Proceedings of the International Conference on Theory and Application of Mathematics and Informatics ICTAMI 2005-Alba Iulia, Romania

POLYNOMIAL IDENTITIES IN SUPERALGEBRAS WITH SUPERINVOLUTIONS ${ }^{1}$

Tsetska Grigorova Rashkova

The talk is a survey on results concerning the nature of the identities fulfilled in some special types of matrix algebras. We consider the superalgebra $M(2)$ of the square matrices of order 4 over a field K of characteristics 0 for which

$$
M(2)=A_{0} \oplus A_{1}, A_{\alpha} A_{\beta} \leq A_{\alpha+\beta}\left(\alpha, \beta \in Z_{2}\right)
$$

The grading in the general case of the algebra of the square matrices $M_{r+s}(K)$ is determined in the following way:

$$
\begin{aligned}
& M(r \mid s)_{0}=\left\{\left.\left[\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right] \right\rvert\, A \in M_{r}(K), D \in M_{s}(K)\right\}, \\
& M(r \mid s)_{1}=\left\{\left.\left[\begin{array}{ll}
0 & B \\
C & 0
\end{array}\right] \right\rvert\, B \in M_{r, s}(K), C \in M_{s, r}(K)\right\} .
\end{aligned}
$$

For $r=s=n$ we denote this algebra as $M(n)$.
Let A be an associative superalgebra. A superinvolution on A is a Z_{2} graded linear map $*: A \rightarrow A$ such that, for all $a, b \in A,\left(a^{*}\right)^{*}=a$ and $(a b)^{*}=(-1)^{\bar{a} \bar{b}} b^{*} a^{*}$, where \bar{x} means the parity of $x ; \bar{x}=i$ if $x \in A_{i}, i=0,1$.

Defining two superinvolutions in the considered superalgebra we introduce the notion of symmetric and skew-symmetric due to any of the involutions variables.

We have $x=\frac{x+x^{*}}{2}+\frac{x-x^{*}}{2}$ and thus any countable set X could be written as $X=Y \cup Z$, where Y is the set the symmetric elements of X and Z is the set of the skew-symmetric elements. For an algebra R we have $R=R^{+} \oplus R^{-}$, where $R^{+}=\left\{r \mid r^{*}=r\right\}$ and $R^{-}=\left\{r \mid r^{*}=-r\right\}$.

[^0]Definition 1.The polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ from $K\langle Y\rangle$ is an identity for the algebra R in symmetric variables with respect to the considered (super)involution if $f\left(r_{1}^{+}, \ldots, r_{n}^{+}\right)=0$ for any $r_{i}^{+} \in R^{+}, i=1, \ldots, n$.

The polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ from $K\langle Z\rangle$ is respectively an identity in skewsymmetric variables (with respect to the considered (super) involution) if $f\left(r_{1}^{-}, \ldots, r_{n}^{-}\right)=0$ for any $r_{i}^{-} \in R^{-}, i=1, \ldots, n$.

Examples of superinvolutions are the orthosymplectic superinvolution osp, defined by

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{o s p}=\left[\begin{array}{cc}
H & 0 \\
0 & K
\end{array}\right]^{-1}\left[\begin{array}{cc}
A & -B \\
C & D
\end{array}\right]^{t}\left[\begin{array}{cc}
H & 0 \\
0 & K
\end{array}\right]
$$

where H is a symmetric matrix and K is a skew-symmetric one, both invertible, and the transposition superinvolution trp, defined by

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{t r p}=\left[\begin{array}{rr}
D^{t} & -B^{t} \\
C^{t} & A^{t}
\end{array}\right]
$$

In the talk, given at Antalya Algebra Days VII [5], it was proved that up to some known superpositions of mappings these are the only two superinvolutions for the superalgeba $M(2)$.

We define a class of homogeneous associative polynomials, called Bergman polynomials [1], and try to give an explicit form for those of them which are polynomial identities either in symmetric or skew-symmetric variables. These are homogeneous and multilinear in y_{1}, \ldots, y_{n} polynomials $f\left(x, y_{1}, \ldots, y_{n}\right)$ from the free associative algebra $K\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ which can be written as

$$
\begin{equation*}
f\left(x, y_{1}, \ldots, y_{n}\right)=\sum_{i=\left(i_{1}, \ldots, i_{n}\right) \in \operatorname{Sym}(n)} v\left(g_{i}\right)\left(x, y_{i_{1}}, \ldots, y_{i_{n}}\right), \tag{1}
\end{equation*}
$$

where $g_{i} \in K\left[t_{1}, \ldots, t_{n+1}\right]$ are homogeneous polynomials in commuting variables

$$
g_{i}\left(t_{1}, \ldots, t_{n+1}\right)=\sum \alpha_{p} t_{1}^{p_{1}} \ldots t_{n+1}^{p_{n+1}}
$$

and

$$
\begin{equation*}
v\left(g_{i}\right)=v\left(g_{i}\right)\left(x, y_{i_{1}}, \ldots, y_{i_{n}}\right)=\sum \alpha_{p} x^{p_{1}} y_{i_{1}} \ldots x^{p_{n}} y_{i_{n}} x^{p_{n+1}} . \tag{2}
\end{equation*}
$$

Concerning skew-symmetric variables to any of the above two superinvolutions we could say the following:

Proposition 1.[Lemma 2.9][4]. If a polynomial $v(g)$ of type (2) is an identity for $M(2)$ in skew-symmetric variables with respect to the orthosymplectic superinvolution then the commutative polynomial $\left(t_{1}-t_{2}\right)\left(t_{1}^{2}-t_{3}^{2}\right)\left(t_{2}^{2}-t_{3}^{2}\right)$ divides the polynomial g.

Proposition 2.[Lemma 2.8][4].If a polynomial $v(g)$ of type (2) is an identity for $M(2)$ in skew-symmetric variables with respect to the transposition superinvolution then the commutative polynomial $\left(t_{1}^{2}-t_{2}^{2}\right)\left(t_{2}^{2}-t_{3}^{2}\right)\left(t_{1}^{2}-t_{3}^{2}\right)$ divides the polynomial g.

We could interpret the definition of an identity in symmetric (or skewsymmetric) variables as of a graded identity, i.e.

Definition 2. A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ from the associative algebra $K\langle X\rangle$ is a graded identity for $M(n)$ if $f\left(r_{1}, \ldots, r_{n}\right)=0$ for any $r_{i} \in M(n)_{0}, i=$ $1, \ldots, n$ (respectively for any $\left.r_{i} \in M(n)_{1}, i=1, \ldots, n\right)$.

Now we look for graded identities for $M(2)$.
If we denote by $\operatorname{P71}\left(x, y_{1}, y_{2}\right)$ the associative polynomial from Proposition 1 using the system for computer algebra Mathematica 5, we calculate that

$$
\begin{aligned}
& P 71\left(e_{11}-e_{12}+e_{21}+e_{22}, e_{12}, e_{21}-e_{11}+e_{12}\right)=-8 e_{11}-16 e_{21}-8 e_{22} . \\
& P 71\left(e_{13}-e_{23}+e_{14}+e_{32}, e_{31}-e_{23}, e_{32}-e_{41}+e_{42}\right)=3 e_{13}+e_{31}+e_{32} .
\end{aligned}
$$

The first evaluation shows that the considered polynomial is not a graded identity on the even part A_{0} while the second result means that $P 71\left(x, y_{1}, y_{2}\right)$ is not a graded identity on the odd part A_{1}.

The first evaluation shows a result from [4], namely Theorem 2.7 [4] could be improved. We prove the following

Theorem 1. The least possible degree of a Bergman identity for M_{2} in skew-symmetric variables with respect to the orthosymplectic superinvolution is 8 .

Proof: Theorem 2.7 [4] gives 7 as the least possible value of the degree of such an identity and gives its explicit form, namely $P 72\left(x, y_{1}, y_{2}\right)$. Let K be the set of the skew-symmetric elements with respect to the considered superinvolution. Obviously $P 72\left(x, y_{1}, y_{2}\right)$ has to an identity on $K \cap A_{0}$ as well.

We find the basis of $K \cap A_{0}$. These are the matrices $e_{11}-e_{33}, e_{22}-e_{44}, e_{12}-e_{43}$ and $e_{21}-e_{34}$. But

$$
P 72\left(e_{11}-e_{33}, e_{22}-e_{44}+2\left(e_{21}-e_{34}, e_{12}-e_{43}\right)\right)=2 e_{11}-2 e_{33} .
$$

This ends the proof of the theorem.
There is another polynomial of degree 7 interesting for our investigations. The reason for this comes from the symplectic case for $M_{4}(K)$.

We recall that in the matrix algebra $M_{2 n}(K, *)$ the symplectic involution * is defined by

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{*}=\left(\begin{array}{cc}
D^{t} & -B^{t} \\
-C^{t} & A^{t}
\end{array}\right)
$$

where A, B, C, D are $n \times n$ matrices and t is the usual transpose.
According to [Proposition 3 [3]] the Bergman identity in skew-symmetric variables for the matrix algebra $M(K, *)$ is of minimal degree 7 and its corresponding commutative polynomial is $\left(t_{1}^{2}-t_{2}^{2}\right)\left(t_{2}^{2}-t_{3}^{2}\right)\left(t_{1}-t_{3}\right)$. We point that this associative polynomial is the linearization in y of the $*$-identity $\left[\left[x^{2}, y\right]^{2}, x\right]=0$ in skew-symmetric variables found by Giambruno and Valenti in [2].

We denote by $P 72\left(x, y_{1}, y_{2}\right)$ this associative polynomial using the system for computer algebra Mathematica 5, we calculate that
$P 72\left(e_{13}-e_{23}+e_{14}+e_{32}, e_{24}-e_{23}, e_{32}-e_{41}+e_{42}\right)=2 e_{13}-2 e_{14}-2 e_{23}-2 e_{32}$,
meaning that $P 72\left(x, y_{1}, y_{2}\right)$ is not a graded identity for A_{1}.
The considered polynomials of degree 7 are a step in finding the minimal degree and the explicit form of the Bergman graded identities for $M(2)$.

A very often used after its publication a theorem of Bergman [1] and a well known result that a $*$-identity for $M_{2 n}(K, *)$ is an ordinary identity for $M_{n}(K)$ define the least possible degree as 5 and the corresponding commutative polynomial as $g\left(t_{1}, t_{2}, t_{3}\right)=\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)\left(t_{2}-t_{3}\right)$. This identity is the linearization in y of the well known identity $\left[[x, y]^{2}, x\right]=0$, followed from the Cayley-Hamilton theorem for $M_{2}(K)$. We denote this polynomial as $P 5\left(x, y_{1}, y_{2}\right)$ and calculate it on the even and on the odd part of $M(2)$. The result is:

$$
\begin{aligned}
& P 5\left(e_{11}, e_{12}, e_{21}\right)=e_{11} \\
& P 5\left(e_{11}-e_{12}+e_{21}+e_{22}, e_{12}, e_{21}-e_{11}+e_{12}\right)=-10 e_{11}-4 e_{12}-2 e_{22} \\
& P 5\left(e_{13}-e_{23}+e_{14}+e_{32}, e_{31}-e_{23}, e_{32}-e_{41}+e_{42}\right)= \\
& 2 e_{12}+4 e_{13}-e_{22}-2 e_{23}-2 e_{31}-e_{33}-2 e_{42} .
\end{aligned}
$$

If there is a graded Bergman type identity $\operatorname{P51}\left(x, y_{1}, y_{2}\right)$ of degree 6 , the corresponding commutative polynomial has to be

$$
\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{1}-t_{3}\right)\left(a t_{1}+b t_{2}+c t_{3}\right), a, b, c \in K
$$

The explicit form of the polynomial is

$$
P 51\left(x, y_{1}, y_{2}\right)=a x \cdot P 5\left(x, y_{1}, y_{2}\right)+c P 5\left(x, y_{1}, y_{2}\right) \cdot x+b\left(P 5\left(x, y_{1} \cdot x, y_{2}\right)+P 5\left(x, y_{1}, y_{2} \cdot x\right) .\right.
$$

Calculating $P 51\left(e_{11}-e_{12}+e_{21}+e_{22}, e_{12}, e_{21}-e_{11}+e_{12}\right)$ we get the system:

$$
\begin{array}{ll}
-10 a-32 b-14 c & =0 \\
-21+12 b+6 c & =0 \\
-10 a-4 b-2 c & =0 \\
-6 a+8 b-2 c & =0
\end{array}
$$

This system has only the trivial solution. This means that there is no Bergman type identity of degree 6 for the even part A_{0} of $M(2)$.

Calculating $P 51\left(e_{13}-e_{23}+e_{14}+e_{32}, e_{31}-e_{23}, e_{32}-e_{41}+e_{42}\right)$ we get the system:

$$
\begin{array}{ll}
-2 a+3 b & =0 \\
-2 a+2 b+4 c & =0 \\
-a-2 c & =0 \\
2 a-b & =0 \\
-b-2 c & =0 \\
a+c & =0 \\
-a-c & =0 \\
-2 a+2 b-2 c & =0 \\
-2 c & =0 \\
2 c & =0
\end{array}
$$

The system has the trivial solution only meaning that there is no Bergman identity if degree 6 on the odd part as well.

Thus we come to the main result of the paper, namely
Theorem 2. The minimal degree of a Bergman graded identity for $M(2)$ is 8 .

Proof: The above considerations show that we have to start our investigations from 7. A Bergman identity of degree 7 has a corresponding commutative
polynomial

$$
\begin{array}{r}
g\left(t_{1}, t_{2}, t_{3}\right)=\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)\left(t_{2}-t_{3}\right)\left(a t_{1}^{2}+b t_{2}^{2}+c t_{3}^{2}+d t_{1} t_{2}+m t_{1} t_{3}+n t_{2} t_{3}\right), \\
a, b, c, d, m, n \in K
\end{array}
$$

We could write the Bergman polynomial $P 7\left(x, y_{1}, y_{2}\right)$ in the following way:
Let $G\left(x, y_{1}, y_{2}\right)=P 5\left(x, y_{1} \cdot x, y_{2}\right)+P 5\left(x, y_{1}, y_{2} \cdot x\right)$, where $P\left(x, y_{1}, y_{2}\right)$ is the polynomial already defined earlier. Then

$$
\begin{aligned}
P 7\left(x, y_{1}, y_{2}\right) & =a x^{2} \cdot P 5\left(x, y_{1}, y_{2}\right)+c P 5\left(x, y_{1}, y_{2}\right)+d x \cdot G\left(x, y_{1}, y_{2}\right) \\
& +m x \cdot P 5\left(x, y_{1}, y_{2}\right) \cdot x+n G\left(x, y_{1}, y_{2}\right) \cdot x \\
& +b\left(G\left(x, y_{1} \cdot x, y_{2}\right)+G\left(x, y_{1}, y_{2} \cdot x\right)\right) .
\end{aligned}
$$

Calculating $P 7\left(e_{13}-e_{23}+e_{14}+e_{32}, e_{31}-e_{23}, e_{32}-e_{41}+e_{42}\right)$ we get the system:

$$
\begin{aligned}
c & =0 \\
-a+17 b-m & =0 \\
-2 a+2 b+2 d+n & =0 \\
6 b-2 m+3 n & =0 \\
a-10 b+m & =0 \\
2 a-2 d+2 m & =0 \\
-2 b+2 m-n & =0 \\
2 a+b-d & =0 \\
5 b-2 c-d-2 m+2 n & =0 \\
a-2 b+m & =0 .
\end{aligned}
$$

This system has a trivial solution only. It means that there is no Bergman identity of degree 7 on the odd part A_{1} of $M(2)$.

Now we consider the Bergman polynomial on the even part A_{0} of $M(2)$. We calculate:

$$
\begin{aligned}
& P 7\left(e_{11}-e_{12}+e_{21}+e_{22}, e_{12}, e_{21}-e_{11}+e_{12}\right), \\
& P 7\left(e_{11}, e_{12}, e_{21}\right), \\
& P 7\left(e_{34}-e_{44}+e_{43}-2 e_{33}, e_{44}-e_{43}, e_{33}+e_{43}-e_{44}\right) .
\end{aligned}
$$

Thus we get the following system for the coefficients in the presentation of
$P 7\left(x, y_{1}, y_{2}\right)$:

$$
\begin{aligned}
-6 b-2 c-7 d-3 m-5 n & =0 \\
a+24 b+5 c+d+2 m+11 n & =0 \\
-5 a+8 b-c-9 d-4 m+n & =0 \\
-2 a+14 b+5 d+m+3 n & =0 \\
a+b+c+d+m+n & =0 \\
93 a-80 b+36 c+36 d+103 m-94 n & =0 \\
-110 a+19 b-23 c+5 d-71 m+63 n & =0 \\
-61 a-680 b-205 c-67 d-90 m-255 n & =0 \\
71 a+486 b+128 c+27 d+61 m+157 n & =0 .
\end{aligned}
$$

This system has a trivial solution only.
This ends the proof of the theorem.
We point again that all the calculations are made using the system for computer algebra Mathematica 5.0.

Defining the explicit form of the Bergman graded identities for $M(2)$ is a problem of further investigations.

Conjecture 1. A Bergman identity for M_{2} of minimal degree is a polynomial of type (1) for which $n=2$ and the corresponding commutative polynomial is $\left(t_{1}^{2}-t_{2}^{2}\right)\left(t_{2}^{2}-t_{3}^{2}\right)\left(t_{1}^{2}-t_{3}^{2}\right)$.

References

[1] G.M. Bergman, Wild automorphisms of free P.I. algebras and some new identities (1981), preprint.
[2] A. Giambruno, A. Valenti, On minimal *-identities of matrices, Linear Multilin. Algebra 39 (1995), 309-323.
[3] Ts.G. Rashkova, Bergman type identities in matrix algebras with involution, Proceedings of the Union of Scientists - Rousse, ser.5, vol.1, (2001), 26-31.
[4] Ts.G. Rashkova, ${ }^{*}$-Identities in Matrix Superalgebras with Superinvolution, Proceedings of the Int. Conf. on Algebras, Modules and Rings, July 2003, Lisbon, World Scientific, 225-236.
[5] Ts.G. Rashkova, Descripition of the superinvolutions for M(2), Antalya Algebra Days VII, May 2005,http://www.math.metu.edu.tr/antalya/2005/Articles.
T. G. Rashkova - Polynomial identities in superalgebras with ...

Author: Tsetska Grigorova Rashkova
Department of Algebra and Geometry
University of Rousse "A.Kanchev"
Studentska street 8, Rousse 7017
E-mail: tcetcka@ami.ru.acad.bg

[^0]: ${ }^{1}$ Partially supported by Grant MI 1503/2005 of the Bulgarian Foundation for Scientific Research.

