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Abstract. The stability number of the graph G, denoted by α(G), is
the cardinality of a maximum stable set of G. In this paper we characterize
the square-stable graphs, i.e., the graphs enjoying the property α(G) = α(G2),
where G2 is the graph with the same vertex set as in G, and an edge of G2

is joining two distinct vertices, whenever the distance between them in G is
at most 2. We show that every square-stable graph is well-covered, and well-
covered trees are exactly the square-stable trees.
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1. Introduction

All the graphs considered in this paper are simple, i.e., are finite, undi-
rected, loopless and without multiple edges. For such a graph G = (V, E) we
denote its vertex set by V = V (G) and its edge set by E = E(G). If X ⊂ V ,
then G[X] is the subgraph of G spanned by X.

By G − W we denote the subgraph G[V − W ] , if W ⊂ V (G). By G − F
we mean the partial subgraph of G obtained by deleting the edges of F , for
F ⊂ E(G), and we use G − e, if W = {e}.

The graph G stands for the complement of G, and by G + e we mean the
graph (V (G), E(G) ∪ {e}), for any edge e ∈ E(G).

By Cn, Pn, Kn, Km,n we denote the chordless cycle on n ≥ 4 vertices, the
chordless path on n ≥ 3 vertices, the complete graph on n ≥ 1 vertices, and
the complete bipartite graph on m + n vertices, respectively.
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A matching is a set of non-incident edges of G, and a perfect matching is
a matching saturating all the vertices of G.

If |N(v)| = |{w}| = 1, then v is a pendant vertex and vw is a pendant
edge of G, where N(v) = {u : u ∈ V (G), uv ∈ E(G)} is the neighborhood of
v ∈ V (G). If G[N(v)] is a complete subgraph in G, then v is a simplicial vertex
of G. A clique in G is called a simplex if it contains at least a simplicial vertex
of G, [2].

A stable set of maximum size will be referred as to a stability system of G.
The stability number of G, denoted by α(G), is the cardinality of a stability
system in G.

Let Ω(G) stand for the family of all stability systems of the graph G, and
core (G) = ∩{S : S ∈ Ω(G)} (see [10]).

G is a well-covered graph if every maximal stable set of G is also a maximum
stable set, i.e., it belongs to Ω(G) (Plummer, [11]). G = (V, E) is called
very well-covered provided G is well-covered, without isolated vertices and
|V | = 2α(G) (Favaron, [4]). For instance, each C2n, n ≥ 3, is not well-covered,
while C4, C5, C7 are well-covered, but only C4 is very well-covered.

The following characterization of stability systems in a graph, due to Berge,
we shall use in the sequel.

Proposition 1.([1]) S ∈ Ω(G) if and only if every stable set A of G,
disjoint from S, can be matched into S.

By θ(G) we mean the clique covering number of G, i.e., the minimum
number of cliques whose union covers V (G). Recall also that:

i(G) = min{|S| : S is a maximal stable set in G},
γ(G) = min{|D| : D is a minimal dominating set in G},

where D ⊆ V (G) is a domination set whenever {x, y} ∩ D �= ∅, for each
xy ∈ E(G).

In general, it can be shown (e.g., see [12]) that these graph invariants are
related by the following inequalities:

α(G2) ≤ θ(G2) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ θ(G).

For instance,

α(C2
7) = 2 < 3 = θ(C2

7 ) = γ(C7) = i(C7) = α(C7) < 4 = θ(C7)

(see also the graph G from Figure 1).
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Figure 1: α(G2) = θ(G2) = 3 < γ(G) < i(G) < α(G) < θ(G) = 7.

Recall from [5] that a graph G is called:
(i) α−-stable if α(G − e) = α(G), for every e ∈ E(G), and
(ii) α+-stable if α(G + e) = α(G), for each edge e ∈ E(G), .
Recall the following results.
Proposition 2.([6]) A graph G is:
(i) α+-stable if and only if |core (G)| ≤ 1;
(ii) α−-stable if and only if |N(v) ∩ S| ≥ 2 is true for every S ∈ Ω(G) and

each v ∈ V (G) − S.
By Proposition 2, an α+-stable graph G may have either |core (G)| = 0 or

|core (G)| = 1. This motivates the following definition.
Definition 1.([8]) A graph G is called:
(i) α+

0 -stable whenever |core (G)| = 0;
(ii) α+

1 -stable provided |core (G)| = 1.
Any Cn, n ≥ 4, is α+-stable, and all C2n, n ≥ 2, are α−-stable. For other

examples of α+
0 -stable and α+

1 -stable graphs, see Figure 2.

� � �

�
�

�
� e

K3 + e

� � �

� � �

G1

� � �

� � �
�

�
�

G2

� � �

� � �

�
�

��
�

�

G3

Figure 2: K3 + e is α+
1 -stable, while the graphs G1, G2, G3 are α+

0 -stable.

In [6] it was shown that an α+-stable tree T �= K1 can be only α+
0 -stable,

and this is exactly the case of trees possessing a perfect matching. This result
was generalized to bipartite graphs in [7].

The distance between two vertices v, w ∈ V (G) is denoted by distG(v, w),
or simply dist(v, w), if there is no ambiguity. By G2 we denote the second
power of the graph G = (V, E), i.e., the graph having:

V (G2) = V and E(G2) = {vw : v, w ∈ V (G2), 1 ≤ distG(v, w) ≤ 2}.
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Clearly, any stable set of G2 is stable in G, as well, while the converse is not
generally true. Therefore, one may assert that

1 ≤ α(G2) ≤ α(G).

Let us notice that the both bounds are sharp.
For instance, it is easy to see that, if:

• G is not a complete graph and dist(a, b) ≤ 2 holds for any a, b ∈ V (G),
then α(G) ≥ 2 > 1 = α(G2); e.g., for the n-star graph G = K1,n, with
n ≥ 2, we have α(G) = n > α(G2) = 1;

• G = P4, then α(G) = α(G2) = 2.

Randerath and Volkmann proved the following theorem.
Theorem 1.([12]) For a graph G the following statements are equivalent:
(i) every vertex of G belongs to exactly one simplex of G;
(ii) G satisfies α(G) = α(G2);
(iii) G satisfies θ(G) = θ(G2);
(iv) G satisfies α(G2) = θ(G2) = γ(G) = i(G) = α(G) = θ(G).
We call a graph G square-stable if α(G) = α(G2). In this paper we continue

to investigate square-stable graphs. For instance, we show that any square-
stable graph having non-empty edge-set is also α+

0 -stable, and that none of
them is α−-stable. We deduce that the square-stable trees coincide with the
well-covered trees.

Clearly, any complete graph is square-stable. Moreover, since K2
n = Kn,

we get that
Ω(Kn) = Ω(K2

n) = {{v} : v ∈ V (Kn)}.
Some other examples of (non-)square-stable graphs are depicted in Figure 3.
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Figure 3: G1, G2 are square-stable graphs, while G3, G4 are not square-stable.

Proposition 3.A graph G is square-stable if and only if Ω(G2) ⊆ Ω(G).
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Proof. Clearly, each stable set A of G2 is stable in G, too. Consequently, if G
is square-stable, then every stability system of G2 is a stability system of G,
as well, i.e., Ω(G2) ⊆ Ω(G).

The converse is clear.

Let us notice that if Hi, 1 ≤ i ≤ k, are the connected components of graph
G, then S ∈ Ω(G) if and only if S ∩ V (Hi) ∈ Ω(Hi), 1 ≤ i ≤ k. Since, in
addition, G and G2 are simultaneously connected or disconnected, Proposition
3 assures that a disconnected graph is square-stable if and only if each of its
connected components is square-stable. Therefore, in the rest of the paper all
the graphs are connected, unless otherwise stated.

2. Main results

Proposition 4.For any non-complete graph G, he following statements
are true:

(i) if S ∈ Ω(G2), then distG(a, b) ≥ 3 holds for any distinct a, b ∈ S;
(ii) if G is square-stable, then for every S ∈ Ω(G2) and each a ∈ S, there

is b ∈ S with distG(a, b) = 3;
(iii) G is square-stable if and only if there is some S ∈ Ω(G) such that

distG(a, b) ≥ 3 holds for all distinct a, b ∈ S.

Proof. (i) If S ∈ Ω(G2) and a, b ∈ S, a �= b, then distG(a, b) ≥ 3, since
otherwise ab ∈ E(G2), contradicting the stability of S in G2.

(ii) Suppose, on the contrary, that there are S ∈ Ω(G2) and some a ∈ S,
such that distG(a, b) ≥ 4 holds for any b ∈ S. Let v ∈ V be such that
distG(a, v) = 2. Hence, distG(v, w) ≥ 2 is valid for any w ∈ S, and conse-
quently, S∪{v} is stable in G, thus contradicting the fact that S is a maximum
stable set in G, as well.

(iii) If G is square-stable, then Proposition 3 ensures that Ω(G2) ⊆ Ω(G),
and, by part (i), dist(a, b) ≥ 3 holds for every S ∈ Ω(G2) and all distinct
a, b ∈ S.

Conversely, let S ∈ Ω(G) be such that distG(a, b) ≥ 3 holds for any a, b ∈ S.
Hence, S is stable in G2, as well, and consequently, we obtain

|S| ≤ α(G2) ≤ α(G) = |S|,

which clearly implies α(G2) = α(G), i.e., G is square-stable.
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Proposition 5.Ω(G2) = Ω(G) if and only if G is a complete graph.

Proof. Suppose, on the contrary, that Ω(G2) = Ω(G) holds for some non-
complete graph G. Let S ∈ Ω(G) and a ∈ S.

Since Ω(G) = Ω(G2), Proposition 4 (ii) implies that distG(a, v) ≥ 3 holds
for every v ∈ S − {a}, and, according to Proposition 4 (iii), there is some
b ∈ S with distG(a, b) = 3. Now, if c ∈ NG(a) and distG(c, b) = 2, Proposition
4 (iii) implies that S ∪ {c} − {a} ∈ Ω(G) − Ω(G2), contradicting the equality
Ω(G2) = Ω(G).

The converse is clear.

Let A 
 B denotes the symmetric difference of the sets A, B, i.e., the set

A 
 B = (A − B) ∪ (B − A).

Theorem 2.For a graph G the following assertions are equivalent:
(i) G is square-stable;
(ii) there exists S ∈ Ω(G) that satisfies the property
P1: any stable set A of G disjoint from S can be uniquely matched into S;
(iii) every S ∈ Ω(G2) has property P1;
(iv) for each S1 ∈ Ω(G) and every S2 ∈ Ω(G2), G[S1 
 S2] has a unique

perfect matching.

Proof. (i) ⇒ (ii), (iii) By Proposition 3 we get that Ω(G2) ⊆ Ω(G). Now,
every S ∈ Ω(G2) belongs also to Ω(G), and consequently, if A is a stable set
in G disjoint from S, Proposition 1 implies that A can be matched into S.
If there exists another matching of A into S, then at least one vertex a ∈ A
has two neighbors in S, say b, c. Hence, bc ∈ E(G2) and this contradicts the
stability of S. Therefore, each S ∈ Ω(G2) ⊆ Ω(G) has property P1.

(ii) ⇒ (i) Let S0 ∈ Ω(G) be a stability system of G that satisfies the
property P1. Suppose, on the contrary, that G is not square-stable. It follows
that S0 /∈ Ω(G2), i.e., there are v, w ∈ S0 with vw ∈ E(G2). Hence, there must
be some u ∈ V − {v, w}, such that uv, uw ∈ E(G). Consequently, there are
two matchings of A = {u} into S0, contradicting the fact that S0 has property
P1.

(iii) ⇒ (iv) Let S1 ∈ Ω(G) and S2 ∈ Ω(G2). Then |S2| ≤ |S1|, and since
S1−S2 is stable in G and disjoint from S2, we infer that S1−S2 can be uniquely
matched into S2, precisely into S2−S1, and because |S2 − S1| ≤ |S1 − S2|, this
matching is perfect. In conclusion, G[S1 
 S2] has a unique perfect matching.
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(iv) ⇒ (i) If G[S1 
 S2] has a perfect matching, for every S1 ∈ Ω(G)
and each S2 ∈ Ω(G2), it follows that |S1 − S2| = |S2 − S1|, and this implies
|S1| = |S2|, i.e., α(G) = α(G2) is valid.

Corollary 1.There exists no α−-stable graph having non-empty edge set,
that is square-stable.

Proof. According to Proposition 2, G is α−-stable provided |N(v) ∩ S| ≥ 2
holds for every S ∈ Ω(G) and each v ∈ V (G) − S. If, in addition, G is
also square-stable, then Theorem 2 assures that there exists some S0 ∈ Ω(G)
satisfying property P1, which implies that |N(v) ∩ S0| = 1 holds for every
v ∈ V (G) − S0. This incompatibility concerning S0 proves that G can not be
simultaneously square-stable and α−-stable.

In Figure 4 are presented some non-square-stable graphs: K4 − e, which
is also α−-stable, C6, which is both α−-stable and α+-stable, and H , which is
neither α−-stable, nor α+-stable.
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Figure 4: Non-square-stable graphs: K4 − e and C6 are also α−-stable graphs,
while H is not α−-stable.

Recall the following characterizations of well-covered trees.
Theorem 3.([13]) (i) A tree having at least two vertices is well-covered if

and only if it has a perfect matching consisting of pendant edges.
(ii) ([9]) A tree T �= K1 is well-covered if and only if either T is a well-

covered spider, or T is obtained from a well-covered tree T1 and a well-covered
spider T2,by adding an edge joining two non-pendant vertices of T1, T2.
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Figure 5: Well-covered spiders.
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It turns out that a tree T �= K1 is well-covered if and only if it is very
well-covered. Clearly, K1 is both well-covered and square-stable, but is not
very well-covered.

Theorem 4. (i) Any square-stable graph is well-covered.
(ii) Any square-stable graph with non-empty edge set is α+

0 -stable.
(iii) A tree of order at least two is square-stable if and only if it is very

well-covered.

Proof. (i) Assume, on the contrary, that there exists a square-stable graph
G which is not well-covered. Hence, there is in G some maximal stable set
A having |A| < α(G). According to Theorem 2 (iii), for every S ∈ Ω(G2),
there is a unique matching from B = A − S ∩ A into S, in fact, into S − A.
Consequently, S ∪ B − N(B) ∩ S is a stability system of G that includes A,
contradicting the fact that A is a maximal stable set.

(ii) Suppose, on the contrary, that G is a square-stable graph, but is not
α+

0 -stable, i.e., there exists an a ∈ core (G). Hence, every maximal stable set
containing some b ∈ N(a) can not be maximum, in contradiction with the fact,
by part (i), G is also well-covered.

(iii) According to part (i), every square-stable tree T is well-covered, and,
by Theorem 3, T is very well-covered, since it has at least two vertices.

Conversely, if T is a very well-covered tree, then, by Theorem 3, it has a
perfect matching

{aibi : 1 ≤ i ≤ |V (T )| /2, deg(ai) = 1},

consisting of pendant edges only. Hence, S = {ai : 1 ≤ i ≤ |V (T )| /2} is a
stable set in T of size |V (T )| /2, i.e., S ∈ Ω(T ), because α(T ) = |V (T )| /2.
Moreover, S ∈ Ω(T 2), since distT (ai, aj) ≥ 3, for i �= j.

Actually, Theorem 4 (i) is stated implicitly in the proof of Theorem 1 from
[12]. The converse of Theorem 4 (i) is not generally true; e.g., C5 is well-
covered, but is not square-stable. The square-stable graphs do not coincide
with the very well-covered graphs. For instance, P4 is both square-stable and
very well-covered, C4 is very well-covered and non-square-stable, but there are
square-stable graphs that are not very well-covered; for example, the graph G
in Figure 6. Let us also remark that there are α+

0 -stable graphs that are not
square-stable, e.g., C6.

Theorem 5.For a graph G the following statements are equivalent:
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Figure 6: A square-stable graph which is not very well-covered.

(i) G is square-stable;
(ii) there is S0 ∈ Ω(G) that has the property

P2 : for any stable set A of G disjoint from S0, A ∪ S∗ ∈ Ω(G) holds
for some S∗ ⊂ S0.

Proof. (i) ⇒ (ii) By Theorem 2, for every S ∈ Ω(G2) and each stable set A
in G, disjoint from S, there is a unique matching of A into S. Consequently,
S∗ = S − N(A) ∩ S has |S∗| = |S| − |A| and S∗ ∪ A ∈ Ω(G).

(ii) ⇒ (i) It suffices to show that S0 ∈ Ω(G2). If S0 /∈ Ω(G), there
must exist a, b ∈ S0 such that ab ∈ E(G2), and this is possible provided
a, b ∈ N(c) ∩ S0 for some c ∈ V − S0. Hence, |S0 ∪ {c} − {a, b}| < |S0| and
this implies that {c}∪S∗ /∈ Ω(G) holds for any S∗ ⊂ S, contradicting the fact
that S0 has the property P2. Therefore, we deduce that S0 ∈ Ω(G2), and this
implies that α(G) = α(G2).

As a consequence of Theorem 5, we obtain that Ω(G) is the set of bases of
a matroid on V (G) provided G is a complete graph.

Corollary 2.Ω(G) is the set of bases of a matroid on V (G) if and only
if Ω(G2) = Ω(G).

Proof. If Ω(G) is the set of bases of a matroid on V , then any S ∈ Ω(G)
must have the property P2. By Theorem 5, G is square-stable and therefore
Ω(G2) ⊆ Ω(G). Suppose that there exists S0 ∈ Ω(G) − Ω(G2). It follows that
there are a, b ∈ S0 and c ∈ N(a)∩N(b). Hence, {c} is stable in G and disjoint
from S0, but S∗ ∪ {c} /∈ Ω(G) for any S∗ ⊂ S0, and this is a contradiction,
since S0 has property P2. Consequently, the equality Ω(G2) = Ω(G) is true.

Conversely, according to Theorem 5, any S ∈ Ω(G2) = Ω(G) has the
property P2. Therefore, Ω(G) is the set of bases of a matroid on V .

Combining Proposition 5 and Corollary 2, we get the following result.
Corollary 3.([3]) Let G be a disconnected graph. Then Ω(G) is the set

of bases of a matroid on V (G) if and only if G is a disjoint union of cliques.
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3. Conclusions

In this paper we continue the research, started by Randerath and Volkmann
[12] in 1997, on the class of square-stable graphs, by emphasizing a number of
new properties. It turns out that any of the two equalities: α(G2) = α(G) and
θ(G2) = θ(G), is equivalent to α(G2) = θ(G2) = γ(G) = i(G) = α(G) = θ(G),
and it could be interesting to study graphs satisfying other equalities between
the invariants appearing in the relation:

α(G2) ≤ θ(G2) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ θ(G).

References

[1] C. Berge, Some common properties for regularizable graphs, edge-critical
graphs and B-graphs, Annals of Discrete Mathematics 12 (1982) 31-44.

[2] G. H. Cheston, E. O. Hare and R. C. Laskar, Simplicial graphs, Congressus
Numerantium 67 (1988) 105-113.

[3] G. Ding, Stable sets versus independent sets, Discrete Mathematics 117
(1993) 73-87.

[4] O. Favaron, Very well-covered graphs, Discrete Mathematics 42 (1982)
177-187.

[5] G. Gunther, B. Hartnell, and D. F. Rall, Graphs whose vertex indepen-
dence number is unaffected by single edge addition or deletion, Discrete
Applied Mathematics 46 (1993) 167-172.

[6] T. W. Haynes, L. M. Lawson, R. C. Brigham and R. D. Dutton, Chang-
ing and unchanging of the graphical invariants: minimum and maximum
degree, maximum clique size, node independence number and edge inde-
pendence number, Congressus Numerantium 72 (1990) 239-252.

[7] V. E. Levit and E. Mandrescu, On α-stable graphs, Congressus Numer-
antium 124 (1997) 33-46.

306



V. E. Levit and E. Mandrescu-Square-stable and and well-covered graphs

[8] V. E. Levit and E. Mandrescu, Well-covered and König-Egervàry graphs,
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