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HYBRID GA-SQP ALGORITHMS FOR

THREE-DIMENSIONAL BOUNDARY DETECTION

PROBLEMS IN POTENTIAL CORROSION DAMAGE

Nicolae S Mera

Abstract. In this paper we consider the identification of the geometric
structure of the boundary of the solution domain for the three-dimensional
Laplace equation. Cauchy data consisting of boundary measurements of cur-
rents and voltages on the remainder of the boundary are used to determine
the material loss caused by corrosion. This problem arrise in the early de-
tection of corrosion in aging aircraft components. The domain identification
problem is considered as a variational problem to minimize a defect functional,
which utilises some additional data on certain known parts of the boundary.
A sequential quadratic programming (SQP) optimisation algorithm and a real
coded genetic algorithm (GA) are combined in order to obtain a fast algorithm
that can deal with the multimodal objective function. The unknown boundary
is parameterized using B-splines. The Laplace equation is discretised using the
method of fundamental solutions (MFS). Numerical results are presented and
discussed for four hybrid algorithms and several test examples.

2000 Mathematics Subject Classification: 65N21, 68T20, 90C56.

1. INTRODUCTION

We consider the nonlinear problem of determining quantitative information
about corrosion occurring on an inaccessible part of the boundary of a specimen
using current flux and voltage measurements. Non-destructive testing methods
for rapid and reliable corrosion detection in complex metallic assemblies is
an on-going challenge. The early detection of corrosion in aging aircraft has
thus both economic and safety implications. The life of an aircraft can be
considerably extended by early detection of corrosion and by taking corrective
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action to remove and arrest corrosion of structure. As the age of an aircraft
increases, the importance of detection of corrosion increases because there is
an increased probability of an interaction between the corrosion and other
forms of damage such as fatigue cracks. The detection of corrosion without
disassembly of the aircraft prevents the possibility of aggravating the issue by
removing effective sealant.

The most common technique for detection corrosion in aircraft is visual in-
spection for surface distortions or pillowing of the outer skin. However, special
non destructive techniques must be applied when regions are partially or com-
pletely inaccessible for inspection due to the overlying structure. In airplanes,
corrosion may occur in relatively inaccessible locations, such as within the lap
joints of the skin of an airplane as is shown schematically in Figure 1(a). Two
aluminum panels A and B overlap and corrosion may occur at the joint. One
side of the aircraft skin is not accessible for inspection, so any damage on this
side has to be identified from measurements available on the accessible side.

An electric voltage is applied to the aircraft skin, on the upper part and

(a)

PANEL A

PANEL B

INACCESSIBLE AREA

AREA ACCESSIBLE FOR MEASUREMENTS 

CORROSION 

(b)

Figure 1: (a) Schematic drawing of two overlapping panels in an aircraft skin
with corrosion occurring at the joint and (b) Problem formulation: the domain
and the boundary conditions of the 3D problem considered.

side boundaries of the panel A in Figure 1(a) and the resulting voltage pat-
tern is recorded using electronic sensors placed on the accessible part of the
aircraft component. Analysis is performed to determine material loss on the
bottom part of the panel A and between the panels. It should be noted that
the thickness of the aluminum panels in aircraft is several order of magnitude
smaller than their width or length and the curvatures encountered are not very
large in most cases. Therefore the panel investigated can be modeled as a thin
plate.
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In this paper the problem of boundary detection is reformulated as an
optimisation problem and the unknown boundary is sought in a B-splines
parametric form. Thus the problem is regularized by using the function spec-
ification method, i.e. by assuming a parametric form of the unknown function
and reducing the problem to the determination of a reduced number of pa-
rameters, i.e. the control points of the B-splines surface. We note that once
the problem has been formulated as an optimisation problem then various
optimisation algorithms may be used in order to locate the optimum of the
objective function. The efficiency of a particular optimisation method clearly
depends on the form of the objective function. In the problem considered in
this paper, the objective function has a complex nonlinear and nonmonotonic
structure. Both heuristic methods such as genetic algorithms (GAs) see Mera
et al. [7] and deterministic methods such as sequential quadratic programming
(SQP), see Mera and Lesnic [8] have been successfully applied to optimise this
function. Evolutionary algorithms search the whole space being able to deal
with multi-modal functions and discontinuities. Deterministic, gradient based
optimisation methods do not search the full parameter space and can tend
to converge toward local extrema of the fitness function, which is clearly un-
satisfactory for problems where the fitness varies nonmonotonically with the
parameters. On the other hand in vicinity of local optima the rates of con-
vergence exhibited by the gradient based algorithms clearly outperform those
of evolutionary algorithms, see Mera et al. [9]. Therefore it is the purpose of
this paper to formulate hybrid algorithms that incorporate the advantages of
both deterministic and heuristic optimisation algorithms.

2. MATHEMATICAL FORMULATION

In this paper the EIT is used to determine material loss occurring on the
inaccessible portion γ ⊂ ∂Ω of the boundary ∂Ω of a domain Ω ⊂ R

3 by
measuring voltages and currents (Cauchy data) on an accessible portion of the
boundary. Therefore, we consider the Laplace equation in a three-dimensional
damaged finite plate Ω for the potential u, namely,

∇2u = 0, in Ω (1)
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subject to the boundary conditions

u = g,
∂u

∂n
= q on Γ (2)

α0u + β0
∂u

∂n
= f on Σ (3)

α1u + β1
∂u

∂n
= h on γ (4)

where f, g, h, q, α0, β0, α1 and β1 are prescribed functions and n is the outward
normal to the boundary ∂Ω. In eqns (2)−(4) the boundaries γ, Γ and Σ are
disjoint and γ ∪ Γ ∪ Σ = ∂Ω. The problem investigated consists of determin-
ing the shape of the unknown boundary γ given the boundary data specified
by eqns (2)−(4). This problems occurs in several contexts, such as corrosion
detection by electrostatic measurements, see Kaup and Santosa [5]. Several
computational results for the two-dimensional case can be found in the lit-
erature, using, for example, Tikhonov regularization in connection with the
L-curve method, see Kaup et al. [6]. Charton et al.[1] proposed a variational
technique based on parameterising the unknown boundary using the function
specification method. For the three dimensional case a sequential quadratic
programming method of solution was developed in Mera and Lesnic [8] while
the same problem was investigated using a genetic algorithm in Mera et al [7].

3. THE METHOD OF SOLUTION

3.1 Reformulation as an optimisation problem

The boundary detection problem given by eqns (1)-(4) can be reformulated
as an optimisation problem. For a given possible solution γ for the unknown
boundary, the following direct problem is solved:

∇2u = 0, in Ω (5)

u = g, on Γ (6)

α0u + β0
∂u

∂n
= f on Σ (7)

α1u + β1
∂u

∂n
= h on γ (8)
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and the current flux on the known boundary u′

calc = ∂u
∂n

∣

∣

∣

Γ
is evaluated. The

solution of the problem may be found by minimising the functional

J(γ) = ‖u′

calc − q‖L2(Γ) (9)

where q is the measured current flux on the boundary Γ. The boundary γ

can be parameterised in different forms and the parameters characterising the
shape of the boundary are determined by minimising the functional (9). In
this paper we have used B-splines to parameterise the unknown surface γ.

3.2 The parametrisation of the boundary by B-splines surfaces

The unknown boundary γ is sought in the parametric form

γ(v, w) =
n

∑

i=0

m
∑

j=0

Ni,k(v)Nj,l(w)Pij , (v, w) ∈ [0, 1] × [0, 1] (10)

where Ni,k and Nj,l are the kth and lth degree B-spline basis functions given by

Ni,0(v) = χ[vi,vi+1]; Ni,k(v) =
v − vi

vi+k − vi

Ni,k−1 +
vi+k+1 − v

vi+k+1 − vi+1

Ni+1,k−1 (11)

Nj,0(w) = χ[wj ,wj+1]; Nj,l(w) =
w − wj

wj+l − wj

Nj,l−1 +
wj+l+1 − w

wj+l+1 − wj+1

Nj+1,l−1

(12)
defined on the nonperiodic, nonuniform knot vectors V = (vi)i=0,n+k+1 and
W = (wi)i=0,m+l+1, see Piegl and Tiller [13]. The points Pij are the control
points of the B-spline surface γ and they determine the shape of this boundary.
Thus, the problem of boundary detection is reduced to determining the (m +
1)(n + 1) control points Pij. The x and y coordinates of the control points
are considered to be known while the z coordinate is to be detected. In the
problem considered in this paper we assume that the intersection between the
boundary γ and Σ is known, i.e. we know the curves that form the boundary
of the surface γ but we don’t know it’s internal shape. Thus, the control points
Pij with i ∈ {0, n} or j ∈ {0, m} are known and the only unknowns are the z

coordinates of the remaining control points. Thus, the problem of boundary
identification is reduced to determining the components of the matrix

Z
(

zPij

)

i=1,n−1,j=1,m−1
=





zP11
zP12

... zP1,m−2
zP1,m−1

... ... ... ... ...

zPn−1,1
zPn−1,2

... zPn−1,m−2
zPn−1,m−1



 (13)
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It should be noted that the ill-posed problem of identifying the boundary of
the domain is regularized by using the function specification method, i.e. by
assuming a pre-defined shape and reducing the problem to the determination
of the parameters of the B-spline surface. In the more general case when no
parametric shape is assumed for the boundary γ then the problem is ill-posed
and regularization terms must be included in the objective functional (9). By
using such regularization terms that penalize non-smooth solutions, and choos-
ing the appropriate regularization parameter, a stable numerical solution can
be obtained.

3.3 The method of fundamental solutions

A meshless method, namely the method of fundamental solution, see Fair-
weather and Karageorghis [2], is used to solve the direct problem (5)-(8) and
to evaluate the objective function (9) for a given boundary γ. The numerical
solution is developed by using the fundamental solution of the Laplace equa-
tion as a basis function.

In order to introduce the method of fundamental solutions, we consider the
entire domain Ω and we consider a set of M nodal points xi, i = 1, M outside
Ω. The fundamental solution of the three-dimensional Laplace eqn.(5) is given
by:

F (x) =
1

4π‖x‖
(14)

Then the fundamental solutions centered at the nodal points xi, i = 1, M given
by

φi(x) = F (x − xi) =
1

4π‖x − xi‖
(15)

satisfy the partial differential eqn.(5). The method of fundamental solutions is
based on the fact that an approximation to the solution of the direct problem
(5)-(8) can be expanded in terms of these basis functions, φi, i.e. the solution
is sought in the form:

u∗(x) =
M

∑

i=1

αiφi(x) (16)

where αi are unknown coefficients. For this choice of basis functions the ap-
proximated solution u∗ already satisfies the Laplace eqn.(5) and the coefficients
αi, i = 1, M , are determined such that u∗ satisfies the boundary conditions
(6)-(8).
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We consider N collocation points xj , j = 1, N on the boundary of the
domain Ω. Using the given values of the voltage (or current flux) at these N

collocation points, then the resulting system of linear algebraic equations for
the unknown coefficients αi is obtained by collocating (16) at the points xj ,

j = 1, N and a system of linear algebraic equations,

Aα = b (17)

is obtained, where the vector α contains the unknown coefficients αi, i = 1, M .
It should be noted that in order to uniquely determine the coefficients αi,
i = 1, M the number of collocation points N must be greater or equal to the
number of nodal points M .

However, the system of linear algebraic equations is ill-conditioned and can-
not be solved by direct methods, such as the least squares methods, since such
an approach would produce a highly unstable solution. Most standard numer-
ical methods cannot achieve good accuracy in solving the matrix eqn.(17) due
to the large value of the condition number of the matrix A which increases dra-
matically with respect to increasing the total number of collocation points and
nodal points. Several regularization methods have been developed for solving
these kind of ill-conditioned problems, see Hansen [4]. In this study we use
the standard Tikhonov regularization method, see Tikhonov et al. [21].

The Tikhonov regularized solution αλ for eqn.(17) is defined as the solution
of the following least squares problem:

min
α

{‖Aα − b‖ + λ2 ‖α‖} (18)

where ‖ · ‖ denotes the usual Euclidean norm and λ is the regularization pa-
rameter.

The choice of a suitable value of the the regularization parameter λ is
crucial for the accuracy of the final numerical solution and there are several
methods for determining an optimal value for this parameter, such as the L-
curve method, Hansen [3], the discrepancy principle, Tikhonov et al. [14], etc.
In this study we use the L-curve method, i.e. we define the curve

L = {(ln(‖αλ‖), ln(‖Aαλ − b‖)) , λ > 0} (19)

This curve is known as the L-curve and a suitable regularization parameter λ

is one that corresponds to a regularised solution near the ”corner”, i.e. the
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point of maximum curvature of the L-curve, see Hansen [3].
For the problem of boundary detection, the MFS is particularly suitable

since the geometry of the system changes for every possible solution tested
during the optimisation process. Further, MFS does not require any mesh-
ing of the domain or the boundary in order to calculate the boundary data.
This reduces the computational effort and eliminates the important pertur-
bations due to changes in the mesh. MFS also is known to be very efficient
from the point of view of the computational time required to solve a linear
direct problem such as (5)-(8). The MFS can be also used to compute values
very near to, or even on the boundaries, and there is no singularity in the
solution, as the nodal points are always placed outside the solution domain.
The MFS is also suitable for high-dimensional problems and irregular domains.

3.4 Optimisation algorithms

The boundary identification problem (1)-(4) has been solved in Mera et al. [9]
by using two different algorithms, one deterministic, gradient based optimisa-
tion algorithm and one heuristic, evolutionary search algorithm. We consider
again the same algorithms, namely, as a gradient based optimisation algorithm
we use the sequential quadratic programming optimisation algorithm E04UCF
from the NAG Libraries, see NAG [12] and for the evolutionary search we con-
sider a float number encoded genetic algorithm proposed in Mera et al. [7] with
population size npop = 10, number of offspring nchild = 15, uniform arithmetic
crossover, crossover probability pc = 0.65, tournament selection, tournament
size k = 2, tournament probability pt = 0.8, non-uniform mutation, mutation
probability pm = 0.5, elitism, elitism parameter ne = 2. The float number
encoding of the variables enables natural implementation of fine local tuning
processes. Indeed the non-uniform mutation operator is an operator that en-
ables fine local tuning and causes the GA to search the space uniformly initially
and locally at later stages.

In Mera et al. [9] it was found that accurate results are obtained for various
shapes of the boundary γ both by the SQP and the GA methods, provided
care is taken when specifying the initial guesses for the SQP algorithm. One
major disadvantage of gradient methods is the convergence toward local op-
tima. For example, one cannot expect the objective functional (9) to be convex
and twice continuously differentiable, which would ensure the convergence of
gradient based method toward the absolute minimum. Since the functional
may have a complex structure, with multiple ridges and valleys, the gradi-
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ent methods may fail to locate the global optimum. It should be noted that
similar results have been obtained for the two-dimensional case. It was found
in Charton et al. [1] that the numerical solutions obtained by the Gradient
Projection Method (GPM) or Nelder-Mead Simplex Method (NMNS) depend
on the initial guess specified. For some initial guesses, these gradient based
methods converge toward local optima which are far from the real solution for
the boundary γ. On the other hand, the genetic algorithm, starting with a ran-
dom initial population, was always found to converge to the global optimum.
In general, it in known that genetic algorithms have the ability to escape lo-
cal optima and therefore they are particularly suitable for nonlinear functions
with complex, highly structured landscape which can appear in shape optimi-
sation problems. One disadvantage of genetic algorithms, in comparison with
gradient methods, is the increased amount of computational time required for
the evolutionary search process.

In order to combine the advantages of the two optimisation methods we
consider the following four hybrid algorithms.

H1 - Several GA generations are performed in order to identify the most
promising areas and then the SQP optimisation algorithm is applied
using as an initial guess the best individual found by the GA. It should
be noted that in this approach the GA is used to specify a good initial
guess for the SQP algorithm.

H2 - A SQP operator is introduced in the GA scheme. The effect of this
operator is equivalent to executing 5 SQP steps on the selected individ-
ual. In the H2 algorithm during every generation the SQP operator is
applied to the best individual in the population, i.e. every generation 5
SQP steps are executed starting from the best individual and the result
is introduced back in the GA population.

H3 - The same SQP operator as in H2 algorithm is used but it is applied to
all members of the GA population, once every 10 generations.

H4 - Every generation, the SQP algorithm is applied to the best GA indi-
vidual for an unlimited number of steps, until convergence is obtained
but the result is not introduced back in the GA population in order to
avoid premature convergence to local optima.
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These four hybrid algorithm are tested on several test examples in order to
identify their performance and limitations.

4. NUMERICAL RESULTS

In order to test the convergence and the stability of the methods proposed,
we use as the solution domain the thin plate illustrated in Figure 1(b). The
lengths of the domain are taken to be Lx = Ly = 1.0 and Lz = 0.1 althought
it was found that stable computations can be performed up to Lz = 0.5, see
Mera and Lesnic [8]. The unknown boundary γ is assumed to be maintained at
constant voltage, say u = c, while a Dirichelet boundary condition is prescribed
on Σ and Cauchy boundary conditions are prescribed on Γ. The method
of fundamental solution, see section 3.3, is used to solve the direct problem
(5)-(8) and to evaluate the objective function (9) for a given boundary γ.
In all the results presented in this paper, N = 150 collocation points have
been uniformly distributed on the boundary ∂Ω and M = 150 nodal point
have been distributed on the boundary of a cube of side length L = 3.0 that
includes in the interior the solution domain Ω. In this section we consider the
retrieval of the boundary γ given by various shapes parameterized by B-splines
as described in section 3.2. For the numerical test examples considered in this
paper we use cubic B-splines, i.e. k = l = 3 and we set m = n = 4, i.e. the
surface γ is given by (m + 1)(n + 1) = 25 control points. The knot vectors are
taken to be

U = V = (0, 0, 0, 0,
1

2
, 1, 1, 1, 1) (20)

The x and y coordinates of the control points are given by

xPi,j
= −

Lx

2
+

i

n
Lx, i = 0, n, j = 0, m (21)

yPi,j
= −

Ly

2
+

j

m
Ly, i = 0, n, j = 0, m (22)

The z coordinates of the control points Pij with i ∈ {0, n} or j ∈ {0, m} are
fixed to z = 0.5Lz, since γ

⋂

Σ is assumed to be known, and the z components
of the other control points, i.e. the components of the matrix Z given by
eqn.(13) are to be determined. The boundary data g was perturbed with
s = 1% noise in order to simulate the inherent measurment errors. For every
result presented in this paper for the GA, the algorithm was run 5 times for
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various sequences of random numbers and the result presented is the average
of the five runs.

The first test example considered is a unimodal, symmetrical test example
given by eqn.(10) with

Z =





2.5Lz 2.5Lz 2.5Lz

2.5Lz 2.5Lz 2.5Lz

2.5Lz 2.5Lz 2.5Lz



 (23)

and the search ranges for the z coordinates of the control points were set to
be zmin = 0.1Lz and zmax = 3.0Lz.

In general, when using iterative methods, for solving ill-posed problems
then a stopping criterion is required in order to regularize the problem. The
iterative processes are not convergent with respect to the number of iterations
due to the accumulation of noise effects. The real errors obtained by comparing
the numerical solution with the exact solution decrease up to a specific point
and then start increasing slowly, as the numerical solution loses its smoothness.
Therefore regularizing stopping criteria are used in order to locate the optimum
point in iterative methods for ill-posed problems. However, since we are using
the function specification method, i.e. the solution is parametrized by B-
splines, see section 3.2, the problem is regularized by looking for a solution in
a parametric form depending on a reduced number of parameters. Therefore
when only the parameters in eqn.(23) are to be retrieved, the iterative process
is convergent with respect to the number of generations and simpler stopping
criteria can be used, for example, one may stop the iterative process using a
Cauchy type criterion, i.e. stop the iterative process when the solution does
not change over a large number of iterations/generations.

Figure 2(a) presents the objective function obtained by the various hybrid
algorithms in comparison with the objective functions obtained by the GA
and by the SQP method starting with various initial guesses. It should be
noted that for this test examples the SQP algorithms outperforms all the other
algorithms since it converges to the real solution for all the initial guesses and
it has a high convergence rate. GA has a much slower convergence rate but
the hybrid algorithms have an improved convergence rate outperforming the
standard GA. It should be noted that H1, H2 and H4 reach the same accuracy
as SQP after 1500 generations even if they are outperformed by the SQP in
the first stages. The rate of convergence of the H3 algorithm is lower than
that of the other hybrid algorithms. This can be explained by the fact that in
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Figure 2: The evolution of the objective function as a function of the number
of evaluations as obtained by various algorithm, namely H1 (◦), H2 (×), H3
(+), H4 (∆), GA (- - -) and SQP (· · · · ·) for (a) the test example given by
equation 23 and (b) the test example given by equation 24

H3 the SQP operator is applied to every individual in the GA population and
thus a large number of evaluations are wasted within SQP operators starting
from neighboring initial guesses and from initial guesses which are not in the
promising areas of the search space.

A non-symmetrical test example may be obtained by a B-spline surface
given by eqn.(10) and the control points

Z =





2.5Lz 0.5Lz 0.5Lz

2.5Lz 0.5Lz 0.5Lz

2.5Lz 0.5Lz 0.5Lz



 (24)

Figure 2(b) presents the objective function obtained by the various hybrid
algorithms in comparison with the objective functions obtained by the GA
and by the SQP method starting with various initial guesses. It can be seen
that for this test examples SQP fails for some initial guesses which are not close
to the exact solution. Again, the hybrid algorithms are found to outperform
the standard GA, exhibiting rates of convergence which are approaching the
rate of convergence of the SQP algorithm with a good initial guess. On the
other hand, in every run the hybrid algorithms were found to converge to the
real solution and escape local optima. Thus, the hybrid algorithms have an
increased rate of convergence while they maintain the global search properties
from the standard GA.
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Two more complex boundary γ are considered by utilising the following
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Figure 3: The evolution of the objective function as a function of the number
of evaluations as obtained by various algorithm, namely H1 (◦), H2 (×), H3
(+), H4 (∆), GA (- - -) and SQP (· · · · ·) for (a) the test example given by
equation 25 and (b) the test example given by equation 26

control points

Z =





2.5Lz 0.0 2.5Lz

2.5Lz 0.0 2.5Lz

2.5Lz 0.0 2.5Lz



 (25)

and

Z =





1.4Lz 0.5Lz −0.4Lz

1.4Lz 0.5Lz −0.4Lz

1.4Lz 0.5Lz −0.4Lz



 (26)

and the objective functions obtained by various algorithms are presented in
Figure 3. For both test examples the hybrid algorithm are converging to the
global optimum with a convergence rate higher than that of the standard GA.
For some test examples the H2 algorithm was found to present long periods
of stagnation, see Figure 3(b). These are caused by the fact that if only one
individual is accelerated with the SQP operator, it will have a much better
objective function that the rest of the population and it will attract the whole
population in the area around it, causing premature convergence toward a pos-
sible local optima. The local optima can still be escaped due to the mutation
operator, but this operator might require a large number of evaluations before
generating an objective function lower than the one obtained by the SQP op-
erator. This effect might interfere with both the global search properties and
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with the rate of convergence of the algorithm, and therefore the H2 algorithm
may exhibit a poorer performance when compared to other hybrid algorithms.
In the H3 algorithm by applying the SQP operator to all the individuals in
the population, the dominance of only one individual is avoided. However, by
applying SQP to all the individuals, a large number or evaluations are used for
poor initial guesses and the rate of convergence of the algorithm is decreased.

The H1 algorithm was found to be fast and accurate for all the test

(a) (b)

Figure 4: The exact (a) and the numerical (b) solution obtained by the H4
algorithm for the unknown boundary γ for the test example given by equation
(23) for s = 1% noise after 1000 evaluations.

examples. However, also this algorithm presents a drawback in the fact that
the number of generations to be performed by the GA before switching to
SQP optimisation cannot be determined a priori. There are no estimates of
how many evaluations are required in order to drive the GA within the radius
of convergence of the SQP. If too many generations are performed or if the
GA is allowed to converge, the hybrid algorithm will have a global rate of
convergence not faster that that of a standard GA. On the other hand, if the
GA if not run for long enough, and it has not entered the zone of convergence
of the SQP, then the hybrid algorithm does not benefit on the global search
propoerties of the GA and it will possible converge to a local optima.

The H4 hybrid algorithm was design to eliminate these drawbacks by com-
bining the H1 and H2 algorithms. In the H4 algorithm the SQP operator of
the H2 algorithm is applied to the best individual but there is no limit on the
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(a) (b)

Figure 5: The exact (a) and the numerical (b) solution obtained by the H4
algorithm for the unknown boundary γ for the test example given by equation
(24) for s = 1% noise after 1000 evaluations.

(a) (b)

Figure 6: The exact (a) and the numerical (b) solution obtained by the H4
algorithm for the unknown boundary γ for the test example given by equation
(25) for s = 1% noise after 1000 evaluations.

number of SQP steps, the SQP algorithms is allow to converge as it is in the
H1 algorithm. Thus the fast convergence rate of the SQP algorithm is brought
in from the first generations, which causes this algorithm to outperform the
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(a) (b)

Figure 7: The exact (a) and the numerical (b) solution obtained by the H4
algorithm for the unknown boundary γ for the test example given by equation
(26) for s = 1% noise after 1000 evaluations.

H1 algorithm. At the same time, the premature convergence which appears
sometimes in the H2 algorithm is avoided by not introducing the SQP evolved
individual back in the GA population. Thus, the GA is allowed to evolve and
its global search properties are exploited without being affected by individuals
with very good objective function generated by the SQP algorithm. In all the
test examples investigated the H4 algorithm was found to converge to the real
solution at a rate of convergence close to that of the SQP algorithm.

The numerical solutions obtained by the H4 using 1000 function evaluations
for the four test examples considered are presented in Figures 4-7 in comparison
with the exact solution. It can be seen that for all the test examples considered
the numerical solution is a good approximations to the exact solution. Thus
it can be concluded that using hybrid algorithms, complex boundaries can be
retrieved within a small number of objective function evaluation.

5. CONCLUSIONS

In this study the problem of boundary detection has been reduced to an opti-
misation problem, namely to the minimisation of the objective functional (9).
Once the problem has been reformulated as a minimisation problem, various
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optimisation techniques have been employed in order to find the optimal so-
lution and hybrid SQP and GA methods have been compared on various test
examples. It has been found that by combining GAs and SQP optimisation
algorithms it is possible to generate hybrid algorithms that preserve the global
search properties of the GA and at the same time exhibit local rates of conver-
gence much faster that that of the standard GA and close to the SQP rate of
convergence. Overall, the hybrid GQ-SQP algorithms were found to be fast,
robust and accurate methods for boundary identification.
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