Proceedings of the International Conference on Theory and Application of Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

SQUARE-STABLE AND WELL-COVERED GRAPHS

VADIM E. LEVIT AND EUGEN MANDRESCU

ABSTRACT. The stability number of the graph G, denoted by $\alpha(G)$, is the cardinality of a maximum stable set of G. In this paper we characterize the square-stable graphs, i.e., the graphs enjoying the property $\alpha(G) = \alpha(G^2)$, where G^2 is the graph with the same vertex set as in G, and an edge of G^2 is joining two distinct vertices, whenever the distance between them in G is at most 2. We show that every square-stable graph is well-covered, and wellcovered trees are exactly the square-stable trees.

Keywords: stable set, square-stable graph, well-covered graph, matching.

2000 Mathematics Subject Classification: 05C75, 05C69, 05C05, 05C70.

1. INTRODUCTION

All the graphs considered in this paper are simple, i.e., are finite, undirected, loopless and without multiple edges. For such a graph G = (V, E) we denote its vertex set by V = V(G) and its edge set by E = E(G). If $X \subset V$, then G[X] is the subgraph of G spanned by X.

By G - W we denote the subgraph G[V - W], if $W \subset V(G)$. By G - F we mean the partial subgraph of G obtained by deleting the edges of F, for $F \subset E(G)$, and we use G - e, if $W = \{e\}$.

The graph \overline{G} stands for the complement of G, and by G + e we mean the graph $(V(G), E(G) \cup \{e\})$, for any edge $e \in E(\overline{G})$.

By $C_n, P_n, K_n, K_{m,n}$ we denote the chordless cycle on $n \ge 4$ vertices, the chordless path on $n \ge 3$ vertices, the complete graph on $n \ge 1$ vertices, and the complete bipartite graph on m + n vertices, respectively.

A matching is a set of non-incident edges of G, and a perfect matching is a matching saturating all the vertices of G.

If $|N(v)| = |\{w\}| = 1$, then v is a pendant vertex and vw is a pendant edge of G, where $N(v) = \{u : u \in V(G), uv \in E(G)\}$ is the neighborhood of $v \in V(G)$. If G[N(v)] is a complete subgraph in G, then v is a simplicial vertex of G. A clique in G is called a simplex if it contains at least a simplicial vertex of G, [2].

A stable set of maximum size will be referred as to a *stability system* of G. The *stability number* of G, denoted by $\alpha(G)$, is the cardinality of a stability system in G.

Let $\Omega(G)$ stand for the family of all stability systems of the graph G, and $core(G) = \bigcap \{S : S \in \Omega(G)\}$ (see [10]).

G is a well-covered graph if every maximal stable set of G is also a maximum stable set, i.e., it belongs to $\Omega(G)$ (Plummer, [11]). G = (V, E) is called very well-covered provided G is well-covered, without isolated vertices and $|V| = 2\alpha(G)$ (Favaron, [4]). For instance, each $C_{2n}, n \geq 3$, is not well-covered, while C_4, C_5, C_7 are well-covered, but only C_4 is very well-covered.

The following characterization of stability systems in a graph, due to Berge, we shall use in the sequel.

PROPOSITION 1.([1]) $S \in \Omega(G)$ if and only if every stable set A of G, disjoint from S, can be matched into S.

By $\theta(G)$ we mean the *clique covering number* of G, i.e., the minimum number of cliques whose union covers V(G). Recall also that:

 $i(G) = \min\{|S| : S \text{ is a maximal stable set in } G\},\$

 $\gamma(G) = \min\{|D| : D \text{ is a minimal dominating set in } G\},\$

where $D \subseteq V(G)$ is a domination set whenever $\{x, y\} \cap D \neq \emptyset$, for each $xy \in E(G)$.

In general, it can be shown (e.g., see [12]) that these graph invariants are related by the following inequalities:

$$\alpha(G^2) \le \theta(G^2) \le \gamma(G) \le i(G) \le \alpha(G) \le \theta(G).$$

For instance,

$$\alpha(C_7^2) = 2 < 3 = \theta(C_7^2) = \gamma(C_7) = i(C_7) = \alpha(C_7) < 4 = \theta(C_7)$$

(see also the graph G from Figure 1).

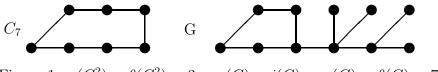


Figure 1: $\alpha(G^2) = \theta(G^2) = 3 < \gamma(G) < i(G) < \alpha(G) < \theta(G) = 7.$

Recall from [5] that a graph G is called: (i) α^{-} -stable if $\alpha(G - e) = \alpha(G)$, for every $e \in E(G)$, and (ii) α^{+} -stable if $\alpha(G + e) = \alpha(G)$, for each edge $e \in E(\overline{G})$, . Recall the following results. PROPOSITION 2.([6]) A graph G is:

(i) α^+ -stable if and only if $|core(G)| \le 1$;

(ii) α^{-} -stable if and only if $|N(v) \cap S| \ge 2$ is true for every $S \in \Omega(G)$ and each $v \in V(G) - S$.

By Proposition 2, an α^+ -stable graph G may have either |core(G)| = 0 or |core(G)| = 1. This motivates the following definition.

DEFINITION 1. (8) A graph G is called:

(i) α_0^+ -stable whenever |core(G)| = 0;

(ii) α_1^+ -stable provided |core(G)| = 1.

Any $C_n, n \ge 4$, is α^+ -stable, and all $C_{2n}, n \ge 2$, are α^- -stable. For other examples of α_0^+ -stable and α_1^+ -stable graphs, see Figure 2.

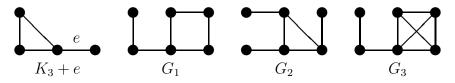


Figure 2: $K_3 + e$ is α_1^+ -stable, while the graphs G_1, G_2, G_3 are α_0^+ -stable.

In [6] it was shown that an α^+ -stable tree $T \neq K_1$ can be only α_0^+ -stable, and this is exactly the case of trees possessing a perfect matching. This result was generalized to bipartite graphs in [7].

The distance between two vertices $v, w \in V(G)$ is denoted by $dist_G(v, w)$, or simply dist(v, w), if there is no ambiguity. By G^2 we denote the second power of the graph G = (V, E), i.e., the graph having:

$$V(G^2) = V \text{ and } E(G^2) = \{vw : v, w \in V(G^2), 1 \le dist_G(v, w) \le 2\}.$$

Clearly, any stable set of G^2 is stable in G, as well, while the converse is not generally true. Therefore, one may assert that

$$1 \le \alpha(G^2) \le \alpha(G).$$

Let us notice that the both bounds are sharp.

For instance, it is easy to see that, if:

- G is not a complete graph and $dist(a, b) \leq 2$ holds for any $a, b \in V(G)$, then $\alpha(G) \geq 2 > 1 = \alpha(G^2)$; e.g., for the *n*-star graph $G = K_{1,n}$, with $n \geq 2$, we have $\alpha(G) = n > \alpha(G^2) = 1$;
- $G = P_4$, then $\alpha(G) = \alpha(G^2) = 2$.

Randerath and Volkmann proved the following theorem.

THEOREM 1. ([12]) For a graph G the following statements are equivalent: (i) every vertex of G belongs to exactly one simplex of G; (ii) G satisfies $\alpha(G) = \alpha(G^2)$;

(iii) G satisfies $\theta(G) = \theta(G^2)$;

(iv) G satisfies $\alpha(G^2) = \theta(G^2) = \gamma(G) = i(G) = \alpha(G) = \theta(G)$.

We call a graph G square-stable if $\alpha(G) = \alpha(G^2)$. In this paper we continue to investigate square-stable graphs. For instance, we show that any squarestable graph having non-empty edge-set is also α_0^+ -stable, and that none of them is α^- -stable. We deduce that the square-stable trees coincide with the well-covered trees.

Clearly, any complete graph is square-stable. Moreover, since $K_n^2 = K_n$, we get that

$$\Omega(K_n) = \Omega(K_n^2) = \{\{v\} : v \in V(K_n)\}.$$

Some other examples of (non-)square-stable graphs are depicted in Figure 3.

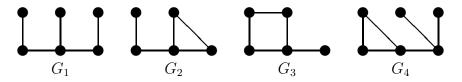


Figure 3: G_1, G_2 are square-stable graphs, while G_3, G_4 are not square-stable.

PROPOSITION 3. A graph G is square-stable if and only if $\Omega(G^2) \subseteq \Omega(G)$.

Proof. Clearly, each stable set A of G^2 is stable in G, too. Consequently, if G is square-stable, then every stability system of G^2 is a stability system of G, as well, i.e., $\Omega(G^2) \subseteq \Omega(G)$.

The converse is clear.

Let us notice that if $H_i, 1 \leq i \leq k$, are the connected components of graph G, then $S \in \Omega(G)$ if and only if $S \cap V(H_i) \in \Omega(H_i), 1 \leq i \leq k$. Since, in addition, G and G^2 are simultaneously connected or disconnected, Proposition 3 assures that a disconnected graph is square-stable if and only if each of its connected components is square-stable. Therefore, in the rest of the paper all the graphs are connected, unless otherwise stated.

2. Main results

PROPOSITION 4. For any non-complete graph G, he following statements are true:

(i) if $S \in \Omega(G^2)$, then $dist_G(a, b) \geq 3$ holds for any distinct $a, b \in S$;

(ii) if G is square-stable, then for every $S \in \Omega(G^2)$ and each $a \in S$, there is $b \in S$ with $dist_G(a, b) = 3$;

(iii) G is square-stable if and only if there is some $S \in \Omega(G)$ such that $dist_G(a,b) \geq 3$ holds for all distinct $a, b \in S$.

Proof. (i) If $S \in \Omega(G^2)$ and $a, b \in S, a \neq b$, then $dist_G(a, b) \geq 3$, since otherwise $ab \in E(G^2)$, contradicting the stability of S in G^2 .

(*ii*) Suppose, on the contrary, that there are $S \in \Omega(G^2)$ and some $a \in S$, such that $dist_G(a, b) \geq 4$ holds for any $b \in S$. Let $v \in V$ be such that $dist_G(a, v) = 2$. Hence, $dist_G(v, w) \geq 2$ is valid for any $w \in S$, and consequently, $S \cup \{v\}$ is stable in G, thus contradicting the fact that S is a maximum stable set in G, as well.

(*iii*) If G is square-stable, then Proposition 3 ensures that $\Omega(G^2) \subseteq \Omega(G)$, and, by part (*i*), $dist(a, b) \geq 3$ holds for every $S \in \Omega(G^2)$ and all distinct $a, b \in S$.

Conversely, let $S \in \Omega(G)$ be such that $dist_G(a, b) \geq 3$ holds for any $a, b \in S$. Hence, S is stable in G^2 , as well, and consequently, we obtain

$$|S| \le \alpha(G^2) \le \alpha(G) = |S|,$$

301

which clearly implies $\alpha(G^2) = \alpha(G)$, i.e., G is square-stable.

PROPOSITION 5. $\Omega(G^2) = \Omega(G)$ if and only if G is a complete graph.

Proof. Suppose, on the contrary, that $\Omega(G^2) = \Omega(G)$ holds for some noncomplete graph G. Let $S \in \Omega(G)$ and $a \in S$.

Since $\Omega(G) = \Omega(G^2)$, Proposition 4 *(ii)* implies that $dist_G(a, v) \geq 3$ holds for every $v \in S - \{a\}$, and, according to Proposition 4 *(iii)*, there is some $b \in S$ with $dist_G(a, b) = 3$. Now, if $c \in N_G(a)$ and $dist_G(c, b) = 2$, Proposition 4 *(iii)* implies that $S \cup \{c\} - \{a\} \in \Omega(G) - \Omega(G^2)$, contradicting the equality $\Omega(G^2) = \Omega(G)$.

The converse is clear.

Let $A \bigtriangleup B$ denotes the symmetric difference of the sets A, B, i.e., the set

$$A \bigtriangleup B = (A - B) \cup (B - A).$$

THEOREM 2. For a graph G the following assertions are equivalent:

(i) G is square-stable;

(ii) there exists $S \in \Omega(G)$ that satisfies the property

P1: any stable set A of G disjoint from S can be uniquely matched into S; (iii) every $S \in \Omega(G^2)$ has property P1;

(iv) for each $S_1 \in \Omega(G)$ and every $S_2 \in \Omega(G^2), G[S_1 \triangle S_2]$ has a unique perfect matching.

Proof. $(i) \Rightarrow (ii)$, (iii) By Proposition 3 we get that $\Omega(G^2) \subseteq \Omega(G)$. Now, every $S \in \Omega(G^2)$ belongs also to $\Omega(G)$, and consequently, if A is a stable set in G disjoint from S, Proposition 1 implies that A can be matched into S. If there exists another matching of A into S, then at least one vertex $a \in A$ has two neighbors in S, say b, c. Hence, $bc \in E(G^2)$ and this contradicts the stability of S. Therefore, each $S \in \Omega(G^2) \subseteq \Omega(G)$ has property P1.

 $(ii) \Rightarrow (i)$ Let $S_0 \in \Omega(G)$ be a stability system of G that satisfies the property P1. Suppose, on the contrary, that G is not square-stable. It follows that $S_0 \notin \Omega(G^2)$, i.e., there are $v, w \in S_0$ with $vw \in E(G^2)$. Hence, there must be some $u \in V - \{v, w\}$, such that $uv, uw \in E(G)$. Consequently, there are two matchings of $A = \{u\}$ into S_0 , contradicting the fact that S_0 has property P1.

 $(iii) \Rightarrow (iv)$ Let $S_1 \in \Omega(G)$ and $S_2 \in \Omega(G^2)$. Then $|S_2| \leq |S_1|$, and since $S_1 - S_2$ is stable in G and disjoint from S_2 , we infer that $S_1 - S_2$ can be uniquely matched into S_2 , precisely into $S_2 - S_1$, and because $|S_2 - S_1| \leq |S_1 - S_2|$, this matching is perfect. In conclusion, $G[S_1 \Delta S_2]$ has a unique perfect matching.

 $(iv) \Rightarrow (i)$ If $G[S_1 \triangle S_2]$ has a perfect matching, for every $S_1 \in \Omega(G)$ and each $S_2 \in \Omega(G^2)$, it follows that $|S_1 - S_2| = |S_2 - S_1|$, and this implies $|S_1| = |S_2|$, i.e., $\alpha(G) = \alpha(G^2)$ is valid.

COROLLARY 1. There exists no α^- -stable graph having non-empty edge set, that is square-stable.

Proof. According to Proposition 2, G is α^{-} -stable provided $|N(v) \cap S| \geq 2$ holds for every $S \in \Omega(G)$ and each $v \in V(G) - S$. If, in addition, G is also square-stable, then Theorem 2 assures that there exists some $S_0 \in \Omega(G)$ satisfying property P1, which implies that $|N(v) \cap S_0| = 1$ holds for every $v \in V(G) - S_0$. This incompatibility concerning S_0 proves that G can not be simultaneously square-stable and α^{-} -stable.

In Figure 4 are presented some non-square-stable graphs: $K_4 - e$, which is also α^- -stable, C_6 , which is both α^- -stable and α^+ -stable, and H, which is neither α^- -stable, nor α^+ -stable.

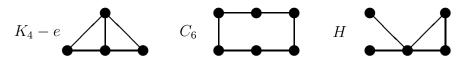


Figure 4: Non-square-stable graphs: $K_4 - e$ and C_6 are also α^- -stable graphs, while H is not α^- -stable.

Recall the following characterizations of well-covered trees.

THEOREM 3. ([13]) (i) A tree having at least two vertices is well-covered if and only if it has a perfect matching consisting of pendant edges.

(ii) ([9]) A tree $T \neq K_1$ is well-covered if and only if either T is a wellcovered spider, or T is obtained from a well-covered tree T_1 and a well-covered spider T_2 , by adding an edge joining two non-pendant vertices of T_1, T_2 .

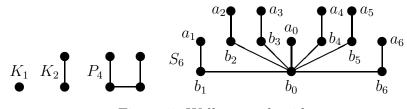


Figure 5: Well-covered spiders.

It turns out that a tree $T \neq K_1$ is well-covered if and only if it is very well-covered. Clearly, K_1 is both well-covered and square-stable, but is not very well-covered.

THEOREM 4. (i) Any square-stable graph is well-covered.

(ii) Any square-stable graph with non-empty edge set is α_0^+ -stable.

(iii) A tree of order at least two is square-stable if and only if it is very well-covered.

Proof. (i) Assume, on the contrary, that there exists a square-stable graph G which is not well-covered. Hence, there is in G some maximal stable set A having $|A| < \alpha(G)$. According to Theorem 2 (iii), for every $S \in \Omega(G^2)$, there is a unique matching from $B = A - S \cap A$ into S, in fact, into S - A. Consequently, $S \cup B - N(B) \cap S$ is a stability system of G that includes A, contradicting the fact that A is a maximal stable set.

(*ii*) Suppose, on the contrary, that G is a square-stable graph, but is not α_0^+ -stable, i.e., there exists an $a \in core(G)$. Hence, every maximal stable set containing some $b \in N(a)$ can not be maximum, in contradiction with the fact, by part (*i*), G is also well-covered.

(*iii*) According to part (*i*), every square-stable tree T is well-covered, and, by Theorem 3, T is very well-covered, since it has at least two vertices.

Conversely, if T is a very well-covered tree, then, by Theorem 3, it has a perfect matching

$$\{a_i b_i : 1 \le i \le |V(T)|/2, \deg(a_i) = 1\},\$$

consisting of pendant edges only. Hence, $S = \{a_i : 1 \le i \le |V(T)|/2\}$ is a stable set in T of size |V(T)|/2, i.e., $S \in \Omega(T)$, because $\alpha(T) = |V(T)|/2$. Moreover, $S \in \Omega(T^2)$, since $dist_T(a_i, a_j) \ge 3$, for $i \ne j$.

Actually, Theorem 4 (i) is stated implicitly in the proof of Theorem 1 from [12]. The converse of Theorem 4 (i) is not generally true; e.g., C_5 is well-covered, but is not square-stable. The square-stable graphs do not coincide with the very well-covered graphs. For instance, P_4 is both square-stable and very well-covered, C_4 is very well-covered and non-square-stable, but there are square-stable graphs that are not very well-covered; for example, the graph G in Figure 6. Let us also remark that there are α_0^+ -stable graphs that are not square-stable, e.g., C_6 .

THEOREM 5. For a graph G the following statements are equivalent:

Figure 6: A square-stable graph which is not very well-covered.

- (i) G is square-stable;
- (ii) there is $S_0 \in \Omega(G)$ that has the property

P2: for any stable set A of G disjoint from S_0 , $A \cup S^* \in \Omega(G)$ holds for some $S^* \subset S_0$.

Proof. $(i) \Rightarrow (ii)$ By Theorem 2, for every $S \in \Omega(G^2)$ and each stable set A in G, disjoint from S, there is a unique matching of A into S. Consequently, $S^* = S - N(A) \cap S$ has $|S^*| = |S| - |A|$ and $S^* \cup A \in \Omega(G)$.

 $(ii) \Rightarrow (i)$ It suffices to show that $S_0 \in \Omega(G^2)$. If $S_0 \notin \Omega(G)$, there must exist $a, b \in S_0$ such that $ab \in E(G^2)$, and this is possible provided $a, b \in N(c) \cap S_0$ for some $c \in V - S_0$. Hence, $|S_0 \cup \{c\} - \{a, b\}| < |S_0|$ and this implies that $\{c\} \cup S^* \notin \Omega(G)$ holds for any $S^* \subset S$, contradicting the fact that S_0 has the property P2. Therefore, we deduce that $S_0 \in \Omega(G^2)$, and this implies that $\alpha(G) = \alpha(G^2)$.

As a consequence of Theorem 5, we obtain that $\Omega(G)$ is the set of bases of a matroid on V(G) provided G is a complete graph.

COROLLARY 2. $\Omega(G)$ is the set of bases of a matroid on V(G) if and only if $\Omega(G^2) = \Omega(G)$.

Proof. If $\Omega(G)$ is the set of bases of a matroid on V, then any $S \in \Omega(G)$ must have the property P2. By Theorem 5, G is square-stable and therefore $\Omega(G^2) \subseteq \Omega(G)$. Suppose that there exists $S_0 \in \Omega(G) - \Omega(G^2)$. It follows that there are $a, b \in S_0$ and $c \in N(a) \cap N(b)$. Hence, $\{c\}$ is stable in G and disjoint from S_0 , but $S^* \cup \{c\} \notin \Omega(G)$ for any $S^* \subset S_0$, and this is a contradiction, since S_0 has property P2. Consequently, the equality $\Omega(G^2) = \Omega(G)$ is true.

Conversely, according to Theorem 5, any $S \in \Omega(G^2) = \Omega(G)$ has the property P2. Therefore, $\Omega(G)$ is the set of bases of a matroid on V.

Combining Proposition 5 and Corollary 2, we get the following result.

COROLLARY 3.([3]) Let G be a disconnected graph. Then $\Omega(G)$ is the set of bases of a matroid on V(G) if and only if G is a disjoint union of cliques.

3. Conclusions

In this paper we continue the research, started by Randerath and Volkmann [12] in 1997, on the class of square-stable graphs, by emphasizing a number of new properties. It turns out that any of the two equalities: $\alpha(G^2) = \alpha(G)$ and $\theta(G^2) = \theta(G)$, is equivalent to $\alpha(G^2) = \theta(G^2) = \gamma(G) = i(G) = \alpha(G) = \theta(G)$, and it could be interesting to study graphs satisfying other equalities between the invariants appearing in the relation:

$$\alpha(G^2) \le \theta(G^2) \le \gamma(G) \le i(G) \le \alpha(G) \le \theta(G).$$

References

- [1] C. Berge, Some common properties for regularizable graphs, edge-critical graphs and B-graphs, Annals of Discrete Mathematics **12** (1982) 31-44.
- [2] G. H. Cheston, E. O. Hare and R. C. Laskar, *Simplicial graphs*, Congressus Numerantium 67 (1988) 105-113.
- [3] G. Ding, Stable sets versus independent sets, Discrete Mathematics 117 (1993) 73-87.
- [4] O. Favaron, Very well-covered graphs, Discrete Mathematics 42 (1982) 177-187.
- [5] G. Gunther, B. Hartnell, and D. F. Rall, Graphs whose vertex independence number is unaffected by single edge addition or deletion, Discrete Applied Mathematics 46 (1993) 167-172.
- [6] T. W. Haynes, L. M. Lawson, R. C. Brigham and R. D. Dutton, Changing and unchanging of the graphical invariants: minimum and maximum degree, maximum clique size, node independence number and edge independence number, Congressus Numerantium 72 (1990) 239-252.
- [7] V. E. Levit and E. Mandrescu, On α-stable graphs, Congressus Numerantium 124 (1997) 33-46.

- [8] V. E. Levit and E. Mandrescu, Well-covered and König-Egervàry graphs, Congressus Numerantium 130 (1998) 209-218.
- [9] V. E. Levit, E. Mandrescu, Well-covered trees, Congressus Numerantium 139 (1999) 101-112.
- [10] V. E. Levit and E. Mandrescu, Combinatorial properties of the family of maximum stable sets of a graph, Discrete Applied Mathematics 117 (2002) 149-161.
- [11] M. D. Plummer, Some covering concepts in graphs, Journal of Combinatorial Theory 8 (1970) 91-98.
- [12] B. Randerath and L. Volkmann, Simplicial graphs and relationships to different graph invariants, Ars Combinatoria 46 (1997) 211-217.
- [13] G. Ravindra, Well-covered graphs, J. Combin. Inform. System Sci. 2 (1977) 20-21.

Vadim E. Levit and Eugen Mandrescu Department of Computer Science Holon Academic Institute of Technology 52 Golomb Str., P.O. Box 305 Holon 58102, ISRAEL e-mail: {levitv, eugen_m}@hait.ac.il