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Liviu Cădariu and Viorel Radu
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1. Introduction

Although there are known different methods to obtain stability properties
for functional equations, almost all proofs used the direct method, discovered
by Hyers ( see [13], [1], [22] and [9], where a question of S. M. Ulam concerning
the stability of group homomorphisms is affirmatively answered, for Banach
spaces). The reader is referred to the expository papers [10,23] and the books
[14,15], for more details.

In [21], there was proposed a fixed point method to prove stability results
for different types of functional equations, including the case of unbounded
differences (see also [3], [4], [5] and [6]). It is worth noting that the fixed point
method does suggest a metrical context and is seen to better clarify the ideas
of stability.

In this paper, by both the direct method and the fixed point method, we
obtain stability results for functional equations of quadratic-type. Our idea
is to rewrite some bi-quadratic and additive-quadratic equations as equations
with the unknown function in a single variable. We have been able to slightly
extend the results from [8], [16], [19] and [20].
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Let us consider the real linear spaces X1, X2, Y, Z, where Z := X1 × X2,
and the linear involution mappings PX1 : Z → Z, PX1(u) = (u1, 0), PX2 :
Z → Z, PX2(u) = (0, u2), and S : Z → Z, S = SX1 := PX1 − PX2 . A function
F : Z → Y is called a quadratic-type or Q−type mapping iff it satisfies the
following equation

F (u+ v) + F (u− v) + F (u+ S(v)) + F (u− S(v)) = (1)

= 4

(
F (u) + F (v) + F

(
u+ S(u) + v − S(v)

2

)
+ F

(
u− S(u) + v + S(v)

2

))
for all u, v ∈ Z.
Notice that, whenever Z is an inner product space, the function

Z 3 u→ F (u) = a · ||PX1u||2 · ||PX2u||2

is a solution of (1) for any real constant a and recall that a mapping h : X → Y ,
between linear spaces, is called quadratic if it satisfies the following functional
equation:

h(x+ y) + h(x− y) = 2h(x) + 2h(y),∀x, y ∈ X. (2)

If F is a solution of (1) forX1 = X2 = X, then u = (x, z) → f(x, z) := F (u)
is a bi-quadratic mapping, verifying the following equation [19]:

f(x+ y, z + w) + f(x+ y, z − w) + f(x− y, z + w) + f(x− y, z − w) = (3)

= 4 (f(x, z) + f(y, w) + f(x,w) + f(y, z)) , ∀x, y, z, w ∈ X.

For X = Y = R, (x, y) → f(x, y) = ax2y2 is a solution for (3).

Remark 1.1. Any solution F of (1) has the following properties:
(i) F (0) = 0 and F is an even mapping;
(ii) F (2n · u) = 24n · F (u), ∀u ∈ Z and ∀n ∈ N;
(iii) F ◦ S = F ;
(iv) F ◦ PX1 = F ◦ PX2 = 0;
(v) If f(x, z) = F (u), then f is quadratic in each variable.
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In fact, we shall make use of the following easily verified result:

Proposition 1.2. Suppose that F : Z → Y is of the form

F (u) = f2(z)f1(x), ∀u = (x, z) ∈ Z = X1 ×X2,

with nonidentically zero mappings f1 : X1 → Y and f2 : X2 → R. Then F is
of Q-type if and only if f1 and f2 are quadratic.

For convenience, let us fix the following notation, related to (1):

QF (u, v) := F (u+ v) + F (u− v) + F (u+ S(v)) + F (u− S(v))− (4)

−4

(
F (u) + F (v) + F

(
u+ S(u) + v − S(v)

2

)
+ F

(
u− S(u) + v + S(v)

2

))
.

2.The stability of quadratic-type equations: the direct method

Let us consider a control mapping Φ : Z × Z → [0,∞) such that

Ψ(u, v) :=
∞∑
i=0

Φ(2iu, 2iv)

16i+1
<∞,∀u, v ∈ Z, (5)

and suppose Y is a Banach space. We can prove the following generalized
stability result for the functional equation (1).

Theorem 2.1. Let F : Z → Y be a mapping such that
F ◦ PX1 = F ◦ PX2 = 0 and suppose that

||QF (u, v)|| ≤ Φ(u, v),∀u, v ∈ Z. (6)

Then there exists a unique Q-type mapping B : Z → Y , such that

||F (u)−B(u)|| ≤ Ψ(u, u), ∀u ∈ Z. (7)

Proof. We shall use the (direct) method of Hyers. Letting u = v in (6), we
obtain ∣∣∣∣∣∣∣∣F (2u)

16
− F (u)

∣∣∣∣∣∣∣∣ ≤ Φ(u, u)

16
, ∀u ∈ Z.
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In the next step, one shows that∣∣∣∣∣∣∣∣F (2pu)

16p
− F (2mu)

16m

∣∣∣∣∣∣∣∣ ≤ m−1∑
i=p

Φ(2iu, 2iu)

16i+1
, ∀u ∈ Z, (8)

for given integers p,m, with 0 ≤ p < m. Using (5) and (8), {F (2nu)
16n }n≥0 is a

Cauchy sequence for any u ∈ Z. Since Y is complete, the sequence {F (2nu)
16n }n≥0

is convergent for all u ∈ Z. So, we can define the mapping B : Z → Y ,

B(u) = lim
n→∞

F (2nu)

16n
,

for all u ∈ Z. By using (8) for p = 0 and m → ∞ we obtain the estimation
(7). By (6), we have∣∣∣∣∣∣∣∣F (2n(u+ v))

16n
+
F (2n(u− v))

16n
+
F (2n(u+ S(v)))

16n
+
F (2n(u− S(v)))

16n
−

−4

(
F (2n(u))

16n
+
F (2n(v))

16n
+

1

16n
F

(
2n

(
u+ S(u) + v − S(v)

2

))
+

1

16n
F

(
2n

(
u− S(u) + v + S(v)

2

)))∣∣∣∣∣∣∣∣ ≤ Φ(2nu, 2nv)

16n
,

for all u, v ∈ Z. Using (5) and letting n→∞, we immediately see that B is a
Q-type mapping.

Let B1 be a Q-type mapping, which satisfies (7). Then

||B(u)−B1(u)|| ≤

≤
∣∣∣∣∣∣∣∣B(2nu)

16n
− F (2nu)

16n

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣F (2nu)

16n
− B1(2

nu)

16n

∣∣∣∣∣∣∣∣ ≤
≤ 2

∞∑
i=n

Φ(2iu, 2iu)

16i+1
−→ 0, for n→∞.

Hence the uniqueness claim for B holds true. �

Remark 2.2. In the above proof we actually used the following fact only:

F ◦ PX1 + F ◦ PX2 = 0.
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Let us consider a mapping ϕ : X ×X ×X ×X → [0,∞) such that

ψ(x, z, y, w) :=
∞∑
i=0

ϕ(2ix, 2iz, 2iy, 2iw)

16i+1
<∞,∀x, y, z, w ∈ X.

As a direct consequence of Theorem 2.1, we obtain the following result (see
[19], Theorem 7):

Corollary 2.3. Suppose that X is a real linear space, Y is a Banach
space and let f : X ×X → Y be a mapping such that

| |f(x+ y, z + w) + f(x+ y, z − w) + f(x− y, z + w) + f(x− y, z − w)−

−4 (f(x, z) + f(y, w) + f(x,w) + f(y, z))|| ≤ ϕ(x, z, y, w),

and f(x, 0) + f(0, z) = 0, for all x, y, z, w ∈ X. Then there exists a unique
bi-quadratic mapping b : X ×X → Y , such that

||f(x, z)− b(x, z)|| ≤ ψ(x, z, x, z), ∀x, z ∈ X. (9)

Proof. Let consider X1 = X2 = X, u, v ∈ X × X, u = (x, z), v = (y, w),
F (u) = f(x, z), and Φ(u, v) = ϕ(x, z, y, w). Since Ψ(u, v) = ψ(x, z, y, w) <∞,
then we can apply Theorem 2.1. Clearly, the mapping b, defined by b(x, z) =
B(u) is bi-quadratic and verifies (9). �

For some particulary forms of the mapping Φ, verifying (5), we will obtain
some interesting consequences.

In the following corollary we give a stability result of Hyers-Rassias type
for the equation (1).

Let us consider a Banach space Y , the linear spaces X1, X2, and suppose
that Z := X1 ×X2 is endowed with a norm ||u||Z .

Corollary 2.4. Let F : Z → Y be a mapping such that

||QF (u, v)||Y ≤ ε(||u||pZ + ||v||pZ), ∀u, v ∈ Z,

where p ∈ [0, 4) and ε ≥ 0 are fixed. If F ◦ (I − S) = 0 and F ◦ (I + S) = 0,
then there exists a unique Q-type mapping B : Z → Y , such that

||F (u)−B(u)||Y ≤ 2ε

24 − 2p
· ||u||pZ , ∀u ∈ Z.
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Proof. Consider the mapping Φ : Z × Z → [0,∞), Φ(u, v) = ε(||u||pZ +
||v||pZ). Then

Ψ(u, v) :=
∞∑
i=0

Φ(2iu, 2iv)

16i+1
= ε · ||u||

p
Z + ||v||pZ

24 − 2p
, ∀u, v ∈ Z,

and the conclusion follows directly from Theorem 2.1. �
Now, let us consider, as in Corollarry 2.4: X1 = X2 = X, where X is

a normed space, u, v ∈ X × X, u = (x, z), v = (y, w), F (u) = f(x, z), with
f : X × X → Y and ||u|| = ||u||p := p

√
||x||p + ||z||p, p ≥ 0. Although the

functions || · ||p is not a norm, the above proof works as well. Actually, we
obtain the following

Corollary 2.5. Let f : X ×X → Y be a mapping such that

| |f(x+ y, z + w) + f(x+ y, z − w) + f(x− y, z + w) + f(x− y, z − w)−

−4 (f(x, z) + f(y, w) + f(x,w) + f(y, z))|| ≤ ε (||x||p + ||y||p + ||z||p + ||w||p) ,

for all x, y, z, w ∈ X and for some fixed ε, p, 0 ≤ p < 4, ε ≥ 0. If f(x, 0) = 0
and f(0, y) = 0, for all x, y ∈ X, then there exists a unique bi-quadratic
mapping b : X ×X → Y , such that

||f(x, z)− b(x, z)|| ≤ 2ε

24 − 2p
· (||x||p + ||z||p) ,

for all x, z ∈ X.

3. A relationship between the stability of equations (1) and (2)

We recall the following stability result of type Hyers-Ulam-Rassias for the
quadratic functional equation (2)( see [16], Theorem 2.2):

Proposition 3.1. Let X be a real normed vector space and Y a real
Banach space. If ϕ̃ and φ̃ : X ×X → [0,∞) verify the condition

φ̃(x, y) :=
∞∑
i=0

ϕ̃(2ix, 2iy)

4i+1
<∞, for all x, y ∈ X (10)
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and the mapping f̃ : X → Y , with f̃(0) = 0, satisfies the relation

∥∥∥f̃(x+ y) + f̃(x− y)− 2f̃(x)− 2f̃(y)
∥∥∥ ≤ ϕ̃(x, y), for all x, y ∈ X, (11)

then there exists a unique quadratic mapping q̃ : X → Y which satisfies the
inequality ∥∥∥f̃(x)− q̃(x)

∥∥∥ ≤ φ̃(x, x), for all x ∈ X.

We can show that Proposition 3.1 is a consequence of our Theorem 2.1.
Namely, we have

Theorem 3.2. The stability of the Q-type equation (1) implies the Hyers-
Ulam-Rassias stability of the quadratic equation (2).

Proof. Let X, Y, ϕ̃ : X × X → [0,∞) and f̃ : X → Y as in Proposition
3.1. We take X1 = X and consider a linear space X2 such that there exist a
quadratic function h̃ : X2 → R, with h̃(0) = 0 and an element z0 ∈ X2, such
that h̃(z0) 6= 0 (In Hilbert spaces such a mapping is, for example, z → ||z||2).

If we set, for u = (x, z), v = (y, w) ∈ X ×X2,

Φ(u, v) = Φ(x, z, y, w) = 2|h̃(z) + h̃(w)| · ϕ̃(x, y)

and

F (u) = F (x, z) = h̃(z) · f̃(x), (14)

then we easily get (using (10) and the properties of the quadratic mapping):

Ψ(u, v) =
1

2
|h̃(z) + h̃(w)|

∞∑
i=0

ϕ̃(2ix, 2iy)

4i+1
<∞,

for all u, v ∈ X ×X2. At the same time, by (11),

||QF (u, v)|| = 2|h̃(z) + h̃(w)| · (f̃(x+ y) + f̃(x− y)− 2f̃(x)− 2f̃(y)) ≤

≤ 2|h̃(z) + h̃(w)| · ϕ̃(x, y) = Φ(u, v), ∀u, v ∈ X ×X2.
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Now, by Theorem 2.1, there exists a unique Q-type mapping B : X×X2 → Y ,
such that

||F (u)−B(u)|| ≤ Ψ(u, u),

and

B(u) = lim
n→∞

F (2nu)

16n
= lim

n→∞
h̃(z) · f̃(2nx)

4n
,∀u = (x, z) ∈ X ×X2.

Since h̃(z0) 6= 0 for at least a z0 ∈ X2, then the following limit exists

q̃(x) = lim
n→∞

f̃(2nx)

4n
for all x ∈ X,

and
||h̃(z)f̃(x)− h̃(z)q̃(x)|| ≤ h̃(z) · φ̃(x, x), ∀(x, z) ∈ X ×X2.

Since
B(u) = h̃(z) · q̃(x),∀u = (x, z) ∈ Z,

then the estimation (11) holds .
By Proposition 1.2, q̃ is quadratic. If a quadratic mapping q̃1 satisfies (12),

then B(u) = h̃(z)q̃1(x) = h̃(z)q̃(x), for all u = (x, z) ∈ X × X2. Since h̃ is
nonidentically 0, then q̃(x) = q̃1(x), for all x ∈ X. Hence q̃ is unique. �

As a very particular case, we obtain the classical result of Hyers-Ulam-
Rassias stability (see, e.g., [8]) for the quadratic equation (2):

Corollary 3.3. Let f̃ : X → Y be a mapping such that∥∥∥f̃(x+ y) + f̃(x− y)− 2f̃(x)− 2f̃(y)
∥∥∥ ≤ ε (||x||p + ||y||p) , for all x, y ∈ X,

and for any fixed ε, p, with 0 ≤ p < 2, ε ≥ 0. If f̃(0) = 0, then there exists a
unique quadratic mapping q̃ : X → Y which satisfies the estimation∥∥∥f̃(x)− q̃(x)

∥∥∥ ≤ 2ε

22 − 2p
· (||x||p + ||y||p) , for all x ∈ X.

Indeed, let h̃ : R → R, h̃(z) = z2 and f̃ : X → Y, where X is a normed
space and Y a Banach space. We apply Theorem 2.1 for X1 = X,X2 = R,
u, v ∈ X × R, with u = (x, z), v = (y, w) and the mappings

F (u) = F (x, z) = z2 · f̃(x),
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Φ(u, v) = Φ(x, z, y, w) = 2(z2 + w2) · ε(||x||p + ||y||p),
to obtain the existence of a unique quadratic mapping q̃ and the required
estimation.

Remark 3.4. As it is wellknown (see [8,14]), Czervick showed that the
quadratic equation (2) is not stable for ϕ̃(x, y) of the form ε(x2 + y2), ε
being a given positive constant. In fact, he proved that there exists a mapping
f̃ : R → R such that (11) holds with the above ϕ̃, and there exists no quadratic
mapping q̃ to verify∥∥∥f̃(x)− q̃(x)

∥∥∥ ≤ c(ε)||x||2, for all x ∈ R.

This suggests the following:

Example 3.5. Let us consider a real normed space X1, a Banach space
Y , and a quadratic function h̃ : X2 = R → R, with h̃(0) = 0, h̃(1) = 1.

Then the equation (1) is not stable for

Φ(u, v) = Φ(x, z, y, w) = 2ε · (||x||2 + ||y||2)(h(z) + h(w)). (15)

In fact, we can show that there exists an F such that the relation (6) holds
and there exists no Q-type mapping B : X1 ×X2 → Y which verifies

||F (u)−B(u)|| ≤ c(ε)h̃(z)||x||2, ∀u = (x, z) ∈ X1 ×X2. (16)

Indeed, let
F (u) = F (x, z) = h̃(z) · f̃(x),

and Φ as in (14), such that (6) holds. Therefore∥∥∥f̃(x+ y) + f̃(x− y)− 2f̃(x)− 2f̃(y)
∥∥∥ ≤ ε

(
||x||2 + ||y||2

)
, for all x, y ∈ X.

Let us suppose, for contradiction, that there exists a Q-type mapping B
which verifies (15). By Remark 1.1, the mapping q̃ : X1 → Y, q̃(x) := B(x, 1)
is a solution for quadratic equation (2). The estimation (15) gives us

||f̃(x)− q̃(x)|| ≤ c(ε)||x||2, ∀x ∈ X1.

This says that the quadratic equation (2) is stable for ϕ̃(x, y) = ε(||x||2+||y||2),
in contradiction with the assertions from Remark 3.4.
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4. The stability of functional equations of quadratic-type:
the fixed points method

As we will see, Corollary 2.4 can be extended using the alternative of fixed
point, that is recalled in the next lemma:

Lemma 4.1. ([17,24]) Suppose we are given a complete generalized metric
space (X, d) and a strictly contractive mapping J : X → X, that is

(B1) d(Jx, Jy) ≤ Ld (x, y) ,∀x, y ∈ X,

for some ( Lipschitz constant ) L < 1. Then, for each fixed element x ∈ X,
either

(A1) d(Jnx, Jn+1x) = +∞ , ∀n ≥ 0,

or

(A2) d(Jnx, Jn+1x) < +∞,∀n ≥ n0,

for some natural number n0.
Actually, if (A2) holds then:

(A21) The sequence (Jnx) is convergent to a fixed point y∗ of J ;
(A22) y∗ is the unique fixed point of J in the set

Y = {y ∈ X, d (Jn0x, y) < +∞} ;

(A23) d (y, y∗) ≤ 1

1− L
d (y, Jy) ,∀y ∈ Y.

Let X1, X2 be linear spaces, Z := X1×X2, Y a Banach space, and consider
the mappings S : Z → Z, S(u) = (u1,−u2), QF defined by (4) and Φ : Z×Z →
[0,∞) an arbitrary given function. We can prove the following stability result:

Theorem 4.2. Let F : Z → Y be a mapping such that F ◦ (I − S) = 0
and F ◦ (I + S) = 0. Suppose that

||QF (u, v)|| ≤ Φ(u, v), ∀u ∈ Z (17)

If, moreover, there exists L < 1 such that the mapping

x→ Ω(u) = Φ
(u

2
,
u

2

)
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has the property

(H) Ω(u) ≤ L · 24 · Ω
(u

2

)
,∀u ∈ Z,

and the mapping Φ has the property

(H∗) lim
n→∞

Φ (2nu, 2nv)

24n
= 0,∀u, v ∈ Z,

then there exists a unique Q-type mapping B : Z → Y , such that

(Est) ||F (u)−B(u)|| ≤ L

1− L
Ω(u),

for all u ∈ Z.

Proof. We consider the set

F := {G : Z → Y,G(0) = 0}

and introduce a generalized metric on F :

d (G,H) = dΩ (G,H) = inf {K ∈ R+, ‖G (u)−H (u)‖ ≤ KΩ(u),∀u ∈ Z}

Obviously, (F , d) is complete. Now, we consider the (linear) mapping

J : F → F , JG (u) :=
G (2u)

24
.

We have, for any G,H ∈ F :

d(G,H) < K =⇒ ‖G (u)−H (u)‖ ≤ KΩ(u),∀u ∈ Z =⇒∥∥∥∥ 1

24
G (2u)− 1

24
H (2u)

∥∥∥∥ ≤ LKΩ(u),∀u ∈ Z =⇒

d (JG, JH) ≤ LK.

Therefore we see that

d (JG, JH) ≤ L · d (G,H) ,∀G,H ∈ F ,
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that is J is a strictly contractive self-mapping of F , with the Lipschitz constant
L. If we set u = v = t in the relation (16), then we see that

‖F (2t)− 16F (t)‖ ≤ Ω(2t),∀t ∈ Z.

Using the hypothesis (H) we obtain∥∥∥∥F (2t)

16
− F (t)

∥∥∥∥ ≤ Ω(2t)

16
≤ LΩ(t),∀t ∈ Z,

that is d (F, JF ) ≤ L <∞.
We can apply the fixed point alternative, and we obtain the existence of a

mapping B : F → F such that:
• B is a fixed point of J , that is

B (2u) = 16B (u) ,∀u ∈ Z. (18)

The mapping B is the unique fixed point of J in the set

{G ∈ F , d (F,G) <∞} .

This says that B is the unique mapping with both the properties (17) and (18),
where

∃K ∈ (0,∞) such that ‖B (u)− F (u)‖ ≤ KΩ(u),∀u ∈ Z. (19)

Moreover,
• d(JnF,B) −→ 0, for n→∞, which implies the equality

lim
n→∞

F (2nu)

24n
= B(u),∀u ∈ Z. (20)

• d(F,B) ≤ 1

1− L
d (F, JF ) , which implies the inequality

d(F,B) ≤ L

1− L
,

that is (Est) is seen to be true.
The statement that B is a Q-type mapping follows immediately: replacing u
by 2nu and v by 2nv in (16), then we obtain∣∣∣∣∣∣∣∣F (2n(u+ v))

16n
+
F (2n(u− v))

16n
+
F (2n(u+ S(v)))

16n
+
F (2n(u− c(v)))

16n
−
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−4

(
F (2n(u))

16n
+
F (2n(v))

16n
+

1

16n
F

(
2n

(
u+ S(u) + v − S(v)

2

))
+

1

16n
F

(
2n

(
u− S(u) + v + S(v)

2

)))∣∣∣∣∣∣∣∣ ≤ Φ(2nu, 2nv)

16n
,

for all u, v ∈ Z. Using (19) and (H∗) and letting n→∞, we see that B satisfies
equation (1). �

Remark 4.3. In fact, in Theorem 2.1. it suffices to suppose, as in [7]-
Theorem 3.1, that the series

Ψ(u, u) :=
∞∑
i=0

Φ(2iu, 2iu)

16i+1

is convergent for each u ∈ Z, and that

lim
n→∞

Φ (2nu, 2nv)

24n
= 0,∀u, v ∈ Z.

Example 4.4. If we apply Theorem 4.2 with the mapping

Φ : Z × Z → [0,∞), Φ(u, v) = ε(||u||pZ + ||v||pZ),

where ε ≥ 0 and p ∈ [0, 4) are fixed, then we obtain Corollary 2.4.

5. Stability properties of functional equations of
additive-quadratic-type

The following equation was discussed in [20]:

f(x+ y, z + w) + f(x+ y, z − w) = (21)

= 2 (f(x, z) + f(y, w) + f(x,w) + f(y, z)) , ∀x, y, z, w ∈ X.
with f : X×X → Y. A solution of this equation is called an additive-quadratic
mapping. Obviously, for X = Y = R, (x, y) → f(x, y) = axy2 verifies (20).

We again rewrite (20) as an equation with the unknown function in a single
variable to obtain, by the fixed point alternative, a generalized stability result.
A function F : Z = X1 ×X2 → Y , which verifies the equation

F (u+ v) + F (u+ S(v)) =
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= 2

(
F (u) + F (v) + F

(
u+ S(u) + v − S(v)

2

)
+ F

(
u− S(u) + v + S(v)

2

))
for all u, v ∈ Z, is called an A-quadratic-type or A−Q−type mapping. In the
case of inner product spaces, the function given by

F (u) = a · ||PX1u|| · ||PX2u||2,∀u ∈ Z,

is a solution of (21).
It is easy to verify that any solution F of (21) has the following properties:
(i) F (0) = 0 and F is an odd mapping;
(ii) F (2n · u) = 23n · F (u), ∀u ∈ Z, ∀n ∈ N;
(iii) F ◦ S = F ;
(iv) F ◦ PX1 = F ◦ PX2 = 0;
(v) If f(x, z) = F (u), then f is additive in the first variable and quadratic

in the second variable.
Let us introduce the following notation, related to (21):

DF (u, v) := F (u+ v) + F (u+ S(v))−

−2

(
F (u) + F (v) + F

(
u+ S(u) + v − S(v)

2

)
+ F

(
u− S(u) + v + S(v)

2

))
.

Theorem 5.1. Let Θ : Z × Z → [0,∞) be an arbitrary function and
consider a mapping F : Z → Y such that F ◦ (I + S) = 0. Suppose that

(i) ||DF (u, v)|| ≤ Θ(u, v), ∀u ∈ Z;

(ii) There exists L < 1 such that the mapping

x→ Γ(u) = Θ
(u

2
,
u

2

)
has the property

Γ(u) ≤ L · 23 · Γ
(u

2

)
,∀u ∈ Z;
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(iii) lim
n→∞

Θ (2nu, 2nv)

23n
= 0,∀u, v ∈ Z.

Then there exists a unique A-Q-type mapping A : Z → Y , such that

||F (u)− A(u)|| ≤ L

1− L
Γ(u),

for all u ∈ Z.
Except for obvious modifications, the proof coincides with that of Theorem

4.2. We note only that one uses the following formula for the (complete)
generalized metric:

d (G,H) = dΓ (G,H) = inf {K ∈ R+, ‖G (u)−H (u)‖ ≤ KΓ(u),∀u ∈ Z}

and that the (linear) mapping

J : F → F , JG (u) :=
G (2u)

23
,

is a strictly contractive self-mapping of F := {G : Z → Y,G(0) = 0}, with the
Lipschitz constant L < 1:

d (JG, JH) ≤ L · d (G,H) ,∀G,H ∈ F . �

As a direct consequence of Theorem 5.1, we obtain the following

Corollary 5.2. Let F : Z → Y be a mapping such that

||DF (u, v)||Y ≤ ε(||u||pZ + ||v||pZ), ∀u, v ∈ Z,

for some fixed ε, p, with 0 ≤ p < 3, ε ≥ 0. If F ◦ (I + S) = 0, then there exists
a unique A-Q-type mapping A : Z → Y , such that

||F (u)− A(u)||Y ≤ 2ε

23 − 2p
· ||u||pZ , ∀u ∈ Z.

Proof. This follows immediately, by setting Θ(u, v) = ε(||u||pZ + ||v||pZ). �

Remark 5.3 We emphasize that Theorem 5.1 can be used to obtain a
counterpart of Theorem 3.2.
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e-mail: lcadariu@etv.utt.ro, lcadariu@yahoo.com

213
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