SQUARE-STABLE AND WELL-COVERED GRAPHS

Vadim E. Levit and Eugen Mandrescu

Abstract. The stability number of the graph G, denoted by $\alpha(G)$, is the cardinality of a maximum stable set of G. In this paper we characterize the square-stable graphs, i.e., the graphs enjoying the property $\alpha(G)=\alpha\left(G^{2}\right)$, where G^{2} is the graph with the same vertex set as in G, and an edge of G^{2} is joining two distinct vertices, whenever the distance between them in G is at most 2 . We show that every square-stable graph is well-covered, and wellcovered trees are exactly the square-stable trees.

Keywords: stable set, square-stable graph, well-covered graph, matching.
2000 Mathematics Subject Classification: 05C75, 05C69, 05C05, 05C70.

1. Introduction

All the graphs considered in this paper are simple, i.e., are finite, undirected, loopless and without multiple edges. For such a graph $G=(V, E)$ we denote its vertex set by $V=V(G)$ and its edge set by $E=E(G)$. If $X \subset V$, then $G[X]$ is the subgraph of G spanned by X.

By $G-W$ we denote the subgraph $G[V-W]$, if $W \subset V(G)$. By $G-F$ we mean the partial subgraph of G obtained by deleting the edges of F, for $F \subset E(G)$, and we use $G-e$, if $W=\{e\}$.

The graph \bar{G} stands for the complement of G, and by $G+e$ we mean the graph $(V(G), E(G) \cup\{e\})$, for any edge $e \in E(\bar{G})$.

By $C_{n}, P_{n}, K_{n}, K_{m, n}$ we denote the chordless cycle on $n \geq 4$ vertices, the chordless path on $n \geq 3$ vertices, the complete graph on $n \geq 1$ vertices, and the complete bipartite graph on $m+n$ vertices, respectively.

A matching is a set of non-incident edges of G, and a perfect matching is a matching saturating all the vertices of G.

If $|N(v)|=|\{w\}|=1$, then v is a pendant vertex and $v w$ is a pendant edge of G, where $N(v)=\{u: u \in V(G), u v \in E(G)\}$ is the neighborhood of $v \in V(G)$. If $G[N(v)]$ is a complete subgraph in G, then v is a simplicial vertex of G. A clique in G is called a simplex if it contains at least a simplicial vertex of $G,[2]$.

A stable set of maximum size will be referred as to a stability system of G. The stability number of G, denoted by $\alpha(G)$, is the cardinality of a stability system in G.

Let $\Omega(G)$ stand for the family of all stability systems of the graph G, and core $(G)=\cap\{S: S \in \Omega(G)\}$ (see [10]).
G is a well-covered graph if every maximal stable set of G is also a maximum stable set, i.e., it belongs to $\Omega(G)$ (Plummer, [11]). $G=(V, E)$ is called very well-covered provided G is well-covered, without isolated vertices and $|V|=2 \alpha(G)$ (Favaron, [4]). For instance, each $C_{2 n}, n \geq 3$, is not well-covered, while C_{4}, C_{5}, C_{7} are well-covered, but only C_{4} is very well-covered.

The following characterization of stability systems in a graph, due to Berge, we shall use in the sequel.

Proposition 1.([1]) $S \in \Omega(G)$ if and only if every stable set A of G, disjoint from S, can be matched into S.

By $\theta(G)$ we mean the clique covering number of G, i.e., the minimum number of cliques whose union covers $V(G)$. Recall also that:

$$
\begin{gathered}
i(G)=\min \{|S|: S \text { is a maximal stable set in } G\}, \\
\gamma(G)=\min \{|D|: D \text { is a minimal dominating set in } G\},
\end{gathered}
$$

where $D \subseteq V(G)$ is a domination set whenever $\{x, y\} \cap D \neq \emptyset$, for each $x y \in E(G)$.

In general, it can be shown (e.g., see [12]) that these graph invariants are related by the following inequalities:

$$
\alpha\left(G^{2}\right) \leq \theta\left(G^{2}\right) \leq \gamma(G) \leq i(G) \leq \alpha(G) \leq \theta(G)
$$

For instance,

$$
\alpha\left(C_{7}^{2}\right)=2<3=\theta\left(C_{7}^{2}\right)=\gamma\left(C_{7}\right)=i\left(C_{7}\right)=\alpha\left(C_{7}\right)<4=\theta\left(C_{7}\right)
$$

(see also the graph G from Figure 1).

Figure 1: $\alpha\left(G^{2}\right)=\theta\left(G^{2}\right)=3<\gamma(G)<i(G)<\alpha(G)<\theta(G)=7$.

Recall from [5] that a graph G is called:
(i) α^{-}-stable if $\alpha(G-e)=\alpha(G)$, for every $e \in E(G)$, and
(ii) α^{+}-stable if $\alpha(G+e)=\alpha(G)$, for each edge $e \in E(\bar{G})$, .

Recall the following results.
Proposition 2.([6]) A graph G is:
(i) α^{+}-stable if and only if \midcore $(G) \mid \leq 1$;
(ii) α^{-}-stable if and only if $|N(v) \cap S| \geq 2$ is true for every $S \in \Omega(G)$ and each $v \in V(G)-S$.
By Proposition 2, an α^{+}-stable graph G may have either \mid core $(G) \mid=0$ or \mid core $(G) \mid=1$. This motivates the following definition.

Definition 1.([8]) A graph G is called:
(i) α_{0}^{+}-stable whenever \midcore $(G) \mid=0$;
(ii) α_{1}^{+}-stable provided \midcore $(G) \mid=1$.

Any $C_{n}, n \geq 4$, is α^{+}-stable, and all $C_{2 n}, n \geq 2$, are α^{-}-stable. For other examples of α_{0}^{+}-stable and α_{1}^{+}-stable graphs, see Figure 2.

Figure 2: $K_{3}+e$ is α_{1}^{+}-stable, while the graphs G_{1}, G_{2}, G_{3} are α_{0}^{+}-stable.
In [6] it was shown that an α^{+}-stable tree $T \neq K_{1}$ can be only α_{0}^{+}-stable, and this is exactly the case of trees possessing a perfect matching. This result was generalized to bipartite graphs in [7].

The distance between two vertices $v, w \in V(G)$ is denoted by $\operatorname{dist}_{G}(v, w)$, or simply $\operatorname{dist}(v, w)$, if there is no ambiguity. By G^{2} we denote the second power of the graph $G=(V, E)$, i.e., the graph having:

$$
V\left(G^{2}\right)=V \text { and } E\left(G^{2}\right)=\left\{v w: v, w \in V\left(G^{2}\right), 1 \leq \operatorname{dist}_{G}(v, w) \leq 2\right\}
$$

Clearly, any stable set of G^{2} is stable in G, as well, while the converse is not generally true. Therefore, one may assert that

$$
1 \leq \alpha\left(G^{2}\right) \leq \alpha(G)
$$

Let us notice that the both bounds are sharp.
For instance, it is easy to see that, if:

- G is not a complete graph and $\operatorname{dist}(a, b) \leq 2$ holds for any $a, b \in V(G)$, then $\alpha(G) \geq 2>1=\alpha\left(G^{2}\right)$; e.g., for the n-star graph $G=K_{1, n}$, with $n \geq 2$, we have $\alpha(G)=n>\alpha\left(G^{2}\right)=1$;
- $G=P_{4}$, then $\alpha(G)=\alpha\left(G^{2}\right)=2$.

Randerath and Volkmann proved the following theorem.
Theorem 1.([12]) For a graph G the following statements are equivalent:
(i) every vertex of G belongs to exactly one simplex of G;
(ii) G satisfies $\alpha(G)=\alpha\left(G^{2}\right)$;
(iii) G satisfies $\theta(G)=\theta\left(G^{2}\right)$;
(iv) G satisfies $\alpha\left(G^{2}\right)=\theta\left(G^{2}\right)=\gamma(G)=i(G)=\alpha(G)=\theta(G)$.

We call a graph G square-stable if $\alpha(G)=\alpha\left(G^{2}\right)$. In this paper we continue to investigate square-stable graphs. For instance, we show that any squarestable graph having non-empty edge-set is also α_{0}^{+}-stable, and that none of them is α^{-}-stable. We deduce that the square-stable trees coincide with the well-covered trees.

Clearly, any complete graph is square-stable. Moreover, since $K_{n}^{2}=K_{n}$, we get that

$$
\Omega\left(K_{n}\right)=\Omega\left(K_{n}^{2}\right)=\left\{\{v\}: v \in V\left(K_{n}\right)\right\} .
$$

Some other examples of (non-)square-stable graphs are depicted in Figure 3.

Figure 3: G_{1}, G_{2} are square-stable graphs, while G_{3}, G_{4} are not square-stable.
Proposition 3.A graph G is square-stable if and only if $\Omega\left(G^{2}\right) \subseteq \Omega(G)$.

Proof. Clearly, each stable set A of G^{2} is stable in G, too. Consequently, if G is square-stable, then every stability system of G^{2} is a stability system of G, as well, i.e., $\Omega\left(G^{2}\right) \subseteq \Omega(G)$.

The converse is clear.
Let us notice that if $H_{i}, 1 \leq i \leq k$, are the connected components of graph G, then $S \in \Omega(G)$ if and only if $S \cap V\left(H_{i}\right) \in \Omega\left(H_{i}\right), 1 \leq i \leq k$. Since, in addition, G and G^{2} are simultaneously connected or disconnected, Proposition 3 assures that a disconnected graph is square-stable if and only if each of its connected components is square-stable. Therefore, in the rest of the paper all the graphs are connected, unless otherwise stated.

2. Main Results

Proposition 4.For any non-complete graph G, he following statements are true:
(i) if $S \in \Omega\left(G^{2}\right)$, then $\operatorname{dist}_{G}(a, b) \geq 3$ holds for any distinct $a, b \in S$;
(ii) if G is square-stable, then for every $S \in \Omega\left(G^{2}\right)$ and each $a \in S$, there is $b \in S$ with $\operatorname{dist}_{G}(a, b)=3$;
(iii) G is square-stable if and only if there is some $S \in \Omega(G)$ such that $\operatorname{dist}_{G}(a, b) \geq 3$ holds for all distinct $a, b \in S$.

Proof. (i) If $S \in \Omega\left(G^{2}\right)$ and $a, b \in S, a \neq b$, then $\operatorname{dist}_{G}(a, b) \geq 3$, since otherwise $a b \in E\left(G^{2}\right)$, contradicting the stability of S in G^{2}.
(ii) Suppose, on the contrary, that there are $S \in \Omega\left(G^{2}\right)$ and some $a \in S$, such that $\operatorname{dist}_{G}(a, b) \geq 4$ holds for any $b \in S$. Let $v \in V$ be such that $\operatorname{dist}_{G}(a, v)=2$. Hence, $\operatorname{dist}_{G}(v, w) \geq 2$ is valid for any $w \in S$, and consequently, $S \cup\{v\}$ is stable in G, thus contradicting the fact that S is a maximum stable set in G, as well.
(iii) If G is square-stable, then Proposition 3 ensures that $\Omega\left(G^{2}\right) \subseteq \Omega(G)$, and, by part (i), $\operatorname{dist}(a, b) \geq 3$ holds for every $S \in \Omega\left(G^{2}\right)$ and all distinct $a, b \in S$.

Conversely, let $S \in \Omega(G)$ be such that $\operatorname{dist}_{G}(a, b) \geq 3$ holds for any $a, b \in S$. Hence, S is stable in G^{2}, as well, and consequently, we obtain

$$
|S| \leq \alpha\left(G^{2}\right) \leq \alpha(G)=|S|
$$

which clearly implies $\alpha\left(G^{2}\right)=\alpha(G)$, i.e., G is square-stable.

Proposition $5 . \Omega\left(G^{2}\right)=\Omega(G)$ if and only if G is a complete graph.
Proof. Suppose, on the contrary, that $\Omega\left(G^{2}\right)=\Omega(G)$ holds for some noncomplete graph G. Let $S \in \Omega(G)$ and $a \in S$.

Since $\Omega(G)=\Omega\left(G^{2}\right)$, Proposition 4 (ii) implies that $\operatorname{dist}_{G}(a, v) \geq 3$ holds for every $v \in S-\{a\}$, and, according to Proposition 4 (iii), there is some $b \in S$ with $\operatorname{dist}_{G}(a, b)=3$. Now, if $c \in N_{G}(a)$ and $\operatorname{dist}_{G}(c, b)=2$, Proposition 4 (iii) implies that $S \cup\{c\}-\{a\} \in \Omega(G)-\Omega\left(G^{2}\right)$, contradicting the equality $\Omega\left(G^{2}\right)=\Omega(G)$.

The converse is clear.
Let $A \triangle B$ denotes the symmetric difference of the sets A, B, i.e., the set

$$
A \triangle B=(A-B) \cup(B-A)
$$

THEOREM 2.For a graph G the following assertions are equivalent:
(i) G is square-stable;
(ii) there exists $S \in \Omega(G)$ that satisfies the property
$P 1$: any stable set A of G disjoint from S can be uniquely matched into S;
(iii) every $S \in \Omega\left(G^{2}\right)$ has property $P 1$;
(iv) for each $S_{1} \in \Omega(G)$ and every $S_{2} \in \Omega\left(G^{2}\right), G\left[S_{1} \triangle S_{2}\right]$ has a unique perfect matching.

Proof. (i) \Rightarrow (ii), (iii) By Proposition 3 we get that $\Omega\left(G^{2}\right) \subseteq \Omega(G)$. Now, every $S \in \Omega\left(G^{2}\right)$ belongs also to $\Omega(G)$, and consequently, if A is a stable set in G disjoint from S, Proposition 1 implies that A can be matched into S. If there exists another matching of A into S, then at least one vertex $a \in A$ has two neighbors in S, say b, c. Hence, $b c \in E\left(G^{2}\right)$ and this contradicts the stability of S. Therefore, each $S \in \Omega\left(G^{2}\right) \subseteq \Omega(G)$ has property $P 1$.
(ii) \Rightarrow (i) Let $S_{0} \in \Omega(G)$ be a stability system of G that satisfies the property $P 1$. Suppose, on the contrary, that G is not square-stable. It follows that $S_{0} \notin \Omega\left(G^{2}\right)$, i.e., there are $v, w \in S_{0}$ with $v w \in E\left(G^{2}\right)$. Hence, there must be some $u \in V-\{v, w\}$, such that $u v, u w \in E(G)$. Consequently, there are two matchings of $A=\{u\}$ into S_{0}, contradicting the fact that S_{0} has property $P 1$.
(iii) \Rightarrow (iv) Let $S_{1} \in \Omega(G)$ and $S_{2} \in \Omega\left(G^{2}\right)$. Then $\left|S_{2}\right| \leq\left|S_{1}\right|$, and since $S_{1}-S_{2}$ is stable in G and disjoint from S_{2}, we infer that $S_{1}-S_{2}$ can be uniquely matched into S_{2}, precisely into $S_{2}-S_{1}$, and because $\left|S_{2}-S_{1}\right| \leq\left|S_{1}-S_{2}\right|$, this matching is perfect. In conclusion, $G\left[S_{1} \triangle S_{2}\right]$ has a unique perfect matching.
(iv) \Rightarrow (i) If $G\left[S_{1} \triangle S_{2}\right]$ has a perfect matching, for every $S_{1} \in \Omega(G)$ and each $S_{2} \in \Omega\left(G^{2}\right)$, it follows that $\left|S_{1}-S_{2}\right|=\left|S_{2}-S_{1}\right|$, and this implies $\left|S_{1}\right|=\left|S_{2}\right|$, i.e., $\alpha(G)=\alpha\left(G^{2}\right)$ is valid.

Corollary 1.There exists no α^{-}-stable graph having non-empty edge set, that is square-stable.

Proof. According to Proposition 2, G is α^{-}-stable provided $|N(v) \cap S| \geq 2$ holds for every $S \in \Omega(G)$ and each $v \in V(G)-S$. If, in addition, G is also square-stable, then Theorem 2 assures that there exists some $S_{0} \in \Omega(G)$ satisfying property $P 1$, which implies that $\left|N(v) \cap S_{0}\right|=1$ holds for every $v \in V(G)-S_{0}$. This incompatibility concerning S_{0} proves that G can not be simultaneously square-stable and α^{-}-stable.

In Figure 4 are presented some non-square-stable graphs: $K_{4}-e$, which is also α^{-}-stable, C_{6}, which is both α^{-}-stable and α^{+}-stable, and H, which is neither α^{-}-stable, nor α^{+}-stable.

Figure 4: Non-square-stable graphs: $K_{4}-e$ and C_{6} are also α^{-}-stable graphs, while H is not α^{-}-stable.

Recall the following characterizations of well-covered trees.
Theorem 3.([13]) (i) A tree having at least two vertices is well-covered if and only if it has a perfect matching consisting of pendant edges.
(ii) ([9]) A tree $T \neq K_{1}$ is well-covered if and only if either T is a wellcovered spider, or T is obtained from a well-covered tree T_{1} and a well-covered spider T_{2}, by adding an edge joining two non-pendant vertices of T_{1}, T_{2}.

Figure 5: Well-covered spiders.

It turns out that a tree $T \neq K_{1}$ is well-covered if and only if it is very well-covered. Clearly, K_{1} is both well-covered and square-stable, but is not very well-covered.

Theorem 4. (i) Any square-stable graph is well-covered.
(ii) Any square-stable graph with non-empty edge set is α_{0}^{+}-stable.
(iii) A tree of order at least two is square-stable if and only if it is very well-covered.

Proof. (i) Assume, on the contrary, that there exists a square-stable graph G which is not well-covered. Hence, there is in G some maximal stable set A having $|A|<\alpha(G)$. According to Theorem 2 (iii), for every $S \in \Omega\left(G^{2}\right)$, there is a unique matching from $B=A-S \cap A$ into S, in fact, into $S-A$. Consequently, $S \cup B-N(B) \cap S$ is a stability system of G that includes A, contradicting the fact that A is a maximal stable set.
(ii) Suppose, on the contrary, that G is a square-stable graph, but is not α_{0}^{+}-stable, i.e., there exists an $a \in \operatorname{core}(G)$. Hence, every maximal stable set containing some $b \in N(a)$ can not be maximum, in contradiction with the fact, by part (i), G is also well-covered.
(iii) According to part (i), every square-stable tree T is well-covered, and, by Theorem $3, T$ is very well-covered, since it has at least two vertices.

Conversely, if T is a very well-covered tree, then, by Theorem 3, it has a perfect matching

$$
\left\{a_{i} b_{i}: 1 \leq i \leq|V(T)| / 2, \operatorname{deg}\left(a_{i}\right)=1\right\}
$$

consisting of pendant edges only. Hence, $S=\left\{a_{i}: 1 \leq i \leq|V(T)| / 2\right\}$ is a stable set in T of size $|V(T)| / 2$, i.e., $S \in \Omega(T)$, because $\alpha(T)=|V(T)| / 2$. Moreover, $S \in \Omega\left(T^{2}\right)$, since $\operatorname{dist}_{T}\left(a_{i}, a_{j}\right) \geq 3$, for $i \neq j$.

Actually, Theorem 4 (i) is stated implicitly in the proof of Theorem 1 from [12]. The converse of Theorem 4 (i) is not generally true; e.g., C_{5} is wellcovered, but is not square-stable. The square-stable graphs do not coincide with the very well-covered graphs. For instance, P_{4} is both square-stable and very well-covered, C_{4} is very well-covered and non-square-stable, but there are square-stable graphs that are not very well-covered; for example, the graph G in Figure 6. Let us also remark that there are α_{0}^{+}-stable graphs that are not square-stable, e.g., C_{6}.

Theorem 5.For a graph G the following statements are equivalent:

Figure 6: A square-stable graph which is not very well-covered.
(i) G is square-stable;
(ii) there is $S_{0} \in \Omega(G)$ that has the property
$P 2$: for any stable set A of G disjoint from $S_{0}, A \cup S^{*} \in \Omega(G)$ holds for some $S^{*} \subset S_{0}$.

Proof. (i) \Rightarrow (ii) By Theorem 2, for every $S \in \Omega\left(G^{2}\right)$ and each stable set A in G, disjoint from S, there is a unique matching of A into S. Consequently, $S^{*}=S-N(A) \cap S$ has $\left|S^{*}\right|=|S|-|A|$ and $S^{*} \cup A \in \Omega(G)$.
(ii) \Rightarrow (i) It suffices to show that $S_{0} \in \Omega\left(G^{2}\right)$. If $S_{0} \notin \Omega(G)$, there must exist $a, b \in S_{0}$ such that $a b \in E\left(G^{2}\right)$, and this is possible provided $a, b \in N(c) \cap S_{0}$ for some $c \in V-S_{0}$. Hence, $\left|S_{0} \cup\{c\}-\{a, b\}\right|<\left|S_{0}\right|$ and this implies that $\{c\} \cup S^{*} \notin \Omega(G)$ holds for any $S^{*} \subset S$, contradicting the fact that S_{0} has the property $P 2$. Therefore, we deduce that $S_{0} \in \Omega\left(G^{2}\right)$, and this implies that $\alpha(G)=\alpha\left(G^{2}\right)$.

As a consequence of Theorem 5 , we obtain that $\Omega(G)$ is the set of bases of a matroid on $V(G)$ provided G is a complete graph.

Corollary $2 . \Omega(G)$ is the set of bases of a matroid on $V(G)$ if and only if $\Omega\left(G^{2}\right)=\Omega(G)$.

Proof. If $\Omega(G)$ is the set of bases of a matroid on V, then any $S \in \Omega(G)$ must have the property $P 2$. By Theorem $5, G$ is square-stable and therefore $\Omega\left(G^{2}\right) \subseteq \Omega(G)$. Suppose that there exists $S_{0} \in \Omega(G)-\Omega\left(G^{2}\right)$. It follows that there are $a, b \in S_{0}$ and $c \in N(a) \cap N(b)$. Hence, $\{c\}$ is stable in G and disjoint from S_{0}, but $S^{*} \cup\{c\} \notin \Omega(G)$ for any $S^{*} \subset S_{0}$, and this is a contradiction, since S_{0} has property $P 2$. Consequently, the equality $\Omega\left(G^{2}\right)=\Omega(G)$ is true.

Conversely, according to Theorem 5 , any $S \in \Omega\left(G^{2}\right)=\Omega(G)$ has the property $P 2$. Therefore, $\Omega(G)$ is the set of bases of a matroid on V.

Combining Proposition 5 and Corollary 2, we get the following result.
Corollary 3.([3]) Let G be a disconnected graph. Then $\Omega(G)$ is the set of bases of a matroid on $V(G)$ if and only if G is a disjoint union of cliques.

3. Conclusions

In this paper we continue the research, started by Randerath and Volkmann [12] in 1997, on the class of square-stable graphs, by emphasizing a number of new properties. It turns out that any of the two equalities: $\alpha\left(G^{2}\right)=\alpha(G)$ and $\theta\left(G^{2}\right)=\theta(G)$, is equivalent to $\alpha\left(G^{2}\right)=\theta\left(G^{2}\right)=\gamma(G)=i(G)=\alpha(G)=\theta(G)$, and it could be interesting to study graphs satisfying other equalities between the invariants appearing in the relation:

$$
\alpha\left(G^{2}\right) \leq \theta\left(G^{2}\right) \leq \gamma(G) \leq i(G) \leq \alpha(G) \leq \theta(G)
$$

References

[1] C. Berge, Some common properties for regularizable graphs, edge-critical graphs and B-graphs, Annals of Discrete Mathematics 12 (1982) 31-44.
[2] G. H. Cheston, E. O. Hare and R. C. Laskar, Simplicial graphs, Congressus Numerantium 67 (1988) 105-113.
[3] G. Ding, Stable sets versus independent sets, Discrete Mathematics 117 (1993) 73-87.
[4] O. Favaron, Very well-covered graphs, Discrete Mathematics 42 (1982) 177-187.
[5] G. Gunther, B. Hartnell, and D. F. Rall, Graphs whose vertex independence number is unaffected by single edge addition or deletion, Discrete Applied Mathematics 46 (1993) 167-172.
[6] T. W. Haynes, L. M. Lawson, R. C. Brigham and R. D. Dutton, Changing and unchanging of the graphical invariants: minimum and maximum degree, maximum clique size, node independence number and edge independence number, Congressus Numerantium 72 (1990) 239-252.
[7] V. E. Levit and E. Mandrescu, On α-stable graphs, Congressus Numerantium 124 (1997) 33-46.
[8] V. E. Levit and E. Mandrescu, Well-covered and König-Egervàry graphs, Congressus Numerantium 130 (1998) 209-218.
[9] V. E. Levit, E. Mandrescu, Well-covered trees, Congressus Numerantium 139 (1999) 101-112.
[10] V. E. Levit and E. Mandrescu, Combinatorial properties of the family of maximum stable sets of a graph, Discrete Applied Mathematics 117 (2002) 149-161.
[11] M. D. Plummer, Some covering concepts in graphs, Journal of Combinatorial Theory 8 (1970) 91-98.
[12] B. Randerath and L. Volkmann, Simplicial graphs and relationships to different graph invariants, Ars Combinatoria 46 (1997) 211-217.
[13] G. Ravindra, Well-covered graphs, J. Combin. Inform. System Sci. 2 (1977) 20-21.

Vadim E. Levit and Eugen Mandrescu
Department of Computer Science
Holon Academic Institute of Technology
52 Golomb Str., P.O. Box 305
Holon 58102, ISRAEL
e-mail: \{levitv, eugen_m\} @hait.ac.il

