INTEGRAL OPERATORS ON THE TUCD(α)-CLASS

by Daniel Breaz

Abstract. In this paper we present a few univalency conditions for various integral operators on class $TUCD(\alpha)$. At first, we make a brief presentation of class $TUCD(\alpha)$ and of some of its properties, as well as a number of matters connected to some integral operators studied on this class.

Introduction.

Let $U = \{z : |z < 1|\}$ be the unit disk, respectively the class of olomorphic the unit disk. functions denoted on by $H(U), A = \{ f \in H(U) : f(z) = z + a_2 z^2 + ... \}$ the class of the analytical functions in the unit disk and the set $D = \{ \phi : \phi \text{ is analytic in } U, \phi(z) \neq 0, \forall z \in U, \phi(0) = 1 \}.$

We consider the class of starlike functions of the order α on the unit disk, the univalent functions with the property $\operatorname{Re} \frac{zf'(z)}{f(z)} > \alpha$, respectively, the class of the convex functions on the order α in unit disk, the univalent functions with the property $\operatorname{Re} \frac{zf''(z)}{f'(z)} + 1 > \alpha$. We denote these with $S^*(\alpha)$ and $K(\alpha)$, and for $\alpha = 0$ we obtain the class of the starlike functions S^* , respectively the class of convex functions K.

We say that the function f with the form $f(z) = z + a_2 z^2 + ...$ belongs to the class $UCD(\alpha)$, $\alpha \ge 0$, if

$$\operatorname{Re} f'(z) \ge \alpha | z f''(z) |, \ z \in U .$$
(1)

If $f \in UCD(\alpha)$, then the following relation is true

$$|f'(z)| \ge \alpha |zf''(z)|, z \in U$$
(2)

which can also be written as

$$\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{1}{\alpha}.$$
 (3)

In [3] we studied the class of univalent functions of the form

$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k, a_k \ge 0.$$
 (4)

We denote $TUCD(\alpha)$, the functions from $UCD(\alpha)$ of the form (4). Next we consider all the functions from this paper of the form (4).

Theorem 1.1. [3] A function of the form (1) belongs to the class $TUCD(\alpha)$ if and only if

$$\sum_{k=2}^{\infty} k \left[1 + \alpha \left(k - 1 \right) \right] \cdot a_k \le 1.$$

Remark 1.2. [3]

- a) A function of the form (4) is starlike if and only if $f \in TUCD(0)$.
- b) A function of the form (4) is convex if and only if $f \in TUCD(1)$.
- c) A function of the form (4) is convex by the order 1/2 if and only if $f \in TUCD(2)$.
- d) A function of the form (4) is uniform convex if and only if $f \in TUCD(2)$.
- e) A function $f \in TUCD(\alpha)$ if and only if f can be written as

$$f(z) = \sum_{k=1}^{\infty} \lambda_k f_k(z), \qquad (5)$$

where $\lambda_k \ge 0$, $\sum_{k=1}^{\infty} \lambda_k = 1$, $f_1(z) = z$ and $f_k(z) = z - \frac{z^k}{k[1 + \alpha(k-1)]}$, k = 2, 3, ...

Theorem 1.3. [2] Let $\alpha, \beta, \gamma, \delta$ be real constants that satisfy the conditions $\alpha \ge 0, \beta > 0$ $(\alpha + \delta) = (\beta + \gamma) > 0$. Let ρ_0 be so that $-\frac{\operatorname{Re}\gamma}{\operatorname{Re}\beta} \equiv \rho_0 < \rho < 1$ and we suppose that $\rho \in [\rho_0, 1]$ exists, so that $0 \le w(\rho)$, where $w(\rho) = \frac{1}{\operatorname{Re}\beta} \inf \{H(z) : |z| < 1\}$ and $H(z) = \frac{(1-z)^{2(\rho-1)\operatorname{Re}\beta}}{\int_{0}^{1} t^{\beta+\gamma-1}(1+tz)^{2(\rho-1)\operatorname{Re}\beta}} dt$.

Let φ and $\phi \in D$ satisfy the conditions:

$$\delta + \operatorname{Re} \frac{z\varphi'(z)}{\varphi(z)} \ge \beta \rho + \gamma$$
 (6)

and

$$\operatorname{Re}\frac{z\phi'(z)}{\phi(z)} \le \beta w(\rho) \tag{7}$$

If
$$I(f)(z) = \left[\frac{\beta + \gamma}{z^{\gamma}\phi(z)}\int_{0}^{z} f^{\alpha}(t)\phi(t)t^{\delta-1}dt\right]^{\frac{1}{\beta}}$$
, then $I(S^{*}) \subset S^{*}$.

Theorem 1.4. [1] If $0 \le \alpha \le 1, \alpha \le \beta$ and if $f \in S^*$, then the function

$$F(z) = \left[z^{\beta-1} \int_{0}^{z} \left(\frac{f(z)}{t} \right)^{\alpha} dt \right]^{\frac{1}{\beta}} = z + \dots$$
(8)

is also an element of S^* .

Theorem 1.5. [1] If $\alpha > 0, \eta \ge 0, \gamma + \eta \ge 0$ and if $f \in S^*$, then the function

$$F(z) = \left[\frac{\alpha + \gamma + \eta}{z^{\gamma}} \int_{0}^{z} f^{\alpha}(t) t^{\gamma + \eta - 1} dt\right]^{\frac{1}{\alpha + \eta}} = z + \dots$$
(9)

is starlike in U.

Theorem 1.6. [2] Let $\alpha, \beta, \gamma, \delta$ and σ real number which satisfy $0 \le \alpha, 0 < \beta, 0 \le \sigma$ and $\beta + \gamma = \alpha + \delta > 0$. Let ρ_0 defined in the theorem 1.3. and we suppose that exists $\rho \in [\rho_0, 1]$ so that $\delta - \frac{\sigma}{2} \ge \beta + \gamma$ and $w(\rho) > 0$ where $w(\rho) \operatorname{Re} \beta = \operatorname{Inf} \{\operatorname{Re} H(z) : |z| < 1\}$. Let $\phi \in D$ which satisfies

 $\operatorname{Re} \frac{z\phi'(z)}{\phi(z)} \le \beta w(\rho)$. If $f \in S^*, g \in K$ then $I(f,g) \in S^*$, where I(f,g) is defined

$$I(f,g)(z) = \left[\frac{\beta + \gamma}{z^{\gamma}\phi(z)}\int_{0}^{z} f^{\alpha}(t)g^{\sigma}(t)t^{\delta - \sigma - 1}dt\right]^{\frac{1}{\beta}}.$$
 (10)

Corollary 1.7. [1] Let $0 \le \alpha, 0 < \beta, 0 \le \sigma$, $\gamma > -\beta, \beta + \gamma = \alpha + \delta$, and $\delta + \frac{\alpha}{2} - \frac{\sigma}{2} \ge \gamma$. Let $\phi \in D$ which satisfies $\operatorname{Re} \frac{z\phi'(z)}{\phi(z)} \le \beta w(0)$. If $f, g \in K$ then $I(f,g) \in S^*$, where I(f,g) is defined in (10).

Main results

Theorem 2.1. Let ξ and δ complex number, $\xi + \delta > 0, \phi \in D$. If $f \in A$ is of the form (4) and

$$\frac{\xi z f'(z)}{f(z)} + \frac{z \phi'(z)}{\phi(z)} + \delta \prec Q_{\xi+\delta}, \qquad (11)$$

while

$$F_1(f) = \left[\left(\xi + \delta \right) \int_0^z f^{\xi}(t) \cdot t^{\delta - 1} \cdot \phi(t) dt \right]^{\frac{1}{\xi + \delta}}.$$
 (12)

Then $F_1(f) \in TUCD(0)$. **Theorem 2.2.** Let

$$F_{2}(f)(z) = \left[\frac{\beta + \gamma}{z^{\gamma} \cdot \phi(z)} \int_{0}^{z} f^{\xi}(t) \cdot \phi(t) \cdot t^{\delta^{-1}} dt\right]^{\frac{1}{\beta}}. (13)$$

If $\xi, \beta, \gamma, \delta \in R$, $\xi \ge 0$, $\beta > 0$, $\beta + \gamma = \xi + \delta$ și ρ_0 verifies the relation

$$-\frac{\operatorname{Re}\gamma}{\operatorname{Re}\beta} \equiv \rho_0 \le \rho < 1 \tag{14}$$

and we suppose that exists $\rho \in [\rho_0, 1]$ so that $0 \le w(\rho)$, where *w* verifies the relation

$$\operatorname{Re} \beta \frac{zG'(z)}{G(z)} \ge w(\rho) \cdot \operatorname{Re} \beta = \operatorname{Inf} \left\{ \operatorname{Re} H(z) \| z \| < 1 \right\},$$
(15)

where

$$G(z) = I_{\beta,\gamma}(g)(z) = \left[(\beta + \gamma) z^{-\gamma} \int_{0}^{z} g^{\beta}(t) \cdot t^{\gamma-1} dt \right]^{\frac{1}{\beta}}, g \in A$$
(16)

and

$$H(z) = \frac{(1-z)^{2(\rho-1)\operatorname{Re}\beta}}{\int_0^1 t^{\beta+\gamma-1} (1+tz)^{2(\rho-1)\operatorname{Re}\beta} dt} - \gamma , \qquad (17)$$

 φ and $\phi \in D$ satisfy the relations

$$\delta + \operatorname{Re} \frac{z\varphi'(z)}{\varphi(z)} \ge \beta \rho + \gamma$$
 (18)

and

$$\operatorname{Re}\frac{z\phi'(z)}{\phi(z)} \le \beta \cdot w(\rho) \tag{19}$$

then $F_2(f) \in TUCD(0)$.

Theorem 2.3. Let $f(z) = z - \sum_{k=2}^{\infty} a_k z^k$, $a_k \ge 0$ a) If $f \in S^* \Rightarrow F_3(f) \in TUCD(1)$, where

$$F_{3}(f)(z) = \int_{0}^{z} \frac{f(t)}{t} dt$$
 (20)

is the Alexander operator.

Proof.

We know that if $f \in S^* \Rightarrow F_3(f) \in K$. Considering the remark 1.2. b), we obtain $F_3(f) \in K \Leftrightarrow F_3(f) \in TUCD(1)$. b) $f \in S^* \Rightarrow F_4(f) \in TUCD(0)$, where

$$F_4(f)(z) = \frac{2}{z} \int_0^z f(t) dt$$
 (21)

is the Libera operator.

Proof.

We know that if $f \in S^* \Rightarrow F_4(f) \in S^*$. Considering the remark 1.2. a), we obtain $F_4(f) \in S^* \Leftrightarrow F_4(f) \in TUCD(0)$.

c) $f \in S^* \Rightarrow F_5(f) \in TUCD(0)$, where

$$F_{5}(f)(z) = \frac{1+\gamma}{z^{\gamma}} \int_{0}^{z} f(t) \cdot t^{\gamma-1} dt$$
 (22)

 $\gamma \ge -1$ is the Bernardi operator.

Proof.

We know that if $f \in S^* \Rightarrow F_5(f) \in S^*$. Considering the remark 1.2. a), we obtain $F_5(f) \in S^* \Leftrightarrow F_5(f) \in TUCD(0)$.

Theorem 2.4. Let

$$F_6(f)(z) = \int_0^z \left[\frac{f(t)}{t}\right]^\beta dt \qquad (23)$$

and $0 \le \beta \le 1$.

If $f \in S^*$ then $F_6(f) \in TUCD(0)$.

Proof.

Considering the theorem 1.4, for $\beta = 1, \alpha \equiv \beta$ we obtain $f \in S^* \Rightarrow F_6(f) \in S^*$. According to the remark 1.2. a) we obtain $F_6(f) \in TUCD(0)$.

Theorem 2.5. Let

$$F_7(f)(z) = \left[\beta \int_0^z f^\beta(t) \cdot t^{-1} dt\right]^{\frac{1}{\beta}}, \ \beta > 0.$$
 (24)

If $f \in S^*$ then $F_7(f) \in TUCD(0)$.

Proof.

Applying the theorem 1.5 for this integral operator for $\gamma = 0, \eta = 0, \beta = \alpha$ we obtain $f \in S^* \Rightarrow F_7(f) \in S^*$. But the remark 1.2, a) we obtain $F_7(f) \in TUCD(0)$.

Theorem 2.6. Let

$$F_{8}(f)(z) = \left[\frac{\beta + \gamma}{z^{\gamma}} \int_{0}^{z} f^{\beta}(t) \cdot t^{-1} dt\right]^{\frac{1}{\beta}}, \ \gamma, \beta = 1, 2, 3.... (25)$$

If $f \in S^*$ then $F_8(f) \in TUCD(0)$.

Proof.

We have $f \in S^* \Rightarrow F_8(f) \in S^*$, according to the theorem 1.5. Applying the remark 1.2, a), we obtain $F_8(f) \in TUCD(0)$.

Theorem 2.7. Let

$$F_{9}(f,g)(z) = \left[\frac{\beta + \gamma}{z^{\gamma}} \int_{0}^{z} \left[\frac{f(t)}{t}\right]^{\xi} \left[\frac{g(t)}{t}\right]^{\delta} \cdot t^{\xi + \delta - 1} dt\right]^{\frac{1}{\beta}}.$$
 (26)

If $f \in S^*$, $g \in K$, then $F_9(f,g) \in TUCD(0)$.

Proof.

In [2] we proved that if $f \in S^*, g \in K \Rightarrow F_9(f,g) \in S^*$. Applying the remark 1.2 a) we obtain $F_9(f,g) \in TUCD(0)$.

Theorem 2.8. Let

$$F_{10}(f)(z) = \left[\frac{\beta + \gamma}{z^{\gamma} \cdot \phi(z)} \int_{0}^{z} f^{\xi}(t) \cdot \phi(t) \cdot t^{\delta - 1} dt\right]^{\frac{1}{\beta}}, \ f \in A$$
(27)

and the following conditions are satisfied:

 $\varphi, \phi \in D, \xi, \beta, \gamma, \delta$ the complex numbers with the properties,

$$\beta > 0, \xi + \delta = \beta + \gamma, \operatorname{Re}(\xi + \delta) > 0, \operatorname{Re}\left[\frac{z\phi'(z)}{\phi(z)} + \gamma\right] \le 0.$$
 (28)

Then $F_{10}(f) \in TUCD(0)$.

Proof.

If $f \in A$ satisfies the conditions of this theorem then $F_{10}(f) \in S^*$, the result proved in [2].

Applying the remark 1.2, a) we obtain $F_{10}(f) \in TUCD(0)$.

Theorem 2.9. Let $\xi \in \delta$ complex number, $\xi + \delta > 0, \phi \in D$. If $f \in A$ is the form (4) and

$$\frac{\xi z f'(z)}{f(z)} + \frac{z \phi'(z)}{\phi(z)} + \delta \prec Q_{\xi+\delta}, \qquad (29)$$

and

$$F_{11}(f) = \left[\left(\xi + \delta \right) \int_{0}^{z} f^{\xi}(t) \cdot t^{\delta - 1} \cdot \phi(t) dt \right]^{\frac{1}{\xi + \delta}}.$$
 (30)

Then $F_{11}(f) \in TUCD(0)$.

Proof.

If $f \in A$ are the form (4) and verifies the conditions of the theorem 2.1, we obtain $F_{11}(f) \in S^* \Leftrightarrow F_{11}(f) \in TUCD(0)$, also considering the remark 1.2, a).

Theorem 2.10. Let

$$F_{12}(f)(z) = \left[\frac{\beta + \gamma}{z^{\gamma} \cdot \phi(z)} \int_{0}^{z} f^{\xi}(t) \cdot \phi(t) \cdot t^{\delta - 1} dt\right]^{\frac{1}{\beta}}.$$
 (31)

If $\xi, \beta, \gamma, \delta \in \mathbb{R}$, $\xi \ge 0$, $\beta > 0$, $\beta + \gamma = \xi + \delta$ and ρ_0 verifies the relation (14) and suppose that exists $\rho \in [\rho_0, 1]$ so that $0 \le w(\rho)$, where *w* verifies the relation

$$\operatorname{Re} \beta \frac{zG'(z)}{G(z)} \ge w(\rho) \cdot \operatorname{Re} \beta = \operatorname{Inf} \left\{ \operatorname{Re} H(z) \| z \| < 1 \right\}, \quad (32)$$

where

$$G(z) = I_{\beta,\gamma}(g)(z) = \left[(\beta + \gamma) z^{-\gamma} \int_{0}^{z} g^{\beta}(t) \cdot t^{\gamma-1} dt \right]^{\frac{1}{\beta}}, g \in A$$
(33)

and

$$H(z) = \frac{(1-z)^{2(\rho-1)\operatorname{Re}\beta}}{\int_0^1 t^{\beta+\gamma-1} (1+tz)^{2(\rho-1)\operatorname{Re}\beta} dt} - \gamma , \qquad (34)$$

 φ si $\phi \in D$ and satisfy the relations

$$\delta + \operatorname{Re} \frac{z\varphi'(z)}{\varphi(z)} \ge \beta \rho + \gamma$$
 (35)

and

$$\operatorname{Re}\frac{z\phi'(z)}{\phi(z)} \le \beta \cdot w(\rho) \tag{36}$$

then $F_{12}(f) \in TUCD(0)$.

Proof.

Let $f \in A$ and satisfies the above conditions according to theorem 1.3 and the remark 1.2, a) we obtain $F_{12}(f) \in S^* \Leftrightarrow F_{12}(f) \in TUCD(0)$.

Theorem 2.11. Let the integral operator $F_{12}(f)$ defined in the theorem 2.10, which verifies the conditions of the theorem 2.10, and the condition (35) from theorem 2.10 becomes the following:

$$\frac{\xi}{2} + \delta + \operatorname{Re}\frac{z\varphi'(z)}{\varphi(z)} \ge \beta\rho + \gamma, \qquad (37)$$

then if $f \in K \Rightarrow F_{12}(f) \in TUCD(0)$.

Proof.

If $f \in K$, has the form (4) and verifies the conditions of this theorem we obtain $F_{12}(f) \in S^*$. Applying the remark 1.2, a) we obtain $F_{12}(f) \in TUCD(0)$. **Theorem 2.12.** Let

$$F_{13}(f,g) = \left[\frac{\beta + \gamma}{z^{\gamma}\phi(z)}\int_{0}^{z} f^{\xi}(t) \cdot g^{\sigma}(t) \cdot t^{\delta - \sigma - 1} dt\right]^{\frac{1}{\beta}}, \qquad (38)$$

 $\xi, \beta, \gamma, \delta$ and $\sigma \in R$, $\xi \ge 0$, $\beta > 0$, $\sigma \ge 0$, $\beta + \gamma = \xi + \delta > 0$. Let ρ_0 from the theorem 2.10 and suppose that $\rho \in [\rho_0, 1]$ so that

$$\delta - \frac{\sigma}{2} \ge \beta + \gamma, \ w(\rho) > 0, \qquad (39)$$

w given in the treorem 2.10.

Let $\varphi \in D$, so that

$$\operatorname{Re}\frac{z\varphi'(z)}{\varphi(z)} \le \beta \cdot w(\rho). \tag{40}$$

If $f \in S^*$, $g \in K$, then $F_{13}(f,g) \in TUCD(0)$. **Proof.**

We consider $f \in S^*, g \in K$ of the form (4). According to the theorem 1.7, proved in [2] we obtain $F_{13}(f,g) \in S^*$. Applying the remark 1.2, a) we obtain $F_{13}(f,g) \in TUCD(0)$.

Theorem 2.13. Let

$$F_{14}(f,g)(z) = \left[\frac{\beta + \gamma}{z^{\gamma}\phi(z)}\int_{0}^{z} f^{\xi}(t) \cdot g^{\sigma}(t) \cdot t^{\delta - \sigma - 1} dt\right]^{\frac{1}{\beta}}, \qquad (41)$$

 $\xi, \beta, \gamma, \delta$ and $\sigma \in R$, $\alpha \ge 0$, $\beta > 0$, $\sigma \ge 0$, $\beta + \gamma = \xi + \delta > 0$, $\rho_0, w(\rho)$ as in the theorem 2.10 and exists $\rho \in [\rho_0, 1]$ so that

$$\rho + \frac{\xi}{2} - \frac{\sigma}{2} \ge \beta \rho + \gamma, w(\rho) \ge 0.$$
 (42)

Let $\phi \in D$ so that

$$\operatorname{Re}\frac{z\phi'(z)}{\phi(z)} \le \beta w(\rho). \tag{43}$$

If $f, g \in K$ of the form (4) then $F_{14}(f, g) \in TUCD(0)$. **Proof.**

If $f, g \in K$ according to the corrolary 1.6, the result proved in [1] we obtain $F_{14}(f,g) \in S^*$. Applying the remark 1.2, a) we obtain $F_{14}(f,g) \in TUCD(0)$.

References

1.Miller S.S., Mocanu P.T.- Differential Subordinations. Theory and Applications, Marcel Dekker, Inc., New York.Basel, 2000.

2.Miller S.S., Mocanu P.T.- Classes of univalent integral operators, Journal of Math. Analysis and Applications, vol. 157, No. 1, May 1, 1991, Printed in Belgium, 147-165.

3.Rosy T., Stephen A.B., Subramanian K.G., Silverman H.- Classes of convex functions, Internat. J. Math.& Math. Sci., vol 23, No. 12(2000), 819-825.

4.Silverman H.- Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116.

Author:

Daniel Breaz – "1 Decembrie 1918" University of Alba Iulia, E-mail address: dbreaz@uab.ro