direction if groupoids are sets. A morphism in the sense of
Zakrzewski is a relation satisfying some additional properties.

The purpose of this paper is to reformulate the notion of groupoid mor-
phism given by Zakrzewski in terms of groupoid actions and to extend it to
the setting of topological groupoids. We shall also define a notion of open mor-
phism and we shall prove that open generalized morphisms of locally compact
Hausdorff second countable groupoids carry topological amenability.

2. Actions of groupoids
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Definition 1. Let Γ be a groupoid and X be a set. We say Γ acts (to the
left) on X if there is a map ρ : X → Γ(0) ( called a momentum map) and a
map (γ, x) → γ · x from

Γ ∗ρ X = {(γ, x) : d (γ) = ρ (x) }

to X, called (left) action, such that:

1. ρ (γ · x) = r (γ) for all (γ, x) ∈ Γ ∗ρ X.

2. ρ (x) · x = x for all x ∈ X.

3. If (γ2, γ1) ∈ Γ(2) and (γ1, x) ∈ Γ ∗ρ X, then (γ2γ1) · x = γ2 · (γ1 · x).

If Γ is a topological groupoid and X is a topological space, then we say that
a left action is continuous if the mappings ρ and (γ, x) → γ ·x are continuous,
where Γ∗ρ X is endowed with the relative product topology coming from Γ×X.

The difference with the definition of action in [5] is that we do not assume
that the momentum map is surjective and open.

The action is called free if (γ, x) ∈ Γ ∗ρ X and γ · x = x implies γ ∈ Γ(0).
The continuous action is called proper if the map (γ, x) → (γ · x, x) from

Γ ∗ρ X to X × X is proper (i.e. the inverse image of each compact subset of
X ×X is a compact subset of Γ ∗ρ X).

In the same manner, we define a right action of Γ on X, using a continuous
map σ : X → Γ(0) and a map (x, γ) → x · γ from

X ∗σ Γ = {(x, γ) : σ (x) = r (γ) }

to X.
The simplest example of proper and free action is the case when the

groupoid Γ acts upon itself by either right or left translation (multiplication).

Definition 2. Let Γ1, Γ2 be two groupoids and X be set. Let us assume
that Γ1 acts to the left on X with momentum map ρ : X → Γ

(0)
1 , and that Γ2

acts to the right on X with momentum map σ : X → Γ
(0)
2 . We say that the

action commute if

1. ρ (x · γ2) = ρ (x) for all (x, γ2) ∈ X ∗σ Γ2 and σ (γ1 · x) = σ (x) for all
(γ1, x) ∈ Γ1 ∗ρ X.
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2. γ1 · (x · γ2) = (γ1 · x) · γ2 for all (γ1, x) ∈ Γ1 ∗ρ X, (x, γ2) ∈ X ∗σ Γ2.

3. Open generalized groupoid morphisms

Definition 3. Let Γ and G be two groupoids. By an algebraic generalized
morphism from Γ to G we mean a left action of Γ on G which commutes with
the multiplication on G.

The generalized morphism is said continuous (or topological generalized
morphism) if the action of Γ on G is continuous (assuming that Γ and G are
topological spaces).

Piotr Stachura pointed out to us that if we have a morphism in the sense
of the preceding definition and if ρ : G → Γ is the momentum map of the left
action, then ρ = ρ ◦ r. Indeed, for any x ∈ G, we have ρ (x) = ρ (xx−1) =
ρ (r (x)) because of the fact that left action of Γ on G commutes with the
multiplication on G.

Therefore an algebraic morphism h : Γ .G is given by two maps

1. ρh : G(0) → Γ(0)

2. (γ, x) → γ ·h x from Γ ?h G to G, where

Γ ?h G = {(γ, x) ∈ Γ×G : d (γ) = ρh (r (x))} ,

satisfying the following conditions:

(1) ρh (r (γ ·h x)) = r (γ) for all (γ, x) ∈ Γ ?h G.

(2) ρh (r (x)) ·h x = x for all x ∈ G.

(3) (γ1γ2) ·h x = γ1 ·h (γ2 ·h x) for all (γ1, γ2) ∈ Γ(2) and all (γ2, x) ∈ Γ ?h G.

(4) d (γ ·h x) = d (x) for all (γ, x) ∈ Γ ?h G.

(5) (γ ·h x1) x2 = γ ·h (x1x2) for all (γ, x1) ∈ Γ ?h G and (x1, x2) ∈ G(2).
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In the case continuous generalized morphism the map ρh is a continuous
map. The map ρh is not necessarily open or surjective. However, the image
of ρh is always a saturated subset of Γ(0). Indeed, let v ∼ u = ρh (t) and let
γ ∈ Γ be such that r (γ) = v and d (γ) = u. Then v belongs to the image of
ρh because v = r (γ) = ρh (r (γ ·h t)).

Remark 4. Let h be an algebraic generalized morphism from Γ to G ( in
the sense of Definition 3). Then h is determined by ρh and the restriction of
the action to {

(γ, t) ∈ Γ×G(0) : d (γ) = ρh (t)
}

.

Indeed, using the condition 5, one obtains

γ ·h x = (γ ·h r (x)) x

Let us also note that

(γ1γ2) ·h x = ((γ1γ2) ·h r (x)) x = γ1 ·h (γ2 ·h r (x)) x

= (γ1 ·h r (γ2 ·h r (x))) (γ2 ·h r (x)) x.

Consequently, for any γ ∈ Γ and any t ∈ G(0) with ρh (t) = d (γ), we have(
γ−1 ·h r (γ ·h t)

)
(γ ·h t) =

(
γ−1γ

)
·h t = d (γ) ·h t = ρh (t) ·h t = t.

Thus for any γ ∈ Γ and any t ∈ G(0) with ρh (t) = d (γ),

(γ ·h t)−1 = γ−1 ·h r (γ ·h t) .

Therefore, algebraically, the notion of generalized morphism in the sense of
Definition 3 is the same with that introduced in [8, p. 351]. In order to prove
the equivalence of these definitions, we can use [7, Proposition 2.7/p. 5], taking
f = ρh and g (γ, t) = γ ·h t.

Remark 5. Let h : Γ .G be a continuous generalized morphism of
locally compact Hausdorff groupoids ( in the sense of Definition 3). Then G
is left Γ-space under the action (γ, x) → γ ·h x, and a right G-space under the
multiplication on G. G is a correspondence in the sense of [3] if and only if
the left action of Γ on G is proper and ρh is open and injective. G is a regular
bibundle in the sense of [2, Definition 6/p.103] if and only if the action of Γ
is free and transitive along the fibres of d (this means that for all u ∈ G(0) and
x satisfying d (x) = u, there is γ ∈ Γ such that γ ·h u = x). Therefore, the
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notion of generalized morphism introduced in Definition 3 is not cover by the
notions used in [3] and [2].

Remark 6. Let ϕ : Γ → G be a groupoid homomorphism (in the usual
sense). Let us assume that ϕ(0) : Γ(0) → G(0) is a surjective map. Then ϕ can
be viewed as a generalized morphism in the sense of Definition 3. Indeed, let
ρh : G(0) → Γ(0) be a right inverse for ϕ(0), and let us define

γ ·h x = ϕ (γ) x

for any (γ, x) ∈ {(γ, x) ∈ Γ×G : d (γ) = ρh (r (x))}. Thus we obtain a gener-
alized morphism in the sense of Definition 3. Similarly, any topological homo-
morphism ϕ : Γ → G for which ϕ(0) : Γ(0) → G(0) admits a continuous right
inverse can be viewed as a continuous generalized morphism from Γ to G.

Lemma 7. Let Γ and G be two groupoids and let h be an algebraic general-
ized morphism from Γ to G (in the sense of Definition 3). Then the function
defined by

r ((γ1γ2) ·h x) = r (γ1 ·h (γ2 ·h r (x)))

for any (γ1, γ2) ∈ Γ(2) and (γ1, x) ∈
{
(γ, t) ∈ Γ×G(0) : d (γ) = ρh (t)

}
gives

an action of Γ on G(0).
Proof. Let (γ1, γ2) ∈ Γ(2) and (γ1, x) ∈

{
(γ, t) ∈ Γ×G(0) : d (γ) = ρh (t)

}
.

Using the computation in the Remark 4, we obtain

r ((γ1γ2) ·h x) = r (((γ1γ2) ·h r (x)) x)

= r (((γ1γ2) ·h r (x))) = r (γ1 ·h (γ2 ·h r (x)))

Definition 8. Let Γ and G be topological groupoids and let h be a contin-
uous generalized morphism from Γ to G ( in the sense of Definition 3). Then
h is said to be open if the following conditions are satisfied:

1. The map (γ, t) → γ·ht from Γ∗hG
(0) =

{
(γ, t) ∈ Γ×G(0) : d (γ) = ρh (t)

}
to

G is open, where Γ ∗h G(0) is endowed with the relative product topology
coming from Γ×G(0).

2. The map ρh : G(0) → Γ(0) has a left continuous inverse (that is a contin-
uous map ph:Γ

(0) → G(0) such that ph (ρh (t)) = t for all t ∈ G(0)).
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Remark 9. The continuous generalized morphism constructed from a
groupoid homomorphism ϕ : Γ → G as in Remark 6 is open (in the sense
of Definition 8) if and only if ϕ is open (as a map from Γ to G).

Let Γ and G be topological groupoids and let h be a continuous open gen-
eralized morphism from Γ to G ( in the sense of Definition 8). Let us denote
by

h (Γ) = {γ ·h t : (γ, t) ∈ Γ ∗h G} .

It is easy to see that h (Γ) is an open wide subgroupoid of G.

Definition 10. Let Γ and G be topological groupoids and let h be a
continuous open generalized morphism from Γ to G ( in the sense of Definition
8). The subgroupoid h (Γ) of G defined above is said the image of Γ by h.

Lemma 11. Let Γ and G be locally compact Hausdorff groupoids and let
h be a continuous open generalized morphism from Γ to G ( in the sense
of Definition 8). If Γ and G(0) are second countable, then there is a map
σh : h (Γ) → Γ such that

1. σh (x) ·h d (x) = x for all x ∈ h (Γ).

2. σh (K) is relatively compact in Γ for any compact subset K of G.

Proof.Since h be a continuous open generalized morphism from Γ to G, and
since Γ is a second countable locally compact space, it follows that h (Γ) is a
second countable locally compact space.

The map (γ, t) → γ·ht from Γ∗hG
(0) to h (Γ) is a continuous open surjection

between locally compact Hausdorff second countable spaces. According to
Mackey’s Lemma [4, Lemma 1.1/p.102] there is a regular cross section σ :
h (Γ) → Γ ∗h G(0). In particular, this means that σ (K) is relatively compact
in Γ for any compact subset K of h (Γ). Let σh (x) = p1 (σ (x)) for all x ∈ h (Γ),
where p1 is the first projection. Then .σh (x) ·h d (x) = x for all x ∈ h (Γ), and
σh (K) is relatively compact in Γ for any compact subset K of G.

4. Open generalized morphisms and topological amenability
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The notion of amenability for groupoids was introduced in [6] and was
extensively studied in [1].

Definition 12. A locally compact Hausdorff groupoid Γ is said topolog-
ically amenable if there exists an approximate invariant continuous mean for
the range map r : Γ → Γ(0). That is a net (mi)i of continuous systems of prob-

ability measures for r such that
∥∥∥γ−1m

r(γ)
i −m

d(γ)
i

∥∥∥
1

goes to zero uniformly on

compact subsets of Γ. (see [1, Definition 2.2.1/p.42] and [1, Definition 2.2.8/p.
45])

A continuous system of probability measures for r [1, Definition 1.1.1/p.19]

is a family m =
{
mu : u ∈ Γ(0)

}
of probability measures on Γ such that

1. the support of mu is contained in Γu;

2. for every continuous function with compact support f : Γ → C, the
function

u
m(f)→

∫
f (γ) dmu (γ)

is continuous.

In fact it is not hard to prove that for every continuous bounded function
f : Γ → C, the function

u
m(f)→

∫
f (γ) dmu (γ)

is continuous. Indeed, let u0 ∈ Γ(0), let K be a compact neighborhood of u0

and let ε > 0. According to [1, Lemma 2.2.3/p. 42] there exists a compact
subset L of Γ such that mu (Γ− L) < ε

3M
for each u ∈ K, where M ≥ |f (γ)|

for all γ ∈ Γ. Let a : Γ → [0, 1] be a continuous function with compact support

such that a (γ) = 1 for all γ ∈ L. Since m =
{
mu : u ∈ Γ(0)

}
is a continuous

system of probability measures, it follows that there is a neighborhood V ⊂ K
of u0 such that∣∣∣∣∫ a (γ) f (γ) dmu (γ)−

∫
a (γ) f (γ) dmu0 (γ)

∣∣∣∣ <
ε

3

for all u ∈ V . Thus for all u ∈ V ⊂ K we have∣∣∣∣∫ f (γ) dmu (γ)−
∫

f (γ) dmu0 (γ)
∣∣∣∣
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≤
∣∣∣∣∫ a (γ) f (γ) dmu (γ)−

∫
a (γ) f (γ) dmu0 (γ)

∣∣∣∣ +

+
∣∣∣∣∫ (1− a (γ)) f (γ) dmu (γ)−

∫
(1− a (γ)) f (γ) dmu0 (γ)

∣∣∣∣
≤ ε

3
+

∣∣∣∣∫
Γ−L

f (γ) dmu (γ)
∣∣∣∣ +

∣∣∣∣∫
Γ−L

f (γ) dmu0 (γ)
∣∣∣∣

<
ε

3
+

ε

3
+

ε

3

Theorem 13. Let Γ and G be locally compact Hausdorff second countable
groupoids. Let h : Γ .G be a continuous open generalized morphism. If Γ is
topologically amenable, then h (Γ) is topologically amenable.

Proof. Let (mi)i be an approximate invariant continuous mean for r : Γ →
Γ(0). Let f be a continuous function with compact support on G and let us
define

nt
i (f) = m

ρh(t)
i (ft) ,

where ft (γ) = f
(
(γ−1 ·h t)

−1
)

= f (γ ·h r (γ−1 ·h t)) = f (γ ·h r (γ−1 ·h ph (r (γ))))

for all γ ∈ Γρh(t) (ph is the left inverse for ρh). The function F defined by
F (γ) = ft (γ) for all γ ∈ Γρh(t) is continuous and bounded on Γ. Therefore,

for each i, ni =
{
nt

i, t ∈ G(0)
}

is a continuous system of probability measures

for r : G → G(0).
Let us show that (ni)i is an approximate invariant continuous mean for

r : G → G(0). Let ε > 0 and let K be a compact subset of G. Let σh be a map
as in Lemma 11 and let i (ε) such that for each i ≥ iε∥∥∥γm

d(γ)
i −m

r(γ)
i

∥∥∥
1

< ε

for all γ ∈ σh (K).
Let f be a continuous function with compact support on G satisfying

|f (x)| ≤ ε and let x ∈ K. For each i we have

n
d(x)
i (y → f (xy))

= m
ρh(d(x))
i

(
γ → f

(
x

(
γ ·h r

(
γ−1 ·h d (x)

))))
= m

ρh(d(x))
i

(
γ → f

(
(σh (x) ·h d (x))

(
γ ·h r

(
γ−1 ·h d(x

))))
= m

ρh(d(x))
i

(
γ → f

(
σh (x) ·h

(
γ ·h r

(
γ−1 ·h d(x

))))
= m

ρh(d(x))
i

(
γ → f

(
(σh (x) γ) ·h r

(
γ−1 ·h d(x

)))
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On the other hand

n
r(x)
i (f)

= m
ρh(r(x))
i

(
γ → f

(
γ ·h r

(
γ−1 ·h r (x)

)))
= m

r(σh(x))
i

(
γ → f

(
γ ·h r

((
σh (x)−1 γ

)−1
·h d (x)

)))
because r (σh (x)) = ρh (r (σh (x) ·h d (x))) = ρh (r (x)) and

r
((

σh (x)−1 γ
)−1

·h d (x)
)

= r
((

γ−1σh (x)
)
·h d (x)

)
= r

(
γ−1 ·h r (σh (x) ·h d (x))

)
= r

(
γ−1 ·h r (x)

)
.

Thus ∣∣∣xn
d(x)
i (f)− n

r(x)
i (f)

∣∣∣ ≤ ∥∥∥σh (x) m
ρh(d(x))
i −m

r(σh(x))
i

∥∥∥
1

=
∥∥∥σh (x) m

d(σh(x))
i −m

r(σh(x))
i

∥∥∥
1

< ε

for each i ≥ i (ε) and each x ∈ K. Therefore
∥∥∥xn

d(x)
i − n

r(x)
i

∥∥∥
1

converges to zero

uniformly on the compact set K.
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Bld. Republicii 1, 210152, Târgu-Jiu, Romania
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