Proceedings of the International Conference on Theory and Application of Mathematics and Informatics ICTAMI 2005-Alba Iulia, Romania

SOME RESULTS CONCERNING THE NUMBER OF CRITICAL POINTS OF A SMOOTH MAP

Mihaela Aldea

Abstract. In this paper are presented some new results concerning the minimal number of critical points for a smooth map between two manifolds of small codimensions.

Keywords: critical points, critical set, φ - category
AMS 2001 Subject Classification: 58E05, 57M10

1. Introduction

Let $M^{\mathrm{n}}, N^{\mathrm{n}}$ be smooth manifolds and let $f: M \rightarrow N$ be a smooth mapping. If $x \in M$ consider the rank of f at x to be defined by the non-negative integer

$$
\operatorname{rank}_{x}(f)=\operatorname{rank}(T f)_{x}=\operatorname{dim}_{\mathbb{R}} \operatorname{Im}(T f)_{x}
$$

where $(T f)_{x}: T_{x}(M) \rightarrow T_{f(x)}(M)$ is tangent map of f at x. A point $x \in M$ with the property that $\operatorname{rank}_{x}(f)=\min (m, n)$ is called a regular point of f. Otherwise, the point x is a critical point (or a singular point) of f, i.e., x is called a critical point of f if the inequality $\operatorname{rank}_{x}(f) \leq \min (m, n)$ is satisfied. The critical set of mapping f is defined by

$$
C(f)=\{x \in M \mid x \text { is a critical point of } f\},
$$

and the bifurcation set is defined by

$$
B(f)=f(C(f))
$$

and represents the set of critical values of the mapping f.
Let $\mu(f)$ be the total number of critical points of f, i.e., $\mu(f)=|C(f)|$ (the cardinal number of critical set $C(f)$ defined above).

The φ - category of pair (M, N) (or the functional category of pair (M, N)) is defined by:

$$
\varphi(\mathrm{M}, \mathrm{~N})=\min \left\{\mu(f): f \in C^{\infty}(M, N)\right\}
$$

It is clear that $0 \leq \varphi(M, N) \leq+\infty$. The relation $\varphi(M, N)=0$ holds if and only if there is an immersion $M \rightarrow N(m<n)$, a submersion $M \rightarrow N$ $(m>n)$ or a locally diffeomorfism in any point of $M(m=n) .(M, N)$ can be considered a differential invariant of pair (M, N).

Most of the previously known results consist of sufficient conditions on M and N ensuring that $\varphi(M, N)$ is infinite. We are also interested to point out some situations when $\varphi(M, N)$ is finite.

2. $\varphi(M, N)$ FOR A PAIR OF SURFACES

In this paper we review some recent results concerning the invariant $\varphi(M, N)$ in case when manifolds M and N are oriented surfaces. These result are obtained by D. Andrica and L. Funar in papers [2] and [3]. Let us note by \sum_{g} the oriented surface of genus g and Euler characteristic χ, and by S^{2} the 2dimensional sphere. Denote, also, by $[\mathrm{u}]$ the greatest integer not exceeding u. We have:

Theorem 2.1 Let \sum and \sum^{\prime} be closed oriented surfaces of Euler characteristics χ and χ^{\prime}, respectively.
(1) If $\chi^{\prime}>\chi$, then $\varphi\left(\sum^{\prime}, \sum\right)=\infty$;
(2) If $\chi^{\prime} \leq 0$, then $\varphi\left(\sum^{\prime}, S^{2}\right)=3$;
(3) If $\chi^{\prime} \leq-2$, then $\varphi\left(\sum^{\prime}, \sum_{1}\right)=1$;
(4) If $2+2 \chi \leq \chi^{\prime}<\chi \leq-2$, then $\varphi\left(\sum^{\prime}, \sum\right)=\infty$;
(5) If $0 \leq|\chi| \leq \frac{\left|\chi^{\prime}\right|}{2}$, write $\left|\chi^{\prime}\right|=a|\chi|+b$ with $0 \leq b<|\chi|$; then

$$
\varphi\left(\sum^{\prime}, \sum\right)=\left[\frac{b}{a-1}\right]
$$

In particular, if $g^{\prime} \geq 2(g-1)^{2}$, then

$$
\varphi\left(\sum_{g^{\prime}}, \sum_{g}\right)=\left\{\begin{array}{c}
0 \text { if } \frac{g^{\prime}-1}{g-1} \in \mathbb{Z}_{+} \\
1 \text { otherwise }
\end{array}\right.
$$

The method of proof uses a result given by S. J. Patterson [14]; he gave necessary and sufficient conditions for the existence of a covering of a surface with prescribed degree and ramification orders:

More precisely, let X be a Riemann surface of genus $g \geq 1$, and let p_{1}, \ldots, p_{k} be distinct points of X and m_{1}, \ldots, m_{k} be strictly positive integers so that

$$
\sum_{i=1}^{k}\left(m_{i}-1\right)=0(\bmod 2)
$$

and let d be an integer such that $d \geq \max _{i=1, \ldots, k} m_{i}$. Then there exists a Riemannian surface Y and a holomorphic covering map $f: Y \rightarrow X$ of degree d such that there exist k points q_{1}, \ldots, q_{k} in Y so that $f\left(q_{j}\right)=p_{j}$, and f is ramified to order m_{j} at q_{j} and is unramified outside the set $\left\{q_{1}, \ldots, q_{k}\right\}$.

Proof of Theorem 2.1.
The first claim is obvious.
For the second affirmation, $\varphi\left(\sum^{\prime}, S^{2}\right) \leq 3$, because any surface is a covering of the 2 - sphere branched at three points (from [1]). On the other hand, assume that $f: \sum^{\prime} \rightarrow S^{2}$ is a ramified covering with at most two critical points. Then f induces a covering map $\sum^{\prime}-\mathrm{f}^{-1}(\mathrm{~B}(\mathrm{f})) \rightarrow \mathrm{S}^{2}-\mathrm{B}(\mathrm{f})$, where $\mathrm{B}(\mathrm{f})$ is the set of critical values and its cardinality $|B(f)| \leq 2$. Therefore one has an injective homomorphism $\pi_{1}\left(\sum^{\prime}-f^{-1}(B(f))\right) \rightarrow \pi_{1}\left(S^{2}-B(f)\right)$. Now $\pi_{1}\left(\sum^{\prime}\right)$ is a quotient of $\pi_{1}\left(\sum^{\prime}-f^{-1}(B(f))\right)$ and $\pi_{1}\left(S^{2}-B(f)\right)$ is either trivial or infinite cyclic, which implies that $\sum^{\prime}=S^{2}$.

Next, the unramified coverings of tori are tori; thus any smooth map $f: \sum_{g^{\prime}} \rightarrow \sum_{1}$ with finitely many critical points must be ramified, so that $\varphi\left(\sum_{g^{\prime}}, \sum_{1}\right) \geq 1$, if $g^{\prime} \geq 2$. On the other hand, by Patterson's theorem, there exists a covering $\sum^{\prime} \rightarrow \sum_{1}$ of degree $d=2 g^{\prime}-1$ of the torus, with a single ramification point of multiplicity $2 \mathrm{~g}^{\prime}-1$. From the Hurwitz formula, it follows that \sum^{\prime} has genus g^{\prime}, which shows that $\varphi\left(\sum_{g^{\prime}}, \sum_{1}\right)=1$.

For the 4th affirmation we need the following auxiliary result:
Lemma 2.1. $\varphi\left(\sum^{\prime}, \sum^{\prime}\right)$ is the smallest integer k which satisfies

$$
\left[\frac{\chi^{\prime}-k}{\chi-k}\right] \leq \frac{\chi^{\prime}+k}{\chi} .
$$

The proof of lemma 2.1 is given in [2] (see also [8]).
Now, assume that $2+2 \chi \leq \chi^{\prime}<\chi \leq-2$. If $f: \sum^{\prime} \rightarrow \sum$ was a ramified covering, then we would have $\frac{\chi^{\prime}+k}{\chi}<2$, and Lemma 2.1 would imply that $\chi^{\prime}=\chi$, which is a contradiction. Therefore $\varphi\left(\sum^{\prime}, \Sigma\right)=\infty$ holds.

Finally, assume that $\frac{\chi^{\prime}}{2} \leq \chi \leq-2$. One has to compute the minimal k satisfying

$$
\left[\frac{a \chi-b-k}{\chi-k}\right] \leq \frac{a \chi-b+k}{\chi}
$$

or, equivalently,

$$
\left[\frac{b+(1-a) k}{\chi-k}\right] \geq \frac{b-k}{\chi}
$$

The smallest k for which the quantity in the brackets is non-positive is $k=\left[\frac{b}{a-1}\right]$, in which case

$$
\left[\frac{b+(1-a) k}{\chi-k}\right] \geq 0 \geq \frac{b-k}{\chi} .
$$

For k smaller than this value, one has a strictly positive integer on the lefthand side, which is therefore at least 1 . However, the right hand side is strictly smaller than 1 ; hence the inequality cannot hold. This proves the claim.

3. Some results in dimension ≥ 3

The situation changes completely in dimensions $n \geq 3$. The following result is proved in [2].

Theorem 3.1. Assume that M^{n} and N^{n} are compact manifolds. If $\varphi\left(M^{n}, N^{n}\right)$ is finite and $n \geq 3$, then $\varphi\left(M^{n}, N^{n}\right) \in\{0,1\}$. Moreover, $\varphi\left(M^{n}, N^{n}\right)=$ 1 if and only if M^{n} is the connected sum of a finite covering \tilde{N}^{n} of N^{n} with an exotic sphere and M^{n} is not a covering of N^{n}.

Proof.
There exists a smooth map $f: M^{n} \rightarrow N^{n}$ which is a local diffeomorphism on the preimage of the complement of a finite subset of points. Notice that f is a proper map.

Let $p \in M^{n}$ be a critical point and let $q=f(p)$. Let $B \subset N$ be a closed ball intersecting the set of critical values of f only at q. We suppose moreover that q is an interior point of B. Denote by U the connected component of $f^{-1}(B)$ which contains p. As f is proper, its restriction to $f^{-1}(B-\{q\})$ is also proper. As it is a local diffeomorphism onto $B-\{q\}$, it is a covering, which implies that
$f: U-f^{-1}(q) \rightarrow B-\{q\}$ is also a covering. However, f has only finitely many critical points in U , which shows that $f^{-1}(q)$ is discrete outside this finite set, and so $f^{-1}(q)$ is countable. This shows that $U-f^{-1}(q)$ is connected. As $B-\{q\}$ is simply connected, we see that $f: U-f^{-1}(q) \rightarrow B-\{q\}$ is a diffeomorphism. This shows that $f^{-1}(q) \cap U=\{p\}$, for otherwise $H_{n-1}\left(U-f^{-1}(q)\right)$ would not be free cyclic. Thus $f: U-\{p\} \rightarrow B-\{q\}$ is a diffeomorphism. An alternative way is to observe that $\left.f\right|_{U-\{p\}}$ is a proper submersion because f is injective in a neighborhood of p (except possibly at p). This implies that $f: U-\{p\} \rightarrow B-\{q\}$ is a covering and hence a diffeomorphism since $B-\{q\}$ is simply connected.

One can then verify easily that the inverse of $\left.f\right|_{U}: U \rightarrow B$ is continuous at q; hence it is a homeomorphism. In particular, U is homeomorphic to a ball. Since ∂U is a sphere, the results of Smale imply that U is diffeomorphic to the ball for $n \neq 4$.

We obtain that f is a local homeomorphism and hence topologically a covering map. Thus M^{n} is homeomorphic to a covering of N^{n}. Let us show now that one can modify M^{n} by taking the connected sum with an exotic sphere in order to get a smooth covering of N^{n}.

By gluing a disk to U, using an identification $h: \partial U \rightarrow \partial B=S^{n-1}$, we obtain a homotopy sphere (possibly exotic) $\sum_{1}=U \cup_{h} B^{n}$. Set $M_{0}=$ $M-\operatorname{int}(U), N_{0}=N-\operatorname{int}(B)$. Given the diffeomorphisms $\alpha: S^{n-1} \rightarrow \partial U$ and $\beta: S^{n-1} \rightarrow \partial B$, one can form the manifolds

$$
M(\alpha)=M_{0} \underset{\alpha: S^{n-1} \rightarrow \partial U}{\cup} B^{n}, N(\beta)=N_{0} \underset{\beta: S^{n-1} \rightarrow \partial B}{\cup} B^{n} .
$$

Set $\mathrm{h}=\left.f\right|_{\partial U}: \partial U \rightarrow \partial B=S^{n-1}$. A map $F: M(\alpha) \rightarrow N(h \circ \alpha)$ is then given by

$$
F(x)=\left\{\begin{array}{c}
x \text { if } \mathrm{x} \in D^{n} \\
f(x) \text { if } \mathrm{x} \in M_{0}
\end{array} .\right.
$$

The map F has the same critical points as $\left.f\right|_{M_{0}}$; hence it has precisely one critical point less than $f: M \rightarrow N$.

We choose $\alpha=h^{-1}$ and we remark that $M=M\left(h^{-1}\right) \# \sum_{1}$, where the equality sign stands for diffeomorphism equivalence. Denote $M_{1}=M\left(h^{-1}\right)$. We obtained above that $f: M=M_{1} \# \sum_{1} \rightarrow N$ decomposes as follows. The restriction of f to M_{0} extends to M_{1} without introducing extra critical points,
while the restriction to the homotopy ball corresponding to the holed \sum_{1} has precisely one critical point.

Thus, iterating this procedure, one finds that there exist possibly exotic spheres \sum_{i} so that $f: M=M_{k} \# \sum_{1} \# \sum_{2} \ldots \# \sum_{k} \rightarrow N$ decomposes as follows: the restriction of f to the k-holed M has no critical points, and it extends to M_{k} without introducing any further critical point. Each critical point of f corresponds to a (holed) exotic \sum_{i}. In particular, M_{k} is a smooth covering of N.

Now the connected sum $\sum=\sum_{1} \# \sum_{2} \ldots \# \sum_{k}$ is also an exotic sphere. Let $\Delta=\sum-\operatorname{int}\left(B^{n}\right)$ be the homotopy ball obtained by removing an open ball from \sum. We claim that there exists a smooth map $\Delta \rightarrow B^{n}$ that extends any given diffeomorphism of the boundary and has exactly one critical point. Then one builds up a smooth map $M_{k} \# \sum \rightarrow N$ having precisely one critical point, by putting together the obvious covering on the 1 - holed M_{k} and $\Delta \rightarrow B^{n}$. This will show that $\varphi(M, N) \leq 1$.

The claim follows easily from the following two remarks. First, the homotopy ball Δ is diffeomorphic to the standard ball by [17], when $n \neq 4$. Further, any diffeomorphism $\varphi: S^{n-1} \rightarrow S^{n-1}$ extends to a smooth homeomorphism with one critical point $\Phi: B^{n} \rightarrow B^{n}$, for example

$$
\Phi(z)=\exp \left(-\frac{1}{\|z\|^{2}}\right) \varphi\left(\frac{z}{\|z\|}\right)
$$

For $n=4$, we need an extra argument. Each homotopy ball $\Delta_{i}^{4}=$ $\sum_{i}-\operatorname{int}\left(B^{4}\right)$ is the preimage $f^{-1}(B)$ of a standard ball B. Since f is proper, we can choose B small enough such that Δ_{i}^{4} is contained in a standard 4ball. Therefore Δ^{4} can be engulfed in S^{4}. Moreover, Δ^{4} is the closure of one connected component of the complement of $\partial \Delta^{4}=S^{3}$ in S^{4}. The result of Huebsch and Morse from [12] states that any diffeomorphism $S^{3} \rightarrow S^{3}$ has a Schoenflies extension to a homeomorphism $\Delta^{4} \rightarrow B^{4}$ which is a diffeomorphism everywhere except for one (critical) point. This proves the claim.

Remark finally that $\varphi\left(M^{n}, N^{n}\right)=0$ if and only if M^{n} is a covering of N^{n}. Therefore if M^{n} is diffeomorphic to the connected sum $\widetilde{N}^{n} \# \sum^{n}$ of a covering \widetilde{N}^{n} with an exotic sphere \sum^{n}, and if it is not diffeomorphic to a covering of N^{n}, then $\varphi\left(M^{n}, N^{n}\right) \neq 0$. Now drill a small hole in \widetilde{N}^{n} and glue (differently) an n-disk B^{n} (respectively a homotopy 4-ball if $n=4$) in order to get $\widetilde{N}^{n} \# \sum^{n}$. The restriction of the covering $\widetilde{N}^{n} \rightarrow N^{n}$ to the boundary of the hole extends
(by the previous argument) to a smooth homeomorphism with one critical point over \sum^{n}. Thus $\varphi\left(M^{n}, N^{n}\right)=1$.

In the case of small nonzero codimensions we can state the following result (see [2] and [8]):

THEOREM 3.2.If $\varphi\left(M^{m}, N^{n}\right)$ is finite and either $m=n+1 \neq 4, m=$ $n+2 \neq 4$, or $m=n+3 \notin\{5,6,8\}$ (when one assume that the Poincaré conjecture to be true) then M is homeomorphic to a fibration of base N. In particular if $m=3, n=2$ then $\varphi\left(M^{3}, N^{2}\right) \in\{0, \infty\}$, except possible for M^{3} a non-trivial homotopy sphere and $N^{2}=S^{2}$.

In arbitrary codimension we have:
THEOREM 3.3.Assume that there exists a topological submersion $f: M^{m} \rightarrow$ N^{n} with finitely many critical points, and $m>n \geq$ 2. Then $\varphi(M, N) \in\{0,1\}$ and it equals 1 precisely when M is diffeomorphic to the connected sum of a fibration \widetilde{N} (over N) with an exotic sphere without being a fibration itself.

References

[1] Alexander, J.W., Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920) 370-373;
[2] Andrica, D., Funar, L., On smooth maps with finitely many critical points, Journal of London Mathematical Society (2) 69 (2004), 783-800;
[3] Andrica, D., New result concerning the number of critical points in small codimension, Proceedings of "BOLYAI 200", International Conference on Geometry and Topology, Cluj-Napoca, 2002;
[4] Andrica, D., Functions with minimal critical set: new results and open problems, "Mathematical Analysis and Applications", Th. M. Rassias editor, Hadronic Press, 1999, p. 1-10;
[5] Andrica, D., Pintea, C., Critical points of vector valued functions, Proc. 24th Conference on Geometry and Topology (Eds.:A. C. Albu and M. Craioveanu), West University of Timisoara, part 2, 1996, p. 15-24;
[6] Andrica, D., Pintea, C., Some situation when the topological - category is infinite, Differential Geometry and Applications (Proc. 6th International Conference, Brno, 1995), Masaryk University of Brno, 1996, p. 239-244;
[7] Andrica, D., Pintea, C., On Some Consequences of a Critical Point Result, Korean J. Math. Science 5 (1998), p. 129-134;
[8] Andrica, D., Critical point theory and some applications, "Babes Bolyai" University, Cluj University Press, 2005;
[9] Andrica, D., Todea (Aldea), M., A counterexample to a result concerning closed manifolds, Nonlinear Functional Analysis and Applications, Vol. 7, No. 1, Kyungnam University, Coreea, 2002;
[10] Andrica, D., Todea (Aldea), M., Perfect Morse functions and some applications, Proceedings of the International Conference on Theory and Applications of Mathematics an Informatics ICTAMI 2004, Thessaloniki, no.8, 2004, p. 16-25;
[11] Church, P. T., Lamotke, K., Non-trivial polynomial isolated singularities, Indag. Math. 37, 1975, p. 149-154;
[12] Huebsch, W., Morse, M., Schoenflies extensions without interior differential singularities, Ann. of Math. 76, 1962, p. 18-54;
[13] Milnor, J., Thurston, W., Characteristic numbers of 3-manifolds, Enseign. Math. 23, 1977, p. 249-254;
[14] Patterson, S. J., Ramified coverings of Riemann surfaces, Arch. Math. (Basel), 28, 1977, 281-286;
[15] Pintea, C., Continuous mappings with an infinite number of topological critical points, Ann. Polonici Math., LXVII. 1, 1997, p. 87-93;
[16] Pintea, C., Differentiable mappings with an infinite number of critical points, Proc. A. M. S. 128, 2000, p. 3435-3444;
[17] Smale, S., Generalized Poincaré's conjecture in dimension greater than four, Ann. Of Math. 74 (1961), p. 391-406.

Mihaela Aldea
Department of Mathematics and Informatics
"1 Decembrie 1918" University, Alba Iulia
email:maldea7@yahoo.com

