Proceedings of the International Conference on Theory and Application of Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

ON A CLASS OF SEQUENCES DEFINED BY USING RIEMANN INTEGRAL

Dorin Andrica and Mihari Piticari

Abstract. The main result shows that if $f:[1,+\infty) \rightarrow \mathbf{R}$ is a continuous function such that $\lim _{x \rightarrow \infty} x f(x)$ exists and it is finite, then

$$
\lim _{n \rightarrow \infty} n \int_{1}^{a} f\left(x^{n}\right) d x=\int_{1}^{+\infty} \frac{f(x)}{x} d x
$$

for any $a>1$. Two applications are given.
2000 Mathematical Subject Classification. 26A42, 42A16.

1.Introduction

There are many important classes of sequences defined by using Riemann integral. We mention here only one which is called the Riemann-Lebesgue Lemma: Let $f:[a, b] \rightarrow \mathbf{R}$ be a continuous function, where $0 \leq a<b$. Suppose the function $g:[0, \infty) \rightarrow \mathbf{R}$ to be continuous and T-periodic. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) g(n x) d x=\frac{1}{T} \int_{0}^{T} g(x) d x \int_{a}^{b} f(x) d x \tag{1}
\end{equation*}
$$

For the proof we refer to [4] (in special case $a=0, b=T$) and [5]. In the paper [1] we proved that a similar relation as (1) holds for all continuous and bounded functions $g:[0, \infty) \rightarrow \mathbf{R}$ of finite Cesaro mean.

In this note we investigate another class of such sequences, i.e. defined by $n \int_{1}^{a} f\left(x^{n}\right) d x$, where $f:[1,+\infty) \rightarrow \mathbf{R}$ is a continuous function and $a>1$ is a fixed real number.

2.The main result

Our main result is the following.
Theorem.Let $f:[1,+\infty) \rightarrow \mathbf{R}$ be a continuous function such that $\lim _{x \rightarrow \infty} x f(x)$ exists and it is finite. Then, the improper integral $\int_{1}^{\infty} \frac{f(x)}{x} d x$ is convergent and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \int_{1}^{a} f\left(x^{n}\right) d x=\int_{1}^{\infty} \frac{f(x)}{x} d x \tag{2}
\end{equation*}
$$

for any $a>1$.
Proof. Consider $\lim _{x \rightarrow \infty} x f(x)=l$, where $l \in \mathbf{R}$. Then, we can find a real number $x_{0}>1$ such that for any $x \geq x_{0}$ we have

$$
\frac{l-1}{x^{2}} \leq \frac{f(x)}{x} \leq \frac{l+1}{x^{2}} .
$$

Let us choose a real number $m>0$ satisfying the inequality $l-1+m \geq 0$. Then, for any $x \geq x_{0}$ we have

$$
\begin{equation*}
0 \leq \frac{l-1+m}{x^{2}} \leq \frac{f(x)}{x}+\frac{m}{x^{2}} \leq \frac{l+1+m}{x^{2}} \tag{3}
\end{equation*}
$$

Define the function $J:[1,+\infty) \rightarrow \mathbf{R}$ by

$$
J(t)=\int_{1}^{t}\left(\frac{f(x)}{x}+\frac{m}{x^{2}}\right) d x .
$$

The function J is differentiable and we have

$$
J^{\prime}(t)=\frac{f(t)}{t}+\frac{m}{t^{2}} \geq 0
$$

for any $t \geq x_{0}$. Therefore J is an increasing function on interval $\left[x_{0},+\infty\right)$. Moreover, by using the last inequality in (3) we get by integration

$$
\begin{aligned}
& J(t)=\int_{1}^{x_{0}}\left(\frac{f(x)}{x}+\frac{m}{x^{2}}\right) d x+\int_{x_{0}}^{t}\left(\frac{f(x)}{x}+\frac{m}{x^{2}}\right) d x \\
& \leq \int_{1}^{x_{0}}\left(\frac{f(x)}{x}+\frac{m}{x^{2}}\right) d x+(l+1+m) \int_{x_{0}}^{t} \frac{d x}{x^{2}} \\
& \quad \leq \int_{1}^{x_{0}}\left(\frac{f(x)}{x}+\frac{m}{x^{2}}\right) d x+\frac{l+1+m}{x_{0}},
\end{aligned}
$$

for any $t \geq x_{0}$. It follows that $\lim _{t \rightarrow \infty} J(t)$ is finite. But, we have

$$
J(t)=\int_{1}^{t} \frac{f(x)}{x} d x+m\left(1-\frac{1}{t}\right),
$$

hence

$$
\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{f(x)}{x} d x=\lim _{t \rightarrow \infty} J(t)-m
$$

which is finite.
For a fixed real number $a>1$, denote

$$
J(t)=t \int_{1}^{a} f\left(x^{t}\right) d x \operatorname{and} U(t)=\int_{1}^{a^{t}} \frac{f(x)}{x} d x
$$

Because function $g:[1,+\infty) \rightarrow \mathbf{R}, g(x)=x f(x)$, is continuous and $\lim _{x \rightarrow \infty} g(x)$ is finite, it follows that g is bounded, i.e. we can find $M>0$ with the property

$$
\begin{equation*}
|g(x)| \leq M, x \in[1, \infty) \tag{4}
\end{equation*}
$$

Changing the variable x by $x=u^{t}$, we get $d x=t u^{t-1} d u$, hence

$$
\begin{equation*}
U(t)=t \int_{1}^{a} \frac{f\left(u^{t}\right)}{u} d u \tag{5}
\end{equation*}
$$

From (4) and (5) we obtain

$$
\begin{align*}
& |J(t)-U(t)|=t\left|\int_{1}^{a} f\left(x^{t}\right) d x-\int_{1}^{a} \frac{f\left(x^{t}\right)}{x} d x\right|= \\
& =t\left|\int_{1}^{a}\left(f\left(x^{t}\right)-\frac{f\left(x^{t}\right)}{x}\right) d x\right| \leq t \int_{1}^{a}\left|f\left(x^{t}\right)\right| \frac{x-1}{x} d x= \tag{6}\\
& \quad=t \int_{1}^{a} x^{t}\left|f\left(x^{t}\right)\right| \frac{x-1}{x^{t+1}} d x \leq t M \int_{1}^{a} \frac{x-1}{x^{t+1}} d x= \\
& \quad=M t\left[\frac{1}{1-t}\left(a^{-t+1}-1\right)-\frac{1}{t}\left(1-a^{-t}\right)\right], t>0
\end{align*}
$$

Because

$$
\lim _{t \rightarrow \infty}\left[\frac{1}{1-t}\left(a^{-t+1}-1\right)-\frac{1}{t}\left(1-a^{-t}\right)\right]=0
$$

from (6) it follows that

$$
\lim _{t \rightarrow \infty} J(t)=\lim _{t \rightarrow \infty} U(t),
$$

i.e. we have

$$
\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{f(x)}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{a} f\left(x^{t}\right) d t
$$

and the desired result follows.
Remark. The relation (2) is a natural reformulation of the first part of Problem 5.183 in [3] proposed by the second author and S. Rădulescu.

3.Two applications

Application 1. Let us evaluate

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \int_{1}^{a} \frac{d x}{x^{n}+k} \tag{7}
\end{equation*}
$$

where $k>0, a>1$ are fixed real numbers.
Using the result in Theorem for function $f(x)=\frac{1}{x+k}, x \geq 1$, we obtain

$$
\lim _{n \rightarrow \infty} n \int_{1}^{a} \frac{d x}{x^{n}+k}=\int_{1}^{\infty} \frac{d x}{x(x+k)}=\left.\frac{1}{k} \ln \frac{x}{x+k}\right|_{1} ^{\infty}=\frac{1}{k} \ln (k+1) .
$$

Note that for $k=1$ we get

$$
\lim _{n \rightarrow \infty} n \int_{1}^{a} \frac{d x}{x^{n}+1}=\ln 2
$$

i.e. the second part of Problem 5.183 in [3].

Application 2. Let us evaluate

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \int_{0}^{1} \frac{x^{n-2}}{x^{2 n}+x^{n}+1} d x \tag{8}
\end{equation*}
$$

which is a problem proposed by D. Popa to Mathematical Regional Contest "Grigore Moisil", 2002 (see [2] for details).

Fix $a \in(0,1)$ and we can write

$$
n \int_{0}^{1} \frac{x^{n-2}}{x^{2 n}+x^{n}+1} d x=n \int_{0}^{a} \frac{x^{n-2}}{x^{2 n}+x^{n}+1} d x+n \int_{a}^{1} \frac{x^{n-2}}{x^{2 n}+x^{n}+1} d x
$$

For the first term in the right side we have

$$
0 \leq n \int_{0}^{a} \frac{x^{n-2}}{x^{2 n}+x^{n}+1} d x \leq n \int_{0}^{a} x^{n-2} d x=\frac{n a^{n-1}}{n-1} \rightarrow 0
$$

For the second term we obtain

$$
n \int_{a}^{1} \frac{x^{n-2}}{x^{2 n}+x^{n}+1} d x=n \int_{a}^{1} \frac{x^{n} d x}{x^{2}\left(x^{2 n}+x^{n}+1\right)}=n \int_{1}^{1 / a} \frac{t^{n}}{t^{2 n}+t^{n}+1} d t
$$

The function $f(t)=\frac{t}{t^{2}+t+1}$ satisfies $\lim _{t \rightarrow \infty} t f(t)=1$ and we have

$$
\int_{1}^{\infty} \frac{f(t)}{t} d t=\lim _{t \rightarrow \infty} \int_{1}^{\infty} \frac{d t}{t^{2}+t+1}=\left.\frac{2}{\sqrt{3}} \operatorname{arctg} \frac{t+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right|_{1} ^{\infty}=\frac{\pi}{3 \sqrt{3}}
$$

Applying the result in Theorem it follows that

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} \frac{x^{n-2}}{x^{2 n}+x^{n}+1} d x=\frac{\pi}{3 \sqrt{3}} .
$$

References

[1] Andrica, D., Piticari, M., An extension of the Riemann-Lebesgue lemma and some applications, Proc. International Conf. on Theory and Applications of Mathematics and Informatics (ICTAMI 2004), Thessaloniki, Acta Universitatis Apulensis, No.8(2004), 26-39.
[2] Andrica, D., Berinde, V., a.o., Mathematical Regional Contest "Grigore Moisil" (Romanian), Cub Press 22, 2006.
[3] Bătineţu-Giurgiu, D.M., a.o., Romanian National Mathematical Olympiads for High Schools 1954-2003 (Romanian), Editura Enciclopedică, Bucureşti, 2004.
[4] Dumitrel, F., Problems in Mathematical Analysis (Romanian), Editura Scribul, 2002.
[5] Sireţchi, Gh., Mathematical Analysis II. Advanced Problems in Differential and Integral Calculus, (Romanian), University of Bucharest, 1982.

Dorin Andrica
"Babeş-Bolyai" University
Faculty of Mathematics and Computer Science
Cluj-Napoca, Romania
E-mail address: dandrica@math.ubbcluj.ro

Mihai Piticari
"Dragoş-Vodă" National College
Câmpulung Moldovenesc, Romania

