INTEGRAL OPERATORS ON THE TUCD (α)-CLASS

by
Daniel Breaz

Abstract

In this paper we present a few univalency conditions for various integral operators on class $\operatorname{TUCD}(\alpha)$. At first, we make a brief presentation of class $\operatorname{TUCD}(\alpha)$ and of some of its properties, as well as a number of matters connected to some integral operators studied on this class.

Introduction.

Let $U=\{z:|z<1|\}$ be the unit disk, respectively the class of olomorphic functions on the unit disk, denoted by $H(U), A=\left\{f \in H(U): f(z)=z+a_{2} z^{2}+\ldots\right\}$ the class of the analytical functions in the unit disk and the set $D=\{\phi: \phi$ is analytic in $U, \phi(z) \neq 0, \forall z \in U, \phi(0)=1\}$.

We consider the class of starlike functions of the order α on the unit disk, the univalent functions with the property $\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\alpha$, respectively, the class of the convex functions on the order α in unit disk, the univalent functions with the property $\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1>\alpha$. We denote these with $S^{*}(\alpha)$ and $K(\alpha)$, and for $\alpha=0$ we obtain the class of the starlike funcions S^{*}, respectively the class of convex functions K.

We say that the function f with the form $f(z)=z+a_{2} z^{2}+\ldots$ belongs to the class $U C D(\alpha), \alpha \geq 0$, if

$$
\begin{equation*}
\operatorname{Re} f^{\prime}(z) \geq \alpha \mid z f^{\prime \prime}(z), \quad z \in U \tag{1}
\end{equation*}
$$

If $f \in U C D(\alpha)$, then the following relation is true

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq \alpha\left|z f^{\prime \prime}(z)\right|, z \in U \tag{2}
\end{equation*}
$$

which can also be written as

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \frac{1}{\alpha} . \tag{3}
\end{equation*}
$$

In [3] we studied the class of univalent functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, a_{k} \geq 0 . \tag{4}
\end{equation*}
$$

We denote $\operatorname{TUCD}(\alpha)$, the functions from $U C D(\alpha)$ of the form (4). Next we consider all the functions from this paper of the form (4).
Theorem 1.1. [3] A function of the form (1) belongs to the class $\operatorname{TUCD}(\alpha)$ if and only if

$$
\sum_{k=2}^{\infty} k[1+\alpha(k-1)] \cdot a_{k} \leq 1
$$

Remark 1.2. [3]

a) A function of the form (4) is starlike if and only if $f \in T U C D(0)$.
b) A function of the form (4) is convex if and only if $f \in T U C D(1)$.
c) A function of the form (4) is convex by the order $1 / 2$ if and only if $f \in T U C D(2)$.
d) A function of the form (4) is uniform convex if and only if $f \in T U C D(2)$.
e) A function $f \in \operatorname{TUCD}(\alpha)$ if and only if f can be written as

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z), \tag{5}
\end{equation*}
$$

where $\lambda_{k} \geq 0, \sum_{k=1}^{\infty} \lambda_{k}=1, f_{1}(z)=z$ and $f_{k}(z)=z-\frac{z^{k}}{k[1+\alpha(k-1)]}, k=2,3, \ldots$

Theorem 1.3. [2] Let $\alpha, \beta, \gamma, \delta$ be real constants that satisfy the conditions $\alpha \geq 0, \beta>0(\alpha+\delta)=(\beta+\gamma)>0$. Let ρ_{0} be so that $-\frac{\operatorname{Re} \gamma}{\operatorname{Re} \beta} \equiv \rho_{0}<\rho<1$ and we suppose that $\rho \in\left[\rho_{0}, 1\right]$ exists, so that $0 \leq w(\rho)$, where $w(\rho)=\frac{1}{\operatorname{Re} \beta} \inf \{H(z):|z|<1\}$ and $H(z)=\frac{(1-z)^{2(\rho-1) \operatorname{Re} \beta}}{\int_{0}^{1} t^{\beta+\gamma-1}(1+t z)^{2(\rho-1) \operatorname{Re} \beta} d t}$.

Let φ and $\phi \in D$ satisfy the conditions:

$$
\begin{equation*}
\delta+\operatorname{Re} \frac{z \varphi^{\prime}(z)}{\varphi(z)} \geq \beta \rho+\gamma \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re} \frac{z \phi^{\prime}(z)}{\phi(z)} \leq \beta w(\rho) \tag{7}
\end{equation*}
$$

If $I(f)(z)=\left[\frac{\beta+\gamma}{z^{\gamma} \phi(z)} \int_{0}^{z} f^{\alpha}(t) \varphi(t) t^{\delta-1} d t\right]^{\frac{1}{\beta}}$, then $I\left(S^{*}\right) \subset S^{*}$.
Theorem 1.4. [1] If $0 \leq \alpha \leq 1, \alpha \leq \beta$ and if $f \in S^{*}$, then the function

$$
\begin{equation*}
F(z)=\left[z^{\beta-1} \int_{0}^{z}\left(\frac{f(z)}{t}\right)^{\alpha} d t\right]^{\frac{1}{\beta}}=z+\ldots \tag{8}
\end{equation*}
$$

is also an element of S^{*}.
Theorem 1.5. [1] If $\alpha>0, \eta \geq 0, \gamma+\eta \geq 0$ and if $f \in S^{*}$, then the function

$$
\begin{equation*}
F(z)=\left[\frac{\alpha+\gamma+\eta}{z^{\gamma}} \int_{0}^{z} f^{\alpha}(t) t^{\gamma+\eta-1} d t\right]^{\frac{1}{\alpha+\eta}}=z+\ldots \tag{9}
\end{equation*}
$$

is starlike in U.
Theorem 1.6. [2] Let $\alpha, \beta, \gamma, \delta$ and σ real number which satisfy $0 \leq \alpha, 0<\beta, 0 \leq \sigma$ and $\beta+\gamma=\alpha+\delta>0$. Let ρ_{0} defined in the theorem 1.3. and we suppose that exists $\rho \in\left[\rho_{0}, 1\right]$ so that $\delta-\frac{\sigma}{2} \geq \beta+\gamma$ and $w(\rho)>0$ where $w(\rho) \operatorname{Re} \beta \equiv \operatorname{Inf}\{\operatorname{Re} H(z):|z|<1\}$. Let $\quad \phi \in D \quad$ which \quad satisfies
$\operatorname{Re} \frac{z \phi^{\prime}(z)}{\phi(z)} \leq \beta w(\rho)$. If $f \in S^{*}, g \in K$ then $I(f, g) \in S^{*}$, where $I(f, g)$ is defined

$$
\begin{equation*}
I(f, g)(z)=\left[\frac{\beta+\gamma}{z^{\gamma} \phi(z)} \int_{0}^{z} f^{\alpha}(t) g^{\sigma}(t) t^{\delta-\sigma-1} d t\right]^{\frac{1}{\beta}} . \tag{10}
\end{equation*}
$$

Corollary 1.7. [1] Let $0 \leq \alpha, 0<\beta, 0 \leq \sigma, \gamma>-\beta, \beta+\gamma=\alpha+\delta$, and $\delta+\frac{\alpha}{2}-\frac{\sigma}{2} \geq \gamma$. Let $\phi \in D$ which satisfies $\operatorname{Re} \frac{z \phi^{\prime}(z)}{\phi(z)} \leq \beta w(0)$. If $f, g \in K$ then $I(f, g) \in S^{*}$, where $\quad I(f, g)$ is defined in (10).

Main results

Theorem 2.1. Let ξ and δ complex number, $\xi+\delta>0, \phi \in D$. If $f \in A$ is of the form (4) and

$$
\begin{equation*}
\frac{\xi z f^{\prime}(z)}{f(z)}+\frac{z \phi^{\prime}(z)}{\phi(z)}+\delta \prec Q_{\xi+\delta} \tag{11}
\end{equation*}
$$

while

$$
\begin{equation*}
F_{1}(f)=\left[(\xi+\delta) \int_{0}^{z} f^{\xi}(t) \cdot t^{\delta-1} \cdot \phi(t) d t\right]^{\frac{1}{\xi+\delta}} . \tag{12}
\end{equation*}
$$

Then $F_{1}(f) \in T U C D(0)$.
Theorem 2.2. Let

$$
\begin{equation*}
F_{2}(f)(z)=\left[\frac{\beta+\gamma}{z^{\gamma} \cdot \phi(z)} \int_{0}^{z} f^{\xi}(t) \cdot \phi(t) \cdot t^{\delta-1} d t\right]^{1 / \beta} . \tag{13}
\end{equation*}
$$

If $\xi, \beta, \gamma, \delta \in R, \xi \geq 0, \beta>0, \beta+\gamma=\xi+\delta$ şi ρ_{0} verifies the relation

$$
\begin{equation*}
-\frac{\operatorname{Re} \gamma}{\operatorname{Re} \beta} \equiv \rho_{0} \leq \rho<1 \tag{14}
\end{equation*}
$$

and we suppose that exists $\rho \in\left[\rho_{0}, 1\right]$ so that $0 \leq w(\rho)$, where w verifies the relation

$$
\begin{equation*}
\operatorname{Re} \beta \frac{z G^{\prime}(z)}{G(z)} \geq w(\rho) \cdot \operatorname{Re} \beta=\operatorname{Inf}\{\operatorname{Re} H(z)|z|<1\} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
G(z)=I_{\beta, \gamma}(g)(z)=\left[(\beta+\gamma) z^{-\gamma} \int_{0}^{z} g^{\beta}(t) \cdot t^{\gamma-1} d t\right]^{1 / \beta}, g \in A \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
H(z)=\frac{(1-z)^{2(\rho-1) \operatorname{Re} \beta}}{\int_{0}^{1} t^{\beta+\gamma-1}(1+t z)^{2(\rho-1) \operatorname{Re} \beta} d t}-\gamma, \tag{17}
\end{equation*}
$$

φ and $\phi \in D$ satisfy the relations

$$
\begin{equation*}
\delta+\operatorname{Re} \frac{z \varphi^{\prime}(z)}{\varphi(z)} \geq \beta \rho+\gamma \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re} \frac{z \phi^{\prime}(z)}{\phi(z)} \leq \beta \cdot w(\rho) \tag{19}
\end{equation*}
$$

then $F_{2}(f) \in T U C D(0)$.
Theorem 2.3. Let $f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, a_{k} \geq 0$
a)If $f \in S^{*} \Rightarrow F_{3}(f) \in T U C D(1)$, where

$$
\begin{equation*}
F_{3}(f)(z)=\int_{0}^{z} \frac{f(t)}{t} d t \tag{20}
\end{equation*}
$$

is the Alexander operator.
Proof.
We know that if $f \in S^{*} \Rightarrow F_{3}(f) \in K$. Considering the remark 1.2. b), we obtain $F_{3}(f) \in K \Leftrightarrow F_{3}(f) \in T U C D(1)$.
b) $f \in S^{*} \Rightarrow F_{4}(f) \in T U C D(0)$, where

$$
\begin{equation*}
F_{4}(f)(z)=\frac{2}{z} \int_{0}^{z} f(t) d t \tag{21}
\end{equation*}
$$

is the Libera operator.
Proof.
We know that if $f \in S^{*} \Rightarrow F_{4}(f) \in S^{*}$. Considering the remark 1.2. a), we obtain $F_{4}(f) \in S^{*} \Leftrightarrow F_{4}(f) \in T U C D(0)$.
c) $f \in S^{*} \Rightarrow F_{5}(f) \in T U C D(0)$, where

$$
\begin{equation*}
F_{5}(f)(z)=\frac{1+\gamma}{z^{\gamma}} \int_{0}^{z} f(t) \cdot t^{\gamma-1} d t \tag{22}
\end{equation*}
$$

$\gamma \geq-1$ is the Bernardi operator.

Proof.

We know that if $f \in S^{*} \Rightarrow F_{5}(f) \in S^{*}$. Considering the remark 1.2. a), we obtain $F_{5}(f) \in S^{*} \Leftrightarrow F_{5}(f) \in T U C D(0)$.
Theorem 2.4. Let

$$
\begin{equation*}
F_{6}(f)(z)=\int_{0}^{z}\left[\frac{f(t)}{t}\right]^{\beta} d t \tag{23}
\end{equation*}
$$

and $0 \leq \beta \leq 1$.
If $f \in S^{*}$ then $F_{6}(f) \in T U C D(0)$.
Proof.
Considering the theorem 1.4, for $\beta=1, \alpha \equiv \beta$ we obtain $f \in S^{*} \Rightarrow F_{6}(f) \in S^{*}$.
According to the remark 1.2. a) we obtain $F_{6}(f) \in T U C D(0)$.
Theorem 2.5. Let

$$
\begin{equation*}
F_{7}(f)(z)=\left[\beta \int_{0}^{z} f^{\beta}(t) \cdot t^{-1} d t\right]^{1 / \beta}, \beta>0 \tag{24}
\end{equation*}
$$

If $f \in S^{*}$ then $F_{7}(f) \in T U C D(0)$.
Proof.
Applying the theorem 1.5 for this integral operator for $\gamma=0, \eta=0, \beta=\alpha$ we obtain $f \in S^{*} \Rightarrow F_{7}(f) \in S^{*}$. But the remark 1.2, a) we obtain $F_{7}(f) \in T U C D(0)$.

Theorem 2.6. Let

$$
\begin{equation*}
F_{8}(f)(z)=\left[\frac{\beta+\gamma}{z^{\gamma}} \int_{0}^{z} f^{\beta}(t) \cdot t^{-1} d t\right]^{1 / \beta}, \gamma, \beta=1,2,3 \ldots \tag{25}
\end{equation*}
$$

If $f \in S^{*}$ then $F_{8}(f) \in T U C D(0)$.

Proof.

We have $f \in S^{*} \Rightarrow F_{8}(f) \in S^{*}$, according to the theorem 1.5. Applying the remark 1.2, a), we obtain $F_{8}(f) \in T U C D(0)$.
Theorem 2.7. Let

$$
\begin{equation*}
F_{9}(f, g)(z)=\left[\frac{\beta+\gamma}{z^{\gamma}} \int_{0}^{z}\left[\frac{f(t)}{t}\right]^{\xi}\left[\frac{g(t)}{t}\right]^{\delta} \cdot t^{\xi+\delta-1} d t\right]^{1 / \beta} \tag{26}
\end{equation*}
$$

If $f \in S^{*}, g \in K$, then $F_{9}(f, g) \in T U C D(0)$.
Proof.
In [2] we proved that if $f \in S^{*}, g \in K \Rightarrow F_{9}(f, g) \in S^{*}$. Applying the remark 1.2 a) we obtain $F_{9}(f, g) \in T U C D(0)$.

Theorem 2.8. Let

$$
\begin{equation*}
F_{10}(f)(z)=\left[\frac{\beta+\gamma}{z^{\gamma} \cdot \phi(z)} \int_{0}^{z} f^{\xi}(t) \cdot \varphi(t) \cdot t^{\delta-1} d t\right]^{1 / \beta}, f \in A \tag{27}
\end{equation*}
$$

and the following conditions are satisfied:
$\varphi, \phi \in D, \xi, \beta, \gamma, \delta$ the complex numbers with the properties,

$$
\begin{equation*}
\beta>0, \xi+\delta=\beta+\gamma, \operatorname{Re}(\xi+\delta)>0, \operatorname{Re}\left[\frac{z \phi^{\prime}(z)}{\phi(z)}+\gamma\right] \leq 0 \tag{28}
\end{equation*}
$$

Then $F_{10}(f) \in T U C D(0)$.

Proof.

If $f \in A$ satisfies the conditions of this theorem then $F_{10}(f) \in S^{*}$, the result proved in [2].
Applying the remark 1.2 , a) we obtain $F_{10}(f) \in T U C D(0)$.
Theorem 2.9. Let ξ şi δ complex number, $\xi+\delta>0, \phi \in D$. If $f \in A$ is the form (4) and

$$
\begin{equation*}
\frac{\xi z f^{\prime}(z)}{f(z)}+\frac{z \phi^{\prime}(z)}{\phi(z)}+\delta \prec Q_{\xi+\delta} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{11}(f)=\left[(\xi+\delta) \int_{0}^{2} f^{\xi}(t) \cdot t^{\delta-1} \cdot \phi(t) d t\right]^{\frac{1}{\xi+\delta}} . \tag{30}
\end{equation*}
$$

Then $F_{11}(f) \in T U C D(0)$.

Proof.

If $f \in A$ are the form (4) and verifies the conditions of the theorem 2.1, we obtain $F_{11}(f) \in S^{*} \Leftrightarrow F_{11}(f) \in T U C D(0)$, also considering the remark 1.2, a).

Theorem 2.10. Let

$$
\begin{equation*}
F_{12}(f)(z)=\left[\frac{\beta+\gamma}{z^{\gamma} \cdot \phi(z)} \int_{0}^{z} f^{\xi}(t) \cdot \phi(t) \cdot t^{\delta-1} d t\right]^{1 / \beta} . \tag{31}
\end{equation*}
$$

If $\xi, \beta, \gamma, \delta \in R, \quad \xi \geq 0, \beta>0, \beta+\gamma=\xi+\delta$ and ρ_{0} verifies the relation (14) and suppose that exists $\rho \in\left[\rho_{0}, 1\right]$ so that $0 \leq w(\rho)$, where w verifies the relation

$$
\begin{equation*}
\operatorname{Re} \beta \frac{z G^{\prime}(z)}{G(z)} \geq w(\rho) \cdot \operatorname{Re} \beta=\operatorname{Inf}\{\operatorname{Re} H(z) \| z \mid<1\}, \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
G(z)=I_{\beta, \gamma}(g)(z)=\left[(\beta+\gamma) z^{-\gamma} \int_{0}^{z} g^{\beta}(t) \cdot t^{\gamma-1} d t\right]^{1 / \beta}, g \in A \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
H(z)=\frac{(1-z)^{2(\rho-1) \operatorname{Re} \beta}}{\int_{0}^{1} t^{\beta+\gamma-1}(1+t z)^{2(\rho-1) \operatorname{Re} \beta} d t}-\gamma, \tag{34}
\end{equation*}
$$

φ şi $\phi \in D$ and satisfy the relations

$$
\begin{equation*}
\delta+\operatorname{Re} \frac{z \varphi^{\prime}(z)}{\varphi(z)} \geq \beta \rho+\gamma \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re} \frac{z \phi^{\prime}(z)}{\phi(z)} \leq \beta \cdot w(\rho) \tag{36}
\end{equation*}
$$

then $F_{12}(f) \in T U C D(0)$.

Proof.

Let $f \in A$ and satisfies the above conditions according to theorem 1.3 and the remark 1.2, a) we obtain $F_{12}(f) \in S^{*} \Leftrightarrow F_{12}(f) \in T U C D(0)$.

Theorem 2.11. Let the integral operator $F_{12}(f)$ defined in the theorem 2.10, which verifies the conditions of the theorem 2.10 , and the condition (35) from theorem 2.10 becomes the folloving:

$$
\begin{equation*}
\frac{\xi}{2}+\delta+\operatorname{Re} \frac{z \varphi^{\prime}(z)}{\varphi(z)} \geq \beta \rho+\gamma, \tag{37}
\end{equation*}
$$

then if $f \in K \Rightarrow F_{12}(f) \in T U C D(0)$.

Proof.

If $f \in K$, has the form (4) and verifies the conditions of this theorem we obtain $F_{12}(f) \in S^{*}$. Applying the remark 1.2, a) we obtain $F_{12}(f) \in T U C D(0)$.
Theorem 2.12. Let

$$
\begin{equation*}
F_{13}(f, g)=\left[\frac{\beta+\gamma}{z^{\gamma} \phi(z)} \int_{0}^{z} f^{\xi}(t) \cdot g^{\sigma}(t) \cdot t^{\delta-\sigma-1} d t\right]^{1 / \beta} \tag{38}
\end{equation*}
$$

$\xi, \beta, \gamma, \delta$ and $\sigma \in R, \xi \geq 0, \beta>0, \sigma \geq 0, \beta+\gamma=\xi+\delta>0$. Let ρ_{0} from the theorem 2.10 and suppose that $\rho \in\left[\rho_{0}, 1\right]$ so that

$$
\begin{equation*}
\delta-\frac{\sigma}{2} \geq \beta+\gamma, w(\rho)>0, \tag{39}
\end{equation*}
$$

w given in the treorem 2.10.
Let $\varphi \in D$, so that

$$
\begin{equation*}
\operatorname{Re} \frac{z \varphi^{\prime}(z)}{\varphi(z)} \leq \beta \cdot w(\rho) \tag{40}
\end{equation*}
$$

If $f \in S^{*}, g \in K$, then $F_{13}(f, g) \in T U C D(0)$.

Proof.

We consider $f \in S^{*}, g \in K$ of the form (4). According to the theorem 1.7, proved in [2] we obtain $F_{13}(f, g) \in S^{*}$. Applying the remark 1.2, a) we obtain $F_{13}(f, g) \in T U C D(0)$.

Theorem 2.13. Let

$$
\begin{equation*}
F_{14}(f, g)(z)=\left[\frac{\beta+\gamma}{z^{\gamma} \phi(z)} \int_{0}^{z} f^{\xi}(t) \cdot g^{\sigma}(t) \cdot t^{\delta-\sigma-1} d t\right]^{1 / \beta}, \tag{41}
\end{equation*}
$$

$\xi, \beta, \gamma, \delta$ and $\sigma \in R, \alpha \geq 0, \beta>0, \sigma \geq 0, \beta+\gamma=\xi+\delta>0, \rho_{0}, w(\rho)$ as in the theorem 2.10 and exists $\rho \in\left[\rho_{0}, 1\right]$ so that

$$
\begin{equation*}
\rho+\frac{\xi}{2}-\frac{\sigma}{2} \geq \beta \rho+\gamma, w(\rho) \geq 0 . \tag{42}
\end{equation*}
$$

Let $\phi \in D$ so that

$$
\begin{equation*}
\operatorname{Re} \frac{z \phi^{\prime}(z)}{\phi(z)} \leq \beta w(\rho) \tag{43}
\end{equation*}
$$

If $f, g \in K$ of the form (4) then $F_{14}(f, g) \in T U C D(0)$.
Proof.
If $f, g \in K$ according to the corrolary 1.6 , the result proved in [1] we obatin $F_{14}(f, g) \in S^{*}$. Applying the remark 1.2 , a) we obatin $F_{14}(f, g) \in T U C D(0)$.

References

1.Miller S.S., Mocanu P.T.- Differential Subordinations. Theory and Applications, Marcel Dekker, Inc., New York.Basel, 2000.
2.Miller S.S., Mocanu P.T.- Classes of univalent integral operators, Journal of Math. Analysis and Applications, vol. 157, No. 1, May 1, 1991, Printed in Belgium, 147-165.
3.Rosy T., Stephen A.B., Subramanian K.G., Silverman H.- Classes of convex functions, Internat. J. Math.\& Math. Sci., vol 23, No. 12(2000), 819-825.
4.Silverman H.- Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116.

Author:

Daniel Breaz - "1 Decembrie 1918" University of Alba Iulia, E-mail address: dbreaz@uab.ro

