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Abstract.We give a new description of the vanishing ideal of some sym-
metric sets S ⊆ {0, 1}nover the field of complex numbers. As an application
we determine the deglexstandard monomials for S over C. It turns out that
the standard monomials can be described in terms of certain generalized ballot
sequences. This extends some results obtained in [2] and [6].
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1.Introduction

Let n be a positive integer and [n] stand for the set {1, 2, . . . , n}. The
family of all subsets of [n] is denoted by 2[n]. For an integer 0 ≤ t ≤ n we set

St = {w ∈ {0, 1}n; the Hamming weight of w is t} .

A symmetric set S ⊆ {0, 1}n is of the form S = Sc1 ∪ · · · ∪ Sck
, where

0 ≤ c1 < · · · < ck ≤ n are integers. S can be considered as a point set in F
n

for any field F.
As usual, F[x1, . . . , xn] denotes the ring of polynomials in x1, . . . , xn over

F. For a subset F ⊆ [n] we write xF =
∏

j∈F xj . In particular, x∅ = 1. Let
vF ∈ {0, 1}n denote the characteristic vector of a set F ⊆ [n]. For a family
of subsets F ⊆ 2[n], let V (F) = {vF : F ∈ F} ⊆ {0, 1}n ⊆ Fn. A polynomial
f ∈ F[x1, . . . , xn] = X can be considered as a function from V (F) to F in the
straightforward way. We note also that V (F) ⊆ {0, 1}n, and conversely, for
any S ⊆ {0, 1}n there exists an F ⊆ 2[n] such that S = V (F).

Several interesting results on finite set systems F ⊆ 2[n] can be natu-
rally formulated as statements concerning polynomial functions on S = V (F).

1Research supported in part by OTKA grabts T42481, T42706
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For instance, certain inclusion matrices can be viewed naturally in this set-
ting. Also, the approach to the complexity of Boolean functions, initiated by
Smolensky [10] and developed further by Bernasconi and Egidi [4], leads to
such questions.

To study polynomial functions on S, it is natural to consider the ideal I(S):

I(S) := {f ∈ X : f(v) = 0 whenever v ∈ S}.

In fact, substitution gives rise to a F-homomorphism from X to the ring of
F-valued functions on S. This homomorphism is seen to be surjective by an
easy interpolation argument, and the kernel is exactly I(S). This way one
can identify S/I(S) with the space of F-valued functions on S. In particular,
dimFS/I(S) = |F| = |S|.

2.Grbner bases, standard monomials and Hilbert functions

We recall now some basic facts concerning Gröbner bases and Hilbert func-
tions in polynomial rings. A total order ≺ on the monomials (words) composed
from variables x1, x2, . . . , xn is a term order, if 1 is the minimal element of ≺,
and uw ≺ vw holds for any monomials u, v, w with u ≺ v. There are many in-
teresting term orders. For the rest of the paper we assume that the term order
≺ we work with is the deglex order. Let u = xi1

1 xi2
2 · · ·xin

n and v = xj1
1 xj2

2 · · ·xjn
n

be two monomials. Then u is smaller than v with respect to deglex (u ≺ v in
notation) iff either deg u < deg v, or deg u = deg v and ik < jk holds for the
smallest index k such that ik �= jk. Note that we have xn ≺ xn−1 ≺ . . . ≺ x1.

The leading monomial lm(f) of a nonzero polynomial f ∈ X is the largest
(with respect to ≺) monomial which appears with nonzero coefficient in f
when written as a linear combination of monomials.

Let I be an ideal of X. A finite subset G ⊆ I is a Gröbner basis of I if
for every f ∈ I there exists a g ∈ G such that lm(g) divides lm(f). In other
words, the leading monomials of the polynomials from G generate the semi-
group ideal of monomials {lm(f) : f ∈ I}. Using that ≺ is a well founded
order, it follows that G is actually a basis of I, i.e. G generates I as an ideal of
X. It is a fundamental fact (cf. [11, Chapter 1, Corollary 3.12] or [1, Corollary
1.6.5, Theorem 1.9.1]) that every nonzero ideal I of X has a Gröbner basis.

A monomial w ∈ X is called a standard monomial for I if it is not a
leading monomial of any f ∈ I. Let sm(I, F) stand for the set of all standard
monomials of I with respect to the term-order ≺ over F. It follows from the
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definition and existence of Gröbner bases (see [11, Chapter 1, Section 4]) that
for a nonzero ideal I the set sm(I, F) is a basis of the F-vector-space X/I.
More precisely every g ∈ X can be written uniquely as g = h + f where f ∈ I
and h is a unique F-linear combination of monomials from sm(I, F).

If S ⊆ {0, 1}n, then x2
i − xi ∈ I(S), hence x2

i is a leading monomial for
I(S). It follows that the standard monomials for this ideal are all square-free,
i.e. of form xG for G ⊆ [n]. We put

Sm(S, F) = {G ⊆ [n] : xG ∈ sm(I(S), F)} ⊆ 2[n].

It is immediate that Sm(S, F) is a downward closed set system. Also, the
standard monomials for I(S) form a basis of the functions from S to F (see
Section 4 in [2]), hence

|Sm(S, F)| = |F|.
It is a fundamental fact that if G is a Gröbner basis of I, then with G we

can reduce every polynomial into a linear combination of standard monomials
for I.

Let I be an ideal of X = F[x1, . . . , xn]. The Hilbert function of the algebra
X/I is the sequence hX/I(0), hX/I(1), . . .. Here hX/I(m) is the dimension over F

of the factor-space F[x1, . . . , xn]≤m/(I ∩F[x1, . . . , xn]≤m) (see [5, Section 9.3]).
In the case when I = I(S) for some set S ⊆ {0, 1}n, then the number

hS(m) := hX/I(m) is the dimension of the space of functions from S to F

which can be represented as polynomials of degree at most m. On the other
hand, hX/I(m) is the number of standard monomials of degree at most m with
respect to an arbitrary degree-compatible term order, for instance deglex.

In this paper we describe the deglex standard monomials for the ideal I(S)
where S is a symmetric set such that for each c at most one of the subsets Sc

and Sn−c is in S (we say that S contains no complementary levels). The main
result is Theorem 3.5 which gives a combinatorial description of sm(I(S), ).

As noted by A. Bernasconi and L. Egidi in [4], it would be valuable to
describe the (reduced) Gröbner bases of an arbitrary symmetric set. Our
result is a step into this direction.

3.Preliminaries

Throughout the paper n is a positive integer. Let m, k be nonnegative
integers such that 0 ≤ k ≤ n − m ≤ m.
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Definition 2.1.A skew tableau t of shape s = (m, n−m, k) is a collection
of n boxes (cells) appearing in two rows, there are m boxes in the first row and
n − m boxes in the second one. Moreover, the first row is shifted to the right
with k boxes. These boxes are filled with the elements of [n], each box contains
exactly one integer, and different boxes contain different elements.

It is easy to see that there are n! tableaux of shape (m, n − m, k).
A skew tableau t of shape (m, n − m, k) is called standard if the numbers

increase along the rows and down the columns of t.
For example, if n = 6, then

2 5 3 6
7 1

and
1 2 4 5
3 6

(1)

are two skew tableaux, the first is of shape (4,2,1), the second one is of shape
(4,2,0). This latter is also a standard tableau.

The symmetric group Symn acts on the set of skew tableaux: for π ∈ Symn

and an (m, n−m, k) skew tableau t the skew tableau πt is also a (m, n−m, k)
skew tableau and it will have π(j) in the box where t contains j. Two skew
tableaux t and t′ associated with the same type (m, n − m, k) are row (resp.
column) equivalent if t′ can be obtained from t by permuting numbers in the
same rows (resp. columns). The (row) equivalence classes are called skew
tabloids. The skew tabloid of a skew tableau t is denoted by {t}. Following
[9], we depict the skew tabloid {t} by just erasing the vertical lines from the
picture of t. The skew tabloids corresponding to the skew tableaux of (1) may
be drawn as

2 5 3 6
7 1

and
1 2 4 5
3 6

For an arbitrary field F, let Mm,k denote the linear space over F whose basis
elements are the tabloids of shape (m, n − m, k), obviously dim Mm,k =

(
n
m

)
.

Let t be a skew tableau of shape (m, n − m, k). We denote by et the sum
in Mm,k of skew tabloids

et :=
∑

π∈C(t)

sign(π) · π{t}, (2)

where the summation is for those permutations π ∈ Symn which stabilize
the columns of t.
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Example. Let n = 6, s = (3, 3, 1), and

t =
2 5 3

4 1 6
.

Then

et =
2 5 3

4 1 6
− 1 5 3

4 2 6
− 2 6 3

4 1 5
+

1 6 3
4 2 5

. (3)

Let Y be the linear space over F whose basis elements are the xH , H ⊆ [n].
We obtain an inner product on Y by setting

〈xH , xK〉 := δH,K , H, K ⊆ [n].

Let P i denote the linear subspace of Y spanned by the xH , H ⊆ [n], |H| = i.
Then, for d ≤ k, the adjoint Radon maps rk,d : P d → P k are defined by

rk,d(xH) :=
∑

G⊇H, |G|=k

xG. (4)

To a skew tableau t of shape (m, n−m, k), we can assign a squarefree monomial
in variables x1, . . . , xn of degree n−m in the following way: let φn−m(t) denote
the squarefree monomial of degree n − m whose indeterminates are indexed
with the entries of the second row of t. Please note that the value of φn−m(t)
depends only on {t}. We have φ3(t) = x1x4x6 for t in the preceding example.

It is easy to see that the map φn−m defines a linear map from Mm,k to
P n−m. Let p(et) be the image of the element et defined by this linear map.

For the rest of the paper we assume that our base field is the field of complex
numbers .

4.The result

Our aim is to describe the (deglex) standard monomials for certain sym-
metric sets. Since S ⊆ {0, 1}n, we have x2

i − xi ∈ I(S) for every i, hence we
may restrict our attention to polynomials involving squarefree monomials only.
The ring we work with is

Y := [x1, . . . , xn]/〈x2
1 − x1, . . . , x

2
n − xn〉.
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Y is a -vector space of dimension 2n and it carries a Symn-module structure.
The squarefree monomials xK in x1, . . . , xn form a basis of Y over . In par-
ticular, we can speak about the degree of elements f ∈ Y : the degree of a
squarefree monomial xK is simply |K|. Also we can identify Y with the space
Y introduced in the preceding section, and hence may work with the inner
product 〈 , 〉 on Y .

A simple counting argument shows that Y is isomorphic to the C-algebra
of all functions from {0, 1}n to C. A similar counting shows that the subspace
of all functions vanishing on 0, 1-vectors of Hamming weight at most d (where
0 ≤ d ≤ n) is spanned by all monomials xK with |K| > d. This in turn implies
that if f ∈ Y and degf = d, then there exists a 0, 1-vector v of Hamming
weight at most d such that f(v) �= 0. Let J(S) denote the image of I(S) in Y .

We recall the main result of [4] which gives the Hilbert function of a sym-
metric set S over any field of characteristic 0. Let S = Sc1 ∪ · · · ∪ Sck

be a
symmetric subset of {0, 1}n, where 0 ≤ c1 < · · · < ck ≤ n. For a fixed natural
number m let us define recursively a function fam(c) on the set {c1, . . . , ck}.
If ci ≤ m then fam(ci) := ci else let fam(ci) be the largest integer r not larger
than m such that r /∈ {fam(c1), . . . , fam(ci−1)}. Let l be the largest index
such that cl ≤ m.

Theorem 3.1(A. Bernasconi-L. Egidi)

hS(m) =

l∑
i=1

(
n

ci

)
+

k∑
i=l+1

min

{(
n

ci

)
,

(
n

fam(ci)

)}
(5)

In particular, if Sc ⊆ S but Sn−c �⊆ S, then for S ′ := (S \ Sc) ∪ Sn−c, we have
hS(m) = hS′(m).

From now on we assume that S is a symmetric set containing no comple-
mentary levels i.e. S = Sc1 ∪ · · · ∪ Sck

, where 0 ≤ c1, . . . , ck ≤ n are pairwise
distinct integers and at most one of the subsets Sc and Sn−c is in S. Let
di := min(ci, n − ci). By changing the order of indices we may assume that
0 ≤ d1 < · · · < dk ≤ Fracn2.

Corrolary 3.2 For j = 1, . . . , k we have

hS(dj + k − j) =

j∑
i=1

(
n

di

)
+

k−j∑
l=1

(
n

dj + l

)
. (6)
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Proof. By the last statement of Theorem 3.1 we may assume that ci = di

for all i. Now the formula follows immediately from the Theorem. �
As a consequence of Corollary 3.2, we have

dim J(S)≤dj+k−j =

dj∑
i=0

(
n

i

)
−

j∑
l=1

(
n

dl

)
. (7)

Definition 3.3. A (finite) 0-1 sequence is a ballot sequence if in each
prefix the number of zeros is not smaller than the number of ones. A (finite)
0-1 sequence is a k-ballot sequence if by putting k zeros in front of the original
sequence we get a ballot sequence.

Definition 3.4. A (finite) increasing sequence of positive integers is k-
ballot if its characteristic sequence is a k-ballot sequence. Similarly, a squarfree
monomial is k-ballot if the characteristic sequence of its variables in increasing
order is a k-ballot sequence.

Example. The monomial x1x3x5 is 1-ballot but it is not (0-)ballot.

Remark. If a monomial is k-ballot then it is also l-ballot for l ≥ k.

The main result gives a combinatorical description of the standard monomials
for S in terms of shifted ballot sequences.

Theorem 3.5. The standard monomials for S of degree not more than
d1 + k − 1 are the (k − 1)-ballots, the standard monomomials for S of degree
at least dj−1 + k − j + 2 and at most dj + k − j are the (k − j)-ballots for
j = 2, . . . , k.

Example. Let n = 6, S = S1 ∪ S4. The standard monomials for S are:
1; x1, . . . , x6; x1x3, . . . , x1x6, x2x3, . . . , x5x6, the 1-ballots of degree at most 2.

The proof consists of three parts:

• we characterize the functions inY which vanish on S,
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• we show that the leading term of such a function canNOT be j-ballot
for a certain j,

• by a counting argument we show that the monomials that could be stan-
dard according to the above observation are indeed standard monomials.

For the first part, we use two lemmas.

Lemma 3.6.Let 0 ≤ c ≤ n be an integer, 0 �= f ∈ Y , deg f ≤ min(c, n −
c) − 1 := d − 1. Then the degree of g = (

∑
xi − c)f in Y is deg f + 1.

Proof. By contradiction: if f is a counterexample, then the “head” of f (the
sum of terms of f of maximal degree) is also a counterexample. We assume
therefore that f is homogeneous. Recall the discussion at the beginning of the
section: there exists a 0-1 vector v of Hamming weight at most d−1 such that
f(v) �= 0 therefore g(v) �= 0 implying that g �≡ 0.

As f is a counterexample, we have deg g = deg f implying that g is a
homogeneous element of degree at most d in Y . The fact that g vanishes on
Sc contradicts to Gottlieb’s Theorem ([7]) which states that the squarefree
monomials of degree t ≤ min(c, n − m) are linearly independent on Sc. �
Iterated application of the Lemma gives the following:

Corollary 3.7 Let 1 ≤ j ≤ k. Then for 0 �= f ∈ Y , deg f ≤ dj − 1, the
degree of the reduced form of (

∑
xi−cj) · . . . ·(

∑
xi−ck) ·f is deg f +k−j +1.

�

Proposition 3.9 For the set

H1 =

{(
n∑

i=1

xi − c1

)
· . . . ·

(
n∑

i=1

xi − ck

)
· f | deg f ≤ d1 − 1

}
⊂ Y

we have H1 = J(S)≤d1+k−1.

Proof. Clearly H1 is a linear subspace of Y . By Corollary ?? if 0 �= f ∈ Y ,
deg f ≤ d1 − 1 then (

∑
xi − c1) . . . (

∑
xi − ck) · f �= 0 in Y . We infer that the

dimension of H1 is
(

n
0

)
+ · · · + ( n

d1−1

)
. On the other hand, from (6) we know

that dim J(S)≤d1+k−1 =
(

n
0

)
+ · · ·+ ( n

d1−1

)
. Using that H1 ⊆ J(S)≤d1+k−1, and

that the dimensions of the two spaces are equal, we are done. �
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We can extend the above argument to higher degrees. It follows from (5) that
for each monomial ω, with d1 + 1 ≤ deg ω ≤ d2 − 1 there exists at least one
polynomial p(ω) ∈ J(Sc1) such that the leading monomial of p(ω) is ω. Let us
choose one p(ω) for each ω and consider the linear subspace spanned by these
p(ω):

L2 := 〈{p(ω) | d1 + 1 ≤ deg ω ≤ d2 − 1}〉.
With the aid of L2, we define H2 ⊆ Y as

H2 :=

{(
n∑

i=1

xi − c2

)
· . . . ·

(
n∑

i=1

xi − ck

)
· f | f ∈ L2

}
.

H2 is clearly a linear space and H2 ⊆ J(S)≤d2+k−2. Corollary 3.7 shows that
the degree (in Y ) of any element of H2 is at least d1 +k and at most d2 +k−2
(for 0 �= f ∈ L2). These imply that H1 ∩H2 = {0} and the dimension of H2 is(

n
d1+1

)
+ · · · + ( n

d2−1

)
. By (7) we have dim J(S)≤d2+k−2 =

(
n
0

)
+ · · · + ( n

d1−1

)
+

· · ·+( n
d1+1

)
+ · · ·+( n

d2−1

)
, hence dim H1 +dim H2 = dim J(S)≤d2+k−2. We infer

that J(S)≤d2+k−2 = H1 ⊕ H2.
Similarly, for 2 ≤ j ≤ k and for each monomial ω, with dj−1 +1 ≤ deg ω ≤

dj −1, there exists at least one polynomial p(ω) ∈ J(Sc1 ∪· · ·∪Scj−1
) such that

the leading monomial of p(ω) is ω. Let us choose one p(ω) for each ω, and set

Lj := 〈{p(ω) | dj−1 + 1 ≤ deg ω ≤ dj − 1}〉.
Now Hj is defined by

Hj :=

{(
n∑

i=1

xi − cj

)
· . . . ·

(
n∑

i=1

xi − ck

)
· f | f ∈ Lj

}
.

H1, . . . , Hj are subspaces of J(S)≤dj+k−j and from Corollary 3.7 the degree of
any element of Hj is at least dj−1 + k − j + 2 and at most dj + k − j (for
f �= 0). Therefore the dimension of Hj is

(
n

dj−1+1

)
+ · · ·+ ( n

dj−1

)
, and the sum

of H1, . . . , Hj is a direct sum, and again (7) implies that dim J(S)≤dj+k−j =
dim H1 + · · · + dim Hj and hence J(S)≤dj+k−j = H1 ⊕ · · · ⊕ Hj. �

We record the main properties of the subspaces Hj in the statement below:

Lemma 3.9.

1. We have J(S)≤dj+k−j = H1 ⊕ · · · ⊕ Hj, for j = 1, . . . , k.
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2. The nonzero elements of H1 have degree at most d1 + k − 1.
3. For 2 ≤ j ≤ k the nonzero elements of Hj have degree at least dj−1+k−j+2
and at most dj + k − j. �

Proposition 3.10 Let g = (
∑

xi − c1) · . . . · (
∑

xi − ck) · f , where f ∈ Y ,
deg f ≤ d1 − 1. Then the (deglex) largest monomial of g (in Y ) is NOT a
(k − 1)-ballot.

Before proving Proposition 3.10, we recall that that an (m, n−m, k) skew
tableau t has two rows, the first row is shifted to the right with k boxes and
has m boxes, the second row has n − m boxes (m ≥ n − m ≥ k ≥ 0), and et

denotes the signed sum of skew tabloids defined in (2).

Remark.It can easily be seen that if t is an (m, n − m, k) standard skew
tableau (increasing numbers along the rows and down the columns) then the
second row of t is a k-ballot sequence. Conversely, from a k-ballot sequence α
of integers from [n] and of length n−m one can easily obtain a standard skew
tableau of shape (m, n − m, k) whose second row is α.

Let p(et) denote the squarefree polynomial corresponding to et. Recall that
for k ≤ d, rk,d : P d → P k is the adjoint Radon map. To prove Proposition
3.10, we employ two lemmas.

Lemma 3.11 Let xi1 . . . xil be an arbitrary squarefree monomial, where l <
n−m−k and let t be an (m, n−m, k) skew tableau. Then rn−m,l(xi1 . . . xil) ⊥
p(et).

Proof. By l < n−m− k there exists a column of t with two elements j1, j2

such that {j1, j2} ∩ {i1, . . . , il} = ∅. Consider now the set M of monomials
which appear in p(et) and divisible by xi1xi2 · · ·xil . (note that M may be
empty). The elements of M can be partitioned into pairs. In such a pair of
monomials (m1, m2) exactly one of the mi is divisible by xj1 and the other by
xj2, moreover m1 and m2 have opposite signs in p(et). This implies that the
sum of the coefficients in p(et) of the monomials of M will be zero, proving
the claim. �

Lemma 3.12. Let t be an (m, n − m, k) skew standart tableau. Then the
(deglex) smallest monomial of p(et) is φn−m(t).

Proof. This is just an easy consequence of the definition of et. Since t
is standard, the numbers are increasing down the columns. Thus, for each
σ ∈ C(t), φn−m(t) ≺ φn−m(σt). �
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Proof of Proposition 3.10. In the argument below we work in Y . In particular
the monomials considered are the squarefree monomials that appear in the
defining basis of Y . Suppose for contradiction that the deglex leading mono-
mial ω of g = (

∑
xi−c1) . . . (

∑
xi−ck) ·f is not a (k−1)-ballot. By Corollary

3.7 we have deg ω = deg f + k, and ω is the leading monomial of

σk · f̄ =
∑

1≤i1<···<ik≤n

xi1 . . . xik · f̄ ,

where f̄ is the homogeneous part of top degree in f . These imply also
that ω is the deglex leading monomial of h = rdeg f+k,deg f(f̄). Let t be a skew
tableau of shape s = (n− (deg f + k), deg f + k, k − 1). Then by Lemma 3.11
we have h ⊥ p(et).

Let t′ be the standard tableau of shape s defined by ω. Note that from
Lemma 3.12, the deglex smallest monomial of p(et′) is ω.

Now using that h ⊥ p(et′), and that ω is a monomial in common in h and
p(et′), we obtain that they must share another monomial ω′. By the preceding
remark we have ω′ � ω. This, however, contradicts to the fact that ω is the
largest monomial of h. This completes the proof. �
By applying this result in turn for S2 = Sc2 ∪ · · · ∪ Sck

, g2 ∈ H2, . . . , S
k =

Sck
, gk ∈ Hk and using Lemma 3.9, we can complete the proof of Theorem 3.5.

Indeed, assume first that 2 ≤ j ≤ k. Then from Proposition 3.10 we know
that the set of (k− j)-ballot monomials (of degree at least dj−1 +k− j +2 and
at most dj + k − j) is a subset of the set of standard monomials of the same
degree. From (6) we know that

hS(dj + k − j) =

j∑
i=1

(
n

di

)
+

k−j∑
i=1

(
n

dj + i

)

and

hS(dj−1 + k − j + 1) =

j−1∑
i=1

(
n

di

)
+

k−j+1∑
i=1

(
n

dj−1 + i

)

therefore the number of standard monomials of degree at least dj−1+k−j+2
and at most dj + k − j is

(
n

dj+k−j

)
+ · · ·+ (n

dj

)− ( n
dj−1+k−j+1

)− · · · − ( n
dj−1+1

)
.

Thus, it suffices to show that the number of (k − j)-ballot monomials in these
degrees is the same. This is provided by the Proposition 3.13. A similar
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reasoning gives the statement for the standard monomials of degree at most
d1 + k − 1.

Proposition 3.13 Let k, l, n be positive integers, 0 ≤ k, l ≤ n. The
number of k-ballot monomials in x1, . . . , xn of degree not larger than l is

(
n
l

)
+(

n
l−1

)
+ · · · + ( n

l−k

)
.

0

1

P

Q

Figure 1:

Proof. From each 0-1 sequence we can construct a lattice path starting at
the origin and ending on the line x+y = n in the following manner: we step to
the right (draw a horizontal unit segment) for each one and step upwards (draw
a vertical unit segment) for each zero. It is easy to see that a 0-1 sequence of
length n is a k-ballot sequence iff the appropriate lattice path reaches the line
x + y = n without touching the line y = x − k − 1 before (Figure 1).

The number of 0-1 sequences (of length n) with l ones is
(

n
l

)
. There is a

bijection between the “bad” paths (those which reach the line y = x − k − 1
before arriving to (l, n− l)) and the 0-1 sequences reaching Q. The number of
the latter paths is

(
n

l−k−1

)
, hence the number of k-ballot sequences with exactly

l ones is
(

n
l

)− ( n
l−k−1

)
, therefore the number of k-ballots containing at most l

ones is
(

n
l

)
+
(

n
l−1

)
+ · · ·+ ( n

l−k

)
. �
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5. Concluding remarks

Here we considered sets S which do not contain complementary levels (both
Sc and Sn−c for some c). Our approach for describing the standard monomials
involved three main steps:

1. A description of the ideal J(S) ⊂ Y .
2. A description of the functions in the orthogonal complement of J(S) in Y .
3. A characterization of the deglex-smallest monomials of the elements in the
orthogonal complement.

For a general symmetric S the first two steps are feasible but the third one
appears to be problematic. It would likely be useful to settle first the case
of S = Sc ∪ Sn−c involving two complementary levels only. We have partial
results in this direction.

We add also that if there are complementary levels in S but not sepa-
rated then the ideas of Theorem 3.5 work. To be more precise, the standard
monomials for S have a very similar description, provided we know that for
0 ≤ c ≤ Fracn2, if Sc, Sn−c ⊆ S, then Sk ⊆ S for all integers c ≤ k ≤ n − c.

As we mentioned in the introduction, the most interesting task in this circle
of problems is to describe a Grbner basis for I(S) (with respect to a degree
compatible order). This is available for example for sets of the form Sc, or,
slightly more generally, for Sc ∪ Sc+1 ∪ · · · ∪ Sc+� (cf.[6]).
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American Mathematical Society, 1994.

[2] R. P. Anstee, L. Rnyai, A. Sali: Shattering news; Graphs and Combi-
natorics 18, (2002), pp. 59-73.

[3] L. Babai, P. Frankl, Linear Algebra Methods in Combinatorics, manuscript,
1992.

[4] A. Bernasconi, L. Egidi: Hilbert Function and Complexity Lower Bounds
for Symmetric Boolean Functions, Information and Computation 153(1),
(1999), pp. 1-25.
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