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1. Introduction 

 
 Consider Mm a m-dimensional closed manifold, i.e. a smooth m-
dimensional manifold which is compact and without boundary. Let C∞(M) be 
the real algebra of all smooth real mappings defined on M. Recall that for a 
mapping f ∈ C∞(M) a critical point p∈C(f) is non-degenerated if the bilinear 
form (d2f)p : Tp(M)×Tp(M)→R is non-degenerated, i.e. there exists a chart 
(U,ϕ) at the point p such that Hessian matrix H(fϕ)(ϕ(p))=(∂2fϕ / 
∂xi∂xj(ϕ(p)))1≤I, j ≤ m is nonsingular, where fϕ = foϕ-1 denotes the locally 
representation of f in the chart (U,ϕ). 
 If the critical set C(f) contains only non-degenerated critical points, 
then the mapping f is called a Morse function on manifold M. Denote by Ω(M) 
the set of all Morse functions defined on M. It is well-known that Ω(M) is 
dense in C∞(M) in the so called Whitney topology, therefore Ω(M) is not 
empty. For f∈Ω(M) let us denote by µk(f)  the number of all critical points of f 
having the Morse index equal k, where 0 ≤ k ≤ m. If µ(f) denotes the cardinal 
number of C(f), then the following decomposition holds: 

           µ(f) = ∑
=

m

k
k f

0
)(µ                                                            (1.1) 

The number defined by  
     γ(M) = min{µ(f) : f∈Ω(M)}                                               (1.2) 

is called the Morse-Smale characteristic of manifold M. The number γ(M) is 
intensively studied in the papers [1] – [5], [7], [16] - [18]. For m ≥ 7 it 
represents a simply homotopy invariant of manifold M (see [13]). 
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The main result of Morse Theory is the following: for a Morse function 
f∈Ω(M) there exists a finite CW – complex which is homotopic equivalent to 
M and having µ(f) cells. In this respect the Morse-Smale characteristic γ(M) 
points out these homotopic equivalent to M CW-complexes which have 
minimal number of cells. 

 
2. Some results on perfect Morse functions 

 
Because Mm is a compact manifold it follows that M has the homotopy 

type of a finite CW-complex. Therefore the singular homology groups 
Hk(M;Z), k = m,0 , are finitely generated, thus for k∈Z 
                         Hk(M;Z) = )...()...(

)(1 kkbk

k

nn
times

ZZZZ ⊕⊕⊕⊕⊕ 43421
β

,                (2.1) 

where βk(M;Z) = βk(M;Z) are the Betti numbers of M related to the group 
(Z,+), i.e.                          

βk(M;Z)= rankHk(M;Z). 
Consider Hk(M;F), k = m,0 , the singular homology groups with the 

coefficients in the field F and βk(M;F) = rank Hk(M;F) = dimFHk(M;F), k = 
m,0 , the Betti numbers related to F. 

If f ∈Ω(M) the following important relations hold: 
µk(f) ≥ βk(M;F), k = m,0  (weak Morse inequalities) 

∑
=

=−
m

k
k

k Mf
0

)()()1( χµ (Euler formula). 

For the proof and some interesting applications we refer to the book of 
Palais, R. S. and Terng, Chun-lian [15, p. 213-222]. 

The Morse function f ∈ Ω(M) is called F-perfect if 
          µk(f) = βk(M;F), k = m,0                                                  (2.2) 

The Morse function f ∈ Ω(M) is exact (or minimal) if 
            µk(f) = γk(M), k = m,0                                                    (2.3) 

where γk(M) = min{µk(f) : f ∈ Ω(M)}. Here µk(f) denotes the number of the 
critical points of f  having the Morse index  k. 
 In the sequel we are interested in the following: 
 Problem: when the manifold M has F perfect Morse functions for some 
fields F? Taking into account the weak Morse inequalities and the definition of  
γk(M) one obtains that for any Morse function f ∈ Ω(M) and for any field F the 
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following relations hold: µk(f) ≥ γk(M) ≥ βk(M;F), k = m,0 . From these 
relations it follows that any F-perfect Morse function on M is exact. The 
problem of finding a Morse function on M arises from the problem of 
constructing a cellular decomposition of M in a sum of minimal number of 
cells. 
 
 Theorem 2.1 The manifold M has F-perfect Morse functions if and only 
if  

                          γ(M) = β(M;F)                                                           (2.4) 

where β(M;F) = ∑
=

m

k
k FM

0
);(β . 

 Proof. Let f ∈ Ω(M) be a fixed Morse function. Using the weak Morse 
inequalities it follows that µ(f) ≥ β(M;F), and from the definition of the Morse-
Smale characteristic (see 1.2)) one obtains γ(M) ≥ β(M;F). 

On the other hand if f is a F-perfect Morse function on M it follows that 
µ(f) = β(M;F), that is γ(M) ≤ β(M;F) and the desired relation (2.4) is obtained. 

Conversely, if γ(M) = β(M;F) there exists a Morse function f ∈ Ω(M) 
such that γ(M) = µ(f).  From (1.1) and the definition of β(M;F) one obtains 

∑
=

=−
m

k
kk FMf

0
0));()(( βµ . Taking into account the weak Morse inequalities 

it follows µk(f) = βk(M;F), k = m,0 , i.e. f is a F-perfect Morse function on M. 
 
Lemma 2.2 The following relations hold 

                                                 Hk(M;Q) = Hk(M;Z)⊗Q, k = m,0                          
(2.5)    

and consequently βk(M;Z) = βk(M;Q), k = m,0 . 
 Proof. According to the well-known universal coefficients formula for 
homology it follows 

Hk(M;Q) = (Hk(M;Z)⊗Q)⊕Tor(Q;Hk-1(M;Z)), k∈Z 
where Tor(Q;Hk-1(M;Z)) represents the torsion product of the Abelian groups 
(Q,+) and Hk-1(M;Z). Because (Q,+) is without torsion the desired results are 
obtained. 
  
 Let p ≥ 2 be a prime number. Taking into account the relations (2.1) let 
us denote 
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=
otherwise

npif
p kjj

k 0
1

)(α , j = )(,0 kb                                  (2.6) 

 Consider  

                          d(k,p) = ∑
=

)(

0

)(
kb

j

j
k pα , k = m,0                                        (2.7) 

 
 The following result represents a necessary and sufficient condition in 
terms of γ(M), β(M;Z) and d(k,p) in order that the manifold M has Zp-perfect 
Morse functions. 

 
Theorem 2.3 The manifold M has Zp-perfect Morse functions if and 

only if the following equality holds 

           γ(M) = β(M;Z) + 2∑
−

=

+
1

0
),(),(

m

k
pmdpkd                           (2.8) 

Proof. From the universal coefficients formula for homology it follows 
Hk(M;Zp) = (Hk(M;Z)⊗Zp)⊕Tor(Zp;Hk-1(M;Z)), k ∈ Z, 

where Tor(Zp;Hk-1(M;Z)) is the torsion product of the groups (Zp, +) and Hk-

1(M;Z). Using the following well-known relations Zr⊗Zs≅ Z(r,s), Z⊗Zr ≅ Zr, 
Tor(Zr, Zs) ≅ Z(r,s), Tor(Zr, Zr) = {0}, where (r,s) represents the greatest 
common divisor of the integers r, s, from (2.1) one obtains 

Hk(M;Zp) = ⊕⊕⊕ )...(
);(
4434421

timesZM

pp

k

ZZ
β

⊕





 ⊕

= ),(

)(

1 pn

kb

j kj
Z 






 ⊕

−

−

= ),(

)1(

1 ,1 pn

kb

v vk
Z . 

 Taking into account the definition of the numbers d(k,p) given in (2.7) 
from the above relation it follows that βk(M;Zp) = βk(M;Z) + d(k,p) + d(k-1,p), 
k = m,0 . The relation (2.8) becomes γ(M) = βk(M;Zp), i.e. from Theorem 2.1 
the desired result follows. 
 
 Corollary 2.4 Let p, q ≥ 2 be two prime numbers. The manifold M has 
simultaneously Zp and Zq-perfect Morse functions if and only if the equality 
(2.8) holds and 

                         d(m,p) – d(m,q) = 2∑
−

=

−
1

0
)).,(),((

m

k
pkdqkd                          (2.9) 
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 Corollary 2.5 Let Mm be a simply-connected compact manifold without 
boundary and m ≥ 6. If the homology groups Hk(M;Z), k = m,0  are without 
torsion then M has Zp-perfect Morse functions for any prime number p ≥ 2. 
 Proof. Under the above hypotheses the Morse-Smale characteristic is 

given by β(M;Z) + 2∑
−

=

+
1

0
)()(

m

k
mbkb  (see [3, Theorem 2.3]). Because Hk(M;Z) 

is without torsion , k = m,0 , one obtains b(k) = 0, k = m,0 , thus the condition 
(2.8) is satisfied for any prime number p ≥ 2. 
 
 Theorem 2.6 Let Mm be a simply-connected compact manifold without 
boundary with m ≥ 6. Then M has Q-perfect Morse functions if and only if the 
groups Hk(M;Z), k = m,0 , have no torsion. 
 Proof. Taking into account the above mentioned result (see [3, Theorem 

2.3]) and Lemma 2.2 it follows that γ(M) = β(M;Q) + 2∑
−

=

+
1

0
)()(

m

k
mbkb . Using 

Theorem 2.1 one obtains that M has Q-perfect Morse functions if and only if 

2∑
−

=

+
1

0
)()(

m

k
mbkb  = 0, i.e. if and only if b(k) = 0, k = m,0 . 

  
 Remark. The results in Corollary 2.5 and Theorem 2.6 can be extended 
if we replace the condition that the manifold M is simply-connected with that 
π1(M) = Z⊕…⊕Z (s times), where s ≥ 0 is an arbitrary integer and π1(M) 
represents the fundamental group of M. In this case we use the result given in 
V. V. Sharko [19] and the explicit formula for the Morse-Smale characteristic 
obtained in [3, Theorem 3.1(ii)]. 
 
3. Applications 

 
1. Let us consider Sm = {λ∈Rm+1 : λ =1}, m ≥ 1, the m-

dimensional sphere in the Euclidian space Rm+1. It is well-known that γ(Sm) = 
2. On the other hand the integer homology of Sm is given by 

         Hk(Sm;Z) = { }

 ==

otherwise
mkorkifZ

0
0

                              (3.1) 

thus β0(Sm;Z) = βm(Sm;Z) = 1 and βk(Sm;Z) = 0 for 1 ≤ k ≤ m-1. 
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 Taking into account Theorem 2.1 and Theorem 2.3 the following result 
holds. 
 
 Theorem 3.1 (i) Sm has Q-perfect Morse functions. 
 (ii) For any prime number p ≥ 2, Sm has Zp-perfect Morse functions. 
 

2. Let PRm be the real projective m-dimensional space. It is well-
known that PRm is a compact differentiable smooth manifold, without 
boundary, and the integer homology of PRm is 
 

Hk(PRm;Z) = 

{ }









=

=

otherwise
mkoddiskifZ
mkoddiskifZ

kifZ

0
,

0,
0

2 pp
 

 If m is even from (3.2) one obtains β0(PRm;Z) = 1 and βk(PRm;Z) = 0 
for k ≥ 1. In this case it is easy to see that d(1,2) = d(3,2) = … = d(m-1,2) = 1 
and d(k,2) = 0, otherwise. 

If m is odd from (3.2) it follows that β0(PRm;Z) = βm(PRm;Z) = 1 and 
βk(PRm;Z) = 0 for 1 ≤ k ≤ m-1. It is not difficult to note that d(1,2) = d(3,2) = 
… = d(m,2) = 1 and d(k,2) = 0, otherwise. 

For a prime number p ≥ 3 one obtains d(k,p) = 0, k = m,0 . 
It is known (see the paper of N. H. Kuiper [14]) that the Morse-Smale 

characteristic of PRm is γ(PRm) = m+1. Using the above numbers d(k,2), d(k,p) 
for p ≥ 3, and Theorem 2.1, Theorem 2.3 we derive the following result. 

 
Theorem 3.2 (i) PRm has not Q-perfect Morse functions. 
(ii) PRm has Z2-perfect Morse functions. 
(iii) For any prime number p ≥ 3, PRm has not Zp-perfect Morse 

functions. 
 
Notice that a Z2-perfect Morse function is given in the paper of N. H. 

Kuiper [14]. 
 
3. Let f : Mm→Rm+k be a smooth mapping and let fv : M→R be the 

real mapping defined by fv(x) = <f(x), v>, i.e. the height function with respect 
to the vector v∈ Sm+k-1. 
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 Consider the set 
                                 Hf = {fv : v ∈ Sm+k-1}                                                  (3.3) 

 The mapping f : M→Rm+k is nondegenerated  if fv is a Morse function, 
for almost all vectors v∈Sm+k-1. It is known that any immersion f : M→Rm+k is 
nondegenerated.  
 If f : M→Rm+k is an immersion, then consider the (m+k)-dimensional 
manifold 

Nf = {(x,v)∈M×Rm+k : x∈C(fv)} 
and the vector bundle of rank k 

Nf →π M, 
where the projection π is defined by π(x,v) = x. 
 Consider the (m+k-1)-dimensional manifold 

Nf,1 = {(x,v)∈M×Sm+k-1 : x∈C(fv)} 
and the Gauss mapping N : Nf,1 → Sm+k-1, where N(x,v) = v. Because the 
immersion f is nondegenerated it follows that we can define the functions µj(f), 
µ(f) : Sm+k-1→Z, j = 0, 1, …, m, where 

µj(f)(v) = 


 Ω∈

otherwise
Mfiff vvj

0
)()(µ
  

and  

µ(f)(v) = 


 Ω∈

otherwise
Mfiff vv

0
)()(µ
. 

 Because f is a nondegenerated mapping it follows that the functions 
µj(f), µ(f), j = 0, 1, …, m, are integrable densities on Sm+k-1. Denote by vm+k-1 
the volume of Sm+k-1 and by σm+k-1 the canonical Riemannian structure on Sm+k-

1. 
The number  

          τj(f) = ∫
−+

−+
−+ 1

1
1

)(1
kmS

kmj
km

df
v

σµ                                          (3.4) 

is called the curvature of index j of immersion f : M → Rm+k, where j is a fixed 
integer with 0 ≤ j ≤ m.  

The number τ(f) = ∑
=

m

j
j f

0

)(τ  represents the absolute total curvature of f.  

It is easy to see that the following relation is true 
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  τ(f) = ∫
−+

−+
−+ 1

1
1

)(1
kmS

km
km

df
v

σµ                                         (3.5) 

 
 Theorem 3.3 (the curvature inequalities) The following inequalities 
hold: 

τj(f) ≥ γj(M) ≥ βj(M;F), j = 0, 1, …, m 

τ(f) ≥ γ(M) ≥ ∑
=

m

j
j M

0

)(γ ≥ ∑
=

m

j
j FM

0

);(β  

where F is any field. 
             Note that if the immersion f has the property that for almost all v∈Sm+k-

1 the Morse function fv is F-perfect, then we have equalities in the above 
relations.  
 
             Theorem 3.4 (Gauss-Bonnet type formula) The following relation 
holds: 

                       ∑
=

=−
m

j
j

j Mf
0

)()()1( χτ                                              (3.6) 

where χ(M) is the Euler-Poincaré characteristic of M. 

 Proof. Taking into account the Euler formula∑
=

=−
m

j
j

j Mf
0

)()()1( χµ , it 

follows that  

)()(1

)()1(1)()1(

1

1

1
1

0
1

01

MdM
v

df
v

f

km

km

S
km

km

m

j S
km

m

j
j

j

km
j

j

χσχ

σµτ

==

=







−=−

∫

∑ ∫ ∑

−+

−+

−+
−+

=
−+

=−+  

and we are done. 
 
 Consider j a fixed integer with 0 ≤ j ≤ m. The Morse function g ∈ Ω(M) 
is j-tight if µi(g) = γi(M) for all i ≤ j. The Morse function g ∈ Ω(M) is tight if 
µ(g) = γ(M). 

The immersion f : M→Rm+k is j-tight (tight) if any height function fv ∈ 
Hv ∩ Ω(M) is j-tight (tight).  

If f0 : M→Rm+k is a tight immersion, then for any immersion f : 
M→Rm+k the following inequality holds: 
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                                    τ(f) ≥ τ(f0)                                             (3.7) 
Indeed, for v ∈ Sm+k-1 with fv, f0v ∈ Ω(M) one obtains µ(f)(v) = µ(fv) ≥ 

µ(f0v) = µ(f0)(v), i.e. 

τ(f) = ≥∫
−+

−+
−+ 1

1
1

)(1
kmS

km
km

df
v

σµ  

∫
−+

=≥ −+
−+ 1

)()(1
010

1 kmS
km

km

fdf
v

τσµ  

 
4. Exact cellular decompositions are structures that globally encode 

the topology of arobot’ free space while locally described the free space’s 
geometry. These structures have been widely used for path planning between 
two points, but can be used for mapping and coverage of robot free spaces. It is 
possible to present and define exact cellular decompositions where critical 
points of Morse functions indicate the location of cell boundaries. Also, it is 
possible to derive a general framework for defining decompositions in terms of 
critical points and then give examples, each corresponding to a different task. 
We can solve by using this method a relaxed form of Laplace’s equation to find 
“fair” Morse function with a user-controlled number and configuration of 
critical points. 
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