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Abstract: The objective of this research is to construct parallel models that simulate the 
behavior of artificial neural networks. The type of network that is simulated in this project is 
the counter – propagation network and the parallel platform used to simulate that network is 
the message passing interface (MPI). In the next sections the counter – propagation algorithm 
is presented in its serial as well as its parallel version. For the latter case, two approaches are 
presented, one that is based to the concept of the inter-communicator and one that uses remote 
access operations for the update of the weight tables and the estimation of the mean error for 
each training stage. 
Keywords: Neural networks, counter – propagation, parallel programming, message passing 
interface, communicators, process groups, point to point and collective communication. 

 
 

Introduction 
 
As it is well known, one of the major drawbacks of the artificial neural 

networks is the time consumption and the high cost associated with their 
learning phase [1]. These disadvantages, combined with the natural parallelism 
that characterizes the operation of these structures, force the researchers to use 
the hardware parallelism technology to implement connectionist models that 
work in a parallel way [2]. In these models, the neural processing elements are 
distributed among independent processors and therefore, the inherent structure 
of the neural network is distributed over the workstation cluster architecture. 
Regarding the synapses between the neurons, they are realized by suitable 
connections between the processes of the parallel system [3]. 

A parallel neural network can be constructed using a variety of different 
methods [4-9], such as the parallel virtual machines (PVM) [10], the message 
passing interface (MPI) [11-13], the shared memory model and the implicit 
parallelization with parallel compiler directives [14]. Concerning the network 
types that have been paralellized by one of these methods, they cover a very 
broad range from the supervised back propagation network [15-17] to the 
unsupervised self-organizing maps [18-19]. In this research the counter – 
propagation network is parallelized by means of the message passing interface 
library [13]. 
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The serial counter – propagation algorithm 
 

Counter-propagation neural networks [20] were developed by Robert 
Hecht-Nielsen as a means to combine an unsupervised Kohonen layer with a 
teachable output layer known as Grossberg layer. The operation of this network 
type is very similar to that of the Learning Vector Quantization (LVQ) network 
in that the middle (Kohonen) layer acts as an adaptive look-up table.  

The structure of this network type is shown in Figure 1. From this figure 
it is clear that the counter-propagation network is composed of three layers: an 
input layer that reads input patterns from the training set and forwards them to 
the network, a hidden layer that works in a competitive fashion and associates 
each input pattern with one of the hidden units, and the output layer which is 
trained via a teaching algorithm that tries to minimize the mean square error 
(MSE) between the actual network output and the desired output associated 
with the current input vector. In some cases a fourth layer is used to normalize 
the input vectors but this normalization can be easily performed by the 
application (i.e. the specific program implementation), before these vectors are 
sent to the Kohonen layer. 

 

 
Figure 1: A typical counter – propagation network 
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Regarding the training process of the counter-propagation network, it can 

be described as a two-stage procedure: in the first stage the process updates the 
weights of the synapses between the input and the Kohonen layer, while in the 
second stage the weights of the synapses between the Kohonen and the 
Grossberg layer are updated. In a more detailed description, the training 
process of the counter – propagation network includes the following steps: 

 
STAGE A  Performs the training of the weights from the input to the 

hidden nodes 
 
STEP 00: The synaptic weights of the network between the input and the 

Kohonen layer are set to small random values in the interval [0, 1]. 
STEP 01: A vector pair (x, y) of the training set, is selected in random 
STEP 02: The input vector x of the selected training pattern is 

normalized 
STEP 03: The normalized input vector is sent to the network 
STEP 04: In the hidden competitive layer the distance between the 

weight vector and the current input vector is calculated for each hidden neuron 
j according to the equation 
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where K is the number of the hidden neurons and wij is the weight of the 
synapse that joins the ith neuron of the input layer with the jth neuron of the 
Kohonen layer. 

STEP 05: The winner neuron W of the Kohonen layer is identified as the 
neuron with the minimum distance value Dj. 

STEP 06: The synaptic weights between the winner neuron W and all M 
neurons of the input layer are adjusted according to the equation 

 
))()(()()1( tWxttWtW wiiwiwi −+=+ α . 

 
In the above equation the α coefficient is known as the Kohonen learning 

rate. The training process starts with an initial learning rate value α0 that is 
gradually decreased during training according to the equation  
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where T is the maximum iteration number of the stage A of the algorithm. A 
typical initial value for the Kohonen learning rate is a value of 0.7. 

STEP 07: The steps 1 to 6 are repeated until all training patterns have 
been processed once. For each training pattern p the distance Dp of the winning 
neuron is stored for further processing. The storage of this distance is 
performed before the weight update operation. 

STEP 08: At the end of each epoch the training set mean error is 
calculated according to the equation 
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where P is the number of pairs in the training set, Dk  is the distance of the 
winning neuron for the pattern k and i  is the current training epoch.  

 
The network converges when the error measure falls below a user 

supplied tolerance value. The network also stops training in the case where the 
specified number of iterations has been performed, but the error value has not 
converged to a specific value. 

 
STAGE B  Performs the training of the weights from the hidden to the 

output nodes 
 
STEP 00: The synaptic weights of the network between the Kohonen and 

the Grossberg layer are set to small random values in the interval [0, 1]. 
STEP 01: A vector pair (x, y) of the training set, is selected in random 
STEP 02: The input vector x of the selected training pattern is 

normalized 
STEP 03: The normalized input vector is sent to the network 
STEP 04: In the hidden competitive layer the distance between the 

weight vector and the current input vector is calculated for each hidden neuron 
j according to the equation 
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where K is the number of the hidden neurons and wij is the weight of the 
synapse that joins the ith neuron of the input layer with the jth neuron of the 
Kohonen layer. 

STEP 05: The winner neuron W of the Kohonen layer is identified as the 
neuron with the minimum distance value Dj. The output of this node is set to 
unity while the outputs of the other hidden nodes are assigned to zero values. 

STEP 06: The connection weights between the winning neuron of the 
hidden layer and all N neurons of the output layer are adjusted according to the 
equation 

))(()()1( tWytWtW jwjjwjw −+=+ β  
 
In the above equation the β coefficient is known as the Grossberg 

learning rate 
STEP 07: The above procedure is performed for each training pattern. In 

this case the error measure is computed as the mean Euclidean distance 
between the winner node's output weights and the desired output, that is  
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As in stage A, the network converges when the error measure falls below 

a user supplied tolerance value. The network also stops training after 
exhausting the prescribed number of iterations.  

 
The parallel counter – propagation algorithm 
 
The parallelization of the counter propagation algorithm presented in this 

paper is based on the message-passing interface (MPI) standard [13], which 
enables a set of processes to run concurrently on the same or different 
processors, and to exchange messages between each other. To simulate the 
counter propagation network, a separate process is used to model the behavior 
of each neuron [14]. This fact leads to a number of processes P equal to 
M+K+N where M is the number of the input neurons, K is the number of the 
Kohonen neurons and N is the number of the Grossberg neurons, respectively.  
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Since the number of the parameters M, K and N is generally known in 
advance, we can assign to each process a specific color. The processes with 
ranks in the interval [0, M-1] are associated with an “input” color; the 
processes with ranks in the interval [M, M+K-1] are associated with a 
“Kohonen” color, while the processes with ranks in the interval [M+K, 
M+K+N-1] are associated with a “Grossberg” color. Having assigned to each 
process one of these three color values, we can divide the process group of the 
default communicator MPI_COMM_WORLD into three disjoint process 
groups, by calling the function MPI_Comm_split with arguments 
(MPI_COMM_WORLD, color, rank, &intraComm). The result of this function 
is the creation of three process groups – the input group, the Kohonen group 
and the Grossberg group; each one of them simulates the corresponding layer 
of the counter propagation network. The size of each group is identical to the 
number of neurons of the corresponding layer, while the communication 
between the processes of each group is performed via the intracommunicator 
intraComm, created by the MPI_Comm_split function. The division of the 
initial process group in this arrangement is shown in Figure 2. 

After the creation of the three process groups, we have to setup a 
mechanism for the communication between them. In the message-passing 
environment, this communication is performed via a special communicator 
type known as intercommunicator that allows the communication of process 
groups. In our case, we have to setup one intercommunicator for the message 
passing between the processes of the input group and the Kohonen group, and a 
second intercommunicator for the communication between the processes of the 
Kohonen group and the Grossberg group. The creation of these 
intercommunucators, identified by the names interComm1 and interComm2 
respectively, is based on the MPI_Intercomm_create function and the result of 
the function invocation is shown in Figure 3. 
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Figure 2: The division of the initial process group to the input, Kohonen 
and Grossberg sub-groups of processes 
 

 
Figure 3: The message passing between the three process groups is 

performed via the intercommunicators interComm1 and interComm2 
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After the construction of the communication system, the training 

algorithm can be easily performed. In the first step the training set data are 
passed to the processes of the input and the output group according to the next 
figure, fig. 4. Since the number of input processes is equal to the size of the 
input vector, each process reads a “column” of the training set that contains the 
values of the training patterns with a position inside the input vectors equal to 
the rank of each input process. The distribution of the output vector values to 
the processes of the output group is performed in a similar way. The 
distribution of the pattern data to the system processes is based to the MPI I/O 
functions and to the establishment of a different file type and file view for each 
input and output process. 

 

 
Figure 4: The distribution of the training set data to the input and the 

output processes for a training set of 12 training patterns with 8 inputs and 4 
outputs 
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After the distribution of the training set data, the two stages of the 
counter propagation training can now be performed. The steps described in the 
following description are performed for each training cycle and for each 
pattern of the training set. In this description, the notation Pn is used to denote 
the process with a rank value equal to n. 

 
STAGE A  Performs the training of the weights from the input to the 

Kohonen processes 
 
STEP 0: A two dimensional K x M matrix that contains the synaptic 

weights between the input and the Kohonen process group is initialized by 
process P0 to small random values in the interval [0, 1] and is broadcasted by 
the same process to the processes of the default communicator 
MPI_COMM_WORLD. A similar initialization is done for a second matrix 
with dimensions M x N that contains the synaptic weight values between the 
Kohonen and the Grossberg process groups. 

 
STEP 1: Process P0 of the input group picks up a random pattern position 

that belongs in the interval [0, PAIRS-1] where PAIRS is the number of the 
training vector pair. Then, this value is broadcasted to all processes that belong 
to the input group. This broadcasting operation is performed by a function 
invocation of the form MPI_Bcast (&nextPattern, 1, MPI_DOUBLE, 0, 
intraComm). At this stage we may also perform a normalization of the data set. 

 
STEP 2: Each function calls MPI_Bcast to read the next pattern position 

and then retrieves from its local memory the input value associated with the 
next pattern. Since the distribution of the training set data is based in a 
“column” fashion (see Figure 4), this input value is equal to the 
inputColumn[nextPattern] where the inputColumn vector contains the (rank)th 
input value of each training pattern. The steps 1 and 2 of the parallel counter 
propagation algorithm are shown in the next figure (Figure 5). 

 



 Athanasios I. Margaris, Efthimios Kotsialos - Parallel counter - propagation 
networks 

 315

 
 

Figure 5: The retrieval of the training pattern input values from the 
processes of the input group 

 
STEP 3: After the retrieval of the appropriate input value of the current 

training pattern, each process of the input group sends its value to all processes 
of the Kohonen group. This operation simulates the full connection architecture 
of the actual neural network and it is performed via the MPI_Alltoall function 
that is invocated with arguments (&input, 1, MPI_DOUBLE, inputValues, 1, 
MPI_DOUBLE, interComm1). Since this operation requires the 
communication of processes that belong to different groups, the message 
passing function is performed via the intercommunicator interComm1, which is 
used as the last argument in the function MPI_Alltoall. An alternative (and 
apparently slower) way is to force input process P0 to gather these values and 
to send them via the inter-communicator interComm1 to the group leader of the 
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Kohonen group, which, in turn, will pass them to the Kohonen group 
processes. However, this alternative approach is necessary, if the training 
vectors are not normalized. In this case, the normalization of the input and the 
output vectors has to be performed by the group leaders of the input and the 
Grossberg groups before their broadcasting to the appropriate processes.  

 
STEP 4: The next step of the algorithm is performed by the units of the 

Kohonen layer. Each unit calculates the Euclidean distance between the 
received vector of the input values and the appropriate row of the weight table 
that simulates the corresponding weight vector. After the estimation of this 
distance, one of the Kohonen group processes is marked as the root process to 
identify the minimum input weight distance, and the process that corresponds 
to it. This operation simulates the winning neuron identification procedure of 
the counter propagation algorithm. This identification is performed by the 
MPI_Reduce collective operation, which is called with the value 
MPI_MINLOC as the opcode argument. The minimum distance for each 
training pattern is stored in a buffer, later to participate to the calculation of the 
mean winner distance of the current training epoch. 
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Figure 6: The identification of the winning process from the processes of 

the Kohonen group 
 
STEP 5: The winning process updates the weights of its weight table 

row, according to the equation  
 

))(()()1( tWxtWtW wiiwiwi −+=+ α , 
 

which is used as in the case of the previous network implementation. In this 
step, the Kohonen learning rate α is known to all processes, but it is used only 
by the winning process of the Kohonen group to perform the weight update 
operation described above. This learning rate is gradually decreased at each 
iteration, as in the serial algorithm. Since each process uses its own local copy 
of the weight table, the table with the new updated values is broadcasted to all 
the processes of the Kohonen group. The weight update operation by the 
winning process is shown in the next figure, fig. 7. 
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The previously described steps are performed iteratively for each 
training pattern and training cycle. The algorithm will terminate when the mean 
winner distance falls below the predefined tolerance or when the number of 
iterations reaches the maximum iteration number.  

 

 
 
Figure 7: The update of the synaptic weights associated with the winning 

process 
 

STAGE B  Performs the training of the weights from the Kohonen to 
the Grossberg nodes 

 
STEP 0: Process P0 of the input group picks a random pattern position 

and broadcasts it to the processes of the input group. 
 
STEP 1: Each process of the input group calls the MPI_Bcast function to 

read the next pattern position. Then it retrieves this position from the 
inputColumn local vector and by using the MPI_Alltoall function sends it to 
the set of processes that belong to the Kohonen group. 

 
STEP 2: Each process of the Kohonen group calculates the distance 

between the current input vector and the associated weight vector – this vector 
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is the Rth row of the input – Kohonen weight matrix where R is the rank of the 
Kohonen process in the Kohonen group. Then one of the Kohonen processes is 
marked as the root process to identify the minimum distance and the process 
associated with it. The identification of this distance is based to the 
MPI_Reduce collective operation. The process with the minimum distance 
value is marked as the winner process. The output of this winner process is set 
to unity, while the outputs of the remaining processes is set to zero.  

 
STEP 3: Each Kohonen process sends its output to the set of processes of 

the Grossberg group via the MPI_Alltoall inter-communicator function. Then, 
each output process calculates its own output according to the equation 
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In this equation we use the notation Xj to denote the inputs of the 

Grossberg processes – this inputs are coming from the Kohonen processes and 
therefore their values are 1 for the winning process and 0 for the remaining 
processes, while Wij are the weights associated with the jth output process. 
These weights belong to the jth row of the Kohonen-Grossberg weight matrix. 
After the calculation of the output of each Grossberg process we estimate the 
Euclidean distance between the real output vector (O0, O1, O2, …, ON-1) and the 
desired output vector (Y0, Y1, Y2, …, YN-1). The stage B is completed when the 
mean error value for each training epoch falls below a user – supplied tolerance 
or when the number of iterations reaches the predefined maximum iteration 
number. Regarding the weigh update operation, this is applied only to the 
weights of the winning process of the Kohonen layer in the Kohonen – 
Grossberg weight matrix. The weight update operation is performed as it is 
shown in Figure 7 but for the Kohonen – Grossberg matrix and it is based to 
the equation 

 
))(()()1( tWytWtW jwjjwjw −+=+ β , 

 
which was used also in the case of the serial algorithm. The β constant in the 
above equation is known as the Grossberg learning rate – a typical value of this 
parameter is 0.1. 
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The recall phase 
 
In the recall phase each input pattern is presented to the network. In the 

hidden layer the winning neuron is identified, its output is set to unity (while 
the outputs of the remaining neurons are set to zero), and, finally, the network 
output is calculated according to the algorithm described above. Then the real 
network output is estimated and the error between it and the desired output is 
identified. This procedure is applied to training patterns that belong to the 
training set and are presented to the network for testing purposes, while for 
unknown patterns, they are sent to the network, to calculate the corresponding 
output vector. This procedure can be easily modified to work with the parallel 
network, by adopting the methods described above for the process 
communication. It is supposed that the unknown patterns will be read from a 
pattern file with a similar organization as the training set file – in this case each 
input process can read its own (rank)th value, in order to forward it to the 
processes of the Kohonen group. 

 
 

RMA Based Counter Propagation Algorithm 
 
The main drawback of the parallel algorithm presented in the previous 

sections is the high traffic load associated with the weight table update for both 
training stages (i.e. stage A and stage B). Since each process maintains a local 
copy of the two weight tables (the input – Kohonen weight table and the 
Kohonen – Grossberg weight table), it has to broadcast these tables to all the 
processes of the Kohonen and Grossberg group in order to receive the new 
updated weight values. An improvement of this approach can be achieved by 
using an additional process that belongs to its own target group. This target 
process maintains a unique copy of the two weight tables and each process can 
read and update the weight values of these tables via remote memory access 
(RMA) operations. This new improved architecture of the counter propagation 
network is shown in Figure 8. 

In this approach the additional target process creates and maintains the 
weight tables of the neural network while each process of the Kohonen and the 
Grossberg group reads the appropriate weights with the function MPI_Get and 
updates their values (by applying the equations described above). This can be 
done using the function MPI_PUT. An optional third window can be used to 
store the minimum input weight distance for each training pattern and for each 
epoch. In this case one of the processes of the Kohonen group can use the 
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MPI_Accumulate function (with the MPI_SUM opCode) to add the current 
minimum distance to the window contents. In this way, at the end of each 
epoch this window will have the sum of these distances that is used for the 
calculation of the mean error for stage A; a similar approach can be used for 
the stage B. The synchronization of the system processes can be performed 
either by the function MPI_Win_Fence or by the set of four functions 
MPI_Win_Post, MPI_Win_start, MPI_Win_complete and MPI_Win_wait, 
which are used to indicate the beginning and the termination of the access and 
the exposure epochs of the remote process target windows. 

 

 
 

Figure 8: RMA based counter propagation network 
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Conclusions and Future Work 
 
The objective of this research was the parallelization of the counter – 

propagation network by means of the message-passing interface (MPI). The 
development of the application was based to the MPICH2 implementation of 
the MPI of Argonne National Laboratory that supports advanced features of the 
interface, such as parallel I/O and remote memory access functions. This 
parallelization was applied on two different aspects: (a) the training set patterns 
were distributed to the processes of the input group in such a way that each 
process retrieves the (rank)th column of the set with P values, where (rank) is 
the rank of the process in the input group. This distribution is applied for the 
input vectors as well as for the output vectors that are distributed to the 
processes of the Grossberg group. (b) the two – dimensional weight tables were 
distributed to the processes of the Kohonen group with each table row to be 
associated with its corresponding Kohonen process. 

 The next step of this research is the presentation of comparative results 
between the serial and the parallel versions. This could not be affected at the 
moment, since the development took place on a single—processor machine, 
where the performance of the two approaches was almost the same. In order to 
measure the speedup of the parallel algorithm, a multiprocessing system – such 
as a dual processor PC, a computational grid or a computer network – is 
necessary, but this system was not available at the time of the paper writing. 
Therefore we point out the main guidelines that one has to follow to build a 
parallel neural network – a more practical approach on this subject is one of the 
immediate future work subjects. 

There are many topics that are open in the design and implementation of 
parallel neural networks. By restricting ourselves to the development of such 
structures via MPI, it is of interest to investigate the improvement achieved if 
non-blocking communications are used – in this research the data 
communication was based on the blocking functions MPI_Send and 
MPI_Recv. Another very interesting topic is associated with the application of 
the models described above for the simulation of arbitrary neural network 
architectures. As it is well known, the counter – propagation network is a very 
simple one, since is has (in the most cases) only three layers. However, in 
general, a neural network may have as many as layers the user wants. In this 
case we have to find ways to generate process groups with the correct structure. 
Furthermore, in our design, each processes simulated only one neuron; an 
investigation of the mechanism that affects the performance of the network 
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when we assign to each process more than one neurons, is a challenging 
prospect.  

For all these different situations, one has to measure the execution time 
and the speedup of the system in order to draw conclusions for the simulation 
of neural networks by parallel architectures. Finally, another point of interest is 
the comparison of the MPI – based parallel neural models with those that are 
based on other approaches, such as parallel virtual machines (PVM). 
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