
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics - ICTAMI 2004, Thessaloniki, Greece

417

SCHEDULING TRAJECTORIES ON A PLANAR SURFACE
WITH MOVING OBSTACLES

by
Emmanuel Stefanakis

Abstract. An algorithm for scheduling the trajectory of a point object, which moves on a plane
surface comprising of moving obstacles, is introduced. Different quantitative criteria may be
met by the schedule, e.g., the course connecting two individual locations being the shortest in
length, the least expensive, the fastest as regard to its duration, etc. A prototype system that
implements the algorithm is presented. Several example scenarios are also discussed.
Keywords. Spatio-temporal modeling, graphs, trajectory schedule, optimum paths, moving
objects.

1. Introduction

The scheduling of an object (e.g., a vessel) trajectory is a common
problem in human navigation and appears very often in applications such as
Cartography, Logistics, Robotics and Geographic Information Systems (GIS).
Moving between two physical locations can be, basically, accomplished based
on various alternative schedules. Each schedule can be characterized and
quantitatively described by some objective criteria. For instance, we may look
for – to name a few:

 the shortest, longest, fastest, or least expensive trajectory
connecting the two locations,

 a trajectory that departs from the start location at time ts, and arrives
at destination at time td,

 a trajectory, which further adds to the previous one the constraint to
cross an intermediate location at time ti and reside there for the time
interval [ti, tj].

Obviously, there are three additional parameters that should be clarified,

before we browse for the trajectory that meets the criteria above. These
describe (a) the dimensions of the space where movement takes place, (b) the
constraints of movement, and (c) the dynamic nature of space in time.

As for the space, all intermediate locations that compose the trajectory
(including start and destination locations) belong to a space that may have –

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 418

depending on the application – one, two, two and a half (for curved surfaces,
like the earth) or three dimensions in general. In this study, we limit the
discussion on movements in a two-dimensional (plane) surface. All concepts
can be readily extended and applied to spaces of higher dimensionality
(Stefanakis and Kavouras 1995).

As for the constraints of movement, the trajectory connecting two
physical locations may be limited to the chains of an existing linear network or
not. In the former case, graph theory can be applied to simulate the movement
(Johnson 1977, Gibbons 1985, Sedgewick 1990, Rich and Knight 1991,
Russell and Norvig 1995). In the latter case, where the movement is not
confined to a linear network, existing raster-based (Warntz 1961, Lindgren
1967, Goodchild 1977, Church et al. 1992, van Bemmelen et al. 1993, Douglas
1994ab) or vector-based (Mitchel and Papadimitriou 1991) approaches may be
applied. In this study, we examine trajectories in space, and we apply an
approach, recently introduced by Stefanakis and Kavouras (1995, 2002). This
algorithm is based on the degeneration of the space under study into a network,
which can be simulated by a weighted graph, so that algorithms of graph theory
and artificial intelligence can be easily adopted to indicate the optimum path(s)
for the desired trip.

Finally, as for the dynamic nature of space in time, there are two
alternatives. In the first alternative, the space is static, in the sense that the cost
of movement per unit of movement (e.g., one meter) remains unchanged over
time everywhere in space. In the second alternative, the cost of movement
changes over time. The cost of movement is described through a (spatial) cost
model (Stefanakis and Kavouras 2002). Obviously, time is a parameter of the
cost model. In this study, we examine a simple scenario, where the cost model
applies the function of Euclidean distance. That is, the cost of movement (cAB)
from a location A(xA,yA) to a location B(xB,yB) is equal to:

22)()(BABAAB yyxxc −+−=

Additionally, we assume that the space comprises a set of moving

obstacles, which constraint the access to specific regions (covered by the
obstacles) during specific temporal intervals.

A real world application that may be supported by the configuration of
our study is the scheduling of the sea course for a boat in a relatively small
region of the earth (in order to satisfy the condition of planarity). The course is

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 419

constrained by a set of static obstacles, i.e., the islands and continents; and by a
set of moving obstacles, i.e., the other vessels.

The discussion is organized as follows. Section 2 describes the algorithm
for scheduling the trajectory of an object in a dynamic space with obstacles.
Section 3 presents a prototype system which implements the algorithm and
several example scenarios generated by the system. Finally, Section 4
concludes the discussion and proposes some hints for future research.

2. The Algorithm

Assume a two-dimensional plane surface S (Figure 1). For simplicity
reasons, the surface is orthogonal – with its borders parallel to the X,Y-axes –
and described through two pairs of (x,y) coordinates, the lower left (or south
west – XLL, YLL) and the upper right (or north east – XUR, YUR) corners. The
space is considered during a temporal interval [Tfrom, Tto], defined by a pair of
time instances, the Tfrom and Tto, where Tto is subsequent to Tfrom. We call this
period of time as space life. Hence, a spatio-temporal cube C defined by the
triples (XLL, YLL, Tfrom) and (XUR, YUR, Tto) is considered.

Figure 1. The space-time.

The surface S comprises a set of moving obstacles (MO). In other words,

a set of objects, which are moving in the spatio-temporal cube C. Each obstacle

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 420

MOi has a circular shape with a radius ri, and carries out a straight route with a
constant velocity vi. Specifically, each obstacle MOi is defined by the following
set of parameters:

(ri, xfrom-i , yfrom-i , tfrom-i , xto-i , yto-i , tto-i)

where the triples (xfrom-i , yfrom-i , tfrom-i) and (xto-i , yto-i , tto-i) correspond to the
starting and ending locations of the obstacle MOi in space-time.

Figure 2 presents an example obstacle MOi with radius ri on surface S (a
projective view), which travels from point A(xA,yA) to point B(xB,yB), during
the temporal interval [tA-i,tB-i] . The object velocity is constant and equal to:

)(
)()(22

iAiB

BABA
AB tt

yyxx
c

−− −
−+−

=

What we are looking for is the schedule (if any) of a point object, which moves
on the surface S and its course: (a) connects two specific locations in space, (b)
falls inside the spatio-temporal cube C, (c) satisfies the schedule criteria, and
(d) does not hit any moving object.

Figure 2. An example of a moving obstacle.

In order to accomplish this task, we adopt the approach introduced by
Stefanakis and Kavouras (1995, 2002) – which supports the navigation in a
static space based on quantitative criteria – and extend it here so that it may be

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 421

applicable to a dynamic space. As stated previously, the discussion is limited to
a plane surface, which comprises a set of moving obstacles of circular shape.
The schedule refers to a point object, which moves on this surface and does not
hit any moving obstacle at any time. Notice that obstacles size may be enlarged
appropriately to include the moving object size – if the latter is not a point
object – and/or the security distance (buffer zone) between the point object and
the obstacles themselves (to avoid collision).

The algorithm consists of the five steps, which are described in the
following Subsections:

1. Establishment of a network in space
2. Formulation of the travel cost model
3. Computation of the temporal intervals during which nodes and
edges are not accessible
4. Solving the network
5. Determination of the schedule

2.1 Establishment of a network in space

The inconvenience of movement in space is the infinite number of spots
(i.e., point locations or nodes), involved in the determination of a path. The
proposed solution (Stefanakis and Kavouras 1995, 2002) to overcome this
problem is based on the technique of discretization of space. Discretization
(Laurini and Thompson 1992, Worboys 1995) is the process of partitioning the
continuous space into a finite number of disjoint areas or volumes (cells),
whose union results in the space. By representing each of these cells with one
node (e.g., its center point), a finite set of nodes is generated.

Obviously, the number of nodes depends on the size of the cell. If these
nodes are interconnected through edges, a linear network is established, and
appropriate algorithms available in graph theory and artificial intelligence can
be applied to support the navigation. How nodes are interconnected is related
to the degrees of freedom characterizing the movement. In this study we adopt
a common scheme, which is based on the regular grid tessellation. More
details can be found in Stefanakis and Kavouras 2002.

Specifically, a regular grid is superimposed on the plane surface. A
network node is then located on the centroid of each cell (Figure 3). Then,
network edges are established to connect the network nodes. These edges are
driven from the regular grid as follows. Each cell has three types of neighbor
cells (Figure 4): (a) direct, i.e., neighbors with shared edges; (b) indirect, i.e.,

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 422

neighbors with common vertices; and (c) remote neighbors. The level of
proximity to the cell of reference characterizes remote neighbors.

For instance, level-one (level-two) remote neighbors are the cells, which
are direct or indirect neighbors of the direct or indirect neighbors of the cell of
reference (of the level-one remote neighbors of the cell of reference).
Interconnecting the direct neighbors leads to a set of four directions of
movement from each node (rook’s move is allowed – Figure 5a).
Interconnecting the indirect neighbors adds another set of four directions
(queen’s move is allowed – Figure 5b). Interconnecting the level-one remote
neighbors adds another set of eight directions of movement (queen’s+knight’s
moves are allowed – Figure 5c). An exhaustive network would interconnect all
direct, indirect and remote (of any level) neighbors.

Figure 3. Establishing the network nodes. The space (a), the tessellation

superimposed on the space (b), and the resulting nodes (c).

Figure 4. Types of cell neighbors in a regular grid.

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 423

Figure 5. Four (a), eight (b) and sixteen (c) directions of movement.

2.2 Formulation of the travel cost model

The travel cost model assigns weights to the edges of the network
established in the previous step. Its form depends on both the space under study
and the application needs. Some representative examples of travel cost models
are:

 the model of distance (assign the overall distance)
 the model of time (assign the overall time)
 the model of expenses (assign the overall expenses)
 the model of risk (assign a measure for the overall risk)

In each case the space under study consists of areas that are characterized

by a weight, which indicates the cost of movement across them per unit of
movement; and depends on the travel cost model in use. A detailed analysis is
can be found in Stefanakis and Kavouras 2002.

In this paper we consider the cost model of Euclidean distance of the
two nodes connected by the edge of reference. More sophisticated models can
be easily applied.

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 424

2.3 Computation of the temporal intervals during which nodes and edges are
not accessible

After the network has been established, the obstacles are considered in
order to compute all those temporal intervals during which nodes and edges are
not accessible. This information is needed when the network is solved in Step
4, so that the schedule for the moving object is determined in Step 5.

All nodes and edges locations are compared against all moving obstacles
locations in time. At the end of this comparison, each individual node and edge
of the network is assigned a list of temporal intervals during which it is not
accessible, because an obstacle intersects it.

Figure 6 presents an example of two nodes A, B and the edge A_B
connecting them. An obstacle moves from point K to point L. As it is shown,
the obstacle covers node A during the temporal interval [t2,t3] and intersects the
edge A_B during the temporal interval [t2,t4]. During these temporal intervals
the corresponding node and edge are not accessible.

Figure 6. An example of a moving object (a), and the temporal intervals during

which nodes A,B and edge A_B are not accessible (b).

2.4 Solving the network

After the completion of the previous step, each individual node and edge

of the network is assigned a list of those temporal intervals during which it is

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 425

not accessible. In this step the actual solving of the network is performed. For
this reason, appropriate algorithms available in graph theory and artificial
intelligence can be applied. In our study we make use of Ford’s algorithm
(Ford and Fulkerson 1962).

Provided a graph G(N, E) (where N, E the sets of nodes and edges
constituting the graph respectively), and c(m,n) the cost of traversing the edge
m_n, starting from node m and ending to node n, Ford suggests the following
algorithm to find the minimum accumulated cost of each network node n
(denoted by C[n]) for the trip from a start node no:

The complexity of Ford’s algorithm depends on the number of both the
nodes and edges of the network and is equal to O(|N| |E|).

In this study, we extend Ford’s algorithm to solve the spatio-temporal
network. By executing the algorithm, each node of the network is assigned a
list of temporal intervals, during which the node is accessible from the moving
object with the minimum accumulated cost for the trip from the start node no.
We call these intervals as accessible temporal intervals. Obviously, the
temporal intervals during which nodes and edges are not accessible (computed
in the previous step) are taken into account.

Figure 7 presents the idea through a simplified example. The network
(part of) consists of four successive nodes, which are connected through three
edges (Figure 7a). The temporal interval during which the network is
considered is [0,200] (time units). We call this period of time as network life.
The moving object departs from node 1 (start node) at time 10. The duration
and cost of traversing each edge of the network are constant during the network
life (Figure 7b). However, these nodes and edges are not always accessible.
Moving obstacles may constraint the traversing during some temporal
intervals. These non-accessible temporal intervals have been computed in the
previous step (Figure 7c).

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 426

Provided that the trip starts at time 10, the moving object can reside at
node 1 during part or the whole interval defined by time 10 and the next time
when instance node 1 is not accessible. Therefore, the accessible temporal
interval for the moving object at node 1 is [10,30] (Figure 7d,c). The
accumulated cost for node 1 is equal to 0 and there is no previous node.

Considering the movement along the edge 1_2, the following apply. The
moving object may depart from node 1 at any time during the interval [10,30].
The edge 1_2 is accessible all the time (Figure 7c). Provided that the duration
of traversing edge 1_2 is equal to 20, node 2 can be reached at any time during
the interval [30,50]. Node 2 is accessible all this period. The accumulated cost
at node 2 will be 0+8=8. Additionally, the moving object may reside at node 2
until the next time instance when the node is not accessible. Therefore, the
accessible temporal interval for the moving object at node 2 is extended to
[30,170] (Figure 7e).

Considering the movement along the edge 2_3, the following apply. The
moving object may depart from node 2 at any time during the interval [30,170].
The edge 2_3 is accessible all the time (Figure 7c). Provided that the duration
of traversing edge 2_3 is equal to 10, node 3 can be reached at any time during
the interval [40,180]. The accumulated cost at node 3 will be 8+14=22.
However, node 3 is not accessible during the interval [170,190]. Therefore, the
accessible temporal interval for the moving object at node 3 is reduced to
[40,170] (Figure 7f).

Considering the movement along the edge 3_4, the following apply. The
moving object may depart from node 3 at any time during the interval [40,170].
The edge 3_4 is accessible all the time (Figure 7c). Provided that the duration
of traversing the edge 3_4 is equal to 20, node 4 can be reached at any time
during the interval [60,190]. The accumulated cost at node 4 will be 22+21=43.
However, node 4 is not accessible during the interval [100,120]. Therefore, the
object may depart from node 3 during the intervals [40,100-20] (or [40,80])
and [120,170] (in here we assume that departure from a node is not allowed
when the edge to traverse and the opposite edge node are not accessible). This
results in the accessible temporal interval for the moving object at node 4 being
split to [60,100] and [120,190] (Figure 7g). Additionally, the latter is extended
to [120,200], based on the previous discussion.

All accessible temporal intervals and accumulated costs of the nodes at
the example in Figure 7 are subject to change during the iterative execution of
Ford’s algorithm and the consideration of other nodes and edges in a more
complex network. Figure 8 provides an example of such a change. One node
and two edges are added at the network in Figure 7, i.e., node 5, edge 1_5 and

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 427

edge 5_3. Node 5 is accessible all the time during the network life; as well as
edge 5_3. On the other hand, edge 1_5 is not accessible during the temporal
interval [0,20] (Figure 8a).

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 428

Figure 7. A simplified scenario.

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 429

Figure 8. A more complex network.

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 430

Figure 8b shows the accessible temporal interval for node 5. The moving
object may depart from node 1 at any time during the interval [10,30].
However, edge 1_5 is not accessible during the interval [0,20]. Hence, the
object must wait at node 1 until t=20. Provided that the duration to traverse the
edge is equal to 20, node 5 can be reached at any time during the interval
[40,50]. This interval is extended appropriately (to the end of the network life),
since node 5 is always accessible.

Node 2 remains unchanged (Figure 7e). Node 3 is now accessible from
both nodes 2 and 5. New accessible temporal intervals for the moving object at
node 3 are computed by considering the edge 5_3. These are intersected to the
ones shown in Figure 7f. The intervals with the minimum accumulated cost
dominate. The result of the intersection is shown in Figure 8c. Notice that, in
the new network, node 3 can be accessed from node 2 for the temporal interval
[40,70], with an accumulated cost of 22; and node 3 for the temporal interval
[70,170] and [190,200] with an accumulated cost of 12.

Node 4 is assigned new accessible temporal intervals according to the
new state of node 3. As shown in Figure 8d, three accessible temporal intervals
are assigned to node 4: [60,90], [90,100] and [120,200], with accumulated
costs of 43, 33 and 33, respectively.

2.5 Determination of the schedule

After the network has been solved, the schedule for the moving object
can be determined, taking into consideration the criteria of movement.
Specifically, the previous step has generated for each network node j (where
j=1,2,…,N) a set of n consecutive and disjoint temporal intervals, during which
node j is accessible (reachable) by the moving object. Each of these intervals
[tji-from, tji-to] (where i=1,2,…,n) has assigned the accumulated cost of
movement for the trip from the start node s (cji) and the corresponding previous
node (pji), i.e.,

node j: {[tj1-from, tj1-to, cj1, pj1], [tj2-from, tj2-to, cj2, pj2], [tj3-from, tj3-to, cj3, pj3], …, [tjn-

from, tjn-to, cjn, pjn]}

This set can be exploited to determine the schedule. The next paragraphs
describe some common scenarios.

In order to schedule the minimum cost trip, we choose the temporal
interval i at the destination node d with the minimum cdi value. Then, we add
to the empty stack T – describing the trip – the following triplet:

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 431

< tdi-from, cdi, locd >

where locd is the location of the destination node. The process is applied
recursively to the node pdi, etc., until start node s is reached. The triplets at T
describe the movement of the object. Notice that the cost assigned to the edges
of the network may be their length or the expenses to traverse them (e.g.,
expressed in petrol consumption), etc. In the former case, the shortest in length
trip is scheduled. In the latter case, the least expensive trip is scheduled.
In order to schedule the fastest trip, we choose the first temporal interval
assigned to the destination node d. Then we add to an empty stack T –
describing the trip – the following triplet:

< td1-from, cd1, locd >

The process is applied recursively to the node pd1, etc., until start node s is
reached. The triplets at T describe the movement of the object.

In order to schedule the trip that takes the moving object at destination at
time ta, we choose the temporal interval k, assigned to the destination node,
which contains time ta (i.e., ta 0¸[tdk-from, tdk-to]) Then we add to an empty stack
T – describing the trip – the following triplet:

< ta, cdk, locd >

The process is applied recursively to the node pdk, etc., until start node s

is reached. The triplets at T describe the movement of the object.

3. Prototype System and Example Scenarios

A prototype system has been developed in Java to implement the
algorithm described in the previous Section. Figure 9 presents the interface of
the system. What is shown is the snapshot of the situation at time 114 (for a
network life of [0,400]). Four moving obstacles are alive then. The current
location of the moving object is at point c. Start and destination nodes are
marked with s and d respectively.

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 432

Figure 9. The interface of the system.

Figure 10 shows the values of the parameters that are read by the system
for the example in Figure 9. The spatio-temporal cube is defined by the triplet
(0,0,0) and (1000,1000,400). Cell size is equal to 100x100 (Figure 3), and 16
directions of movement are considered (Figure 5c). Start and destination points
are located at (0,400) and (1000,100) respectively. Their closest network nodes
are considered as start and destination nodes (see Figure 10). The start time for
the trip is equal to 0. The velocity of the moving object is constant and equal to
5 distance_units/time_units. The system is asked to compute only the minimum
cost schedule. Eight moving obstacles are considered. The first of them (id = 1)
has a radius of 60 units, and moves from point (0,300) to point (300,300)
during the temporal interval [0,60]. The costs assigned to the edges of the
network are equal to their length (Euclidean distance).

Figure 11 presents three schedules for the moving object based on
different criteria. With the parameter values listed in Figure 10, the system is
asked to simulate the courses of the moving object which satisfy:

 Course M: the minimum cost trip (i.e., the minimum length trip; given
that our cost model is based on the distance measure).

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 433

 Course F: the fastest cost trip (i.e., the trip that takes the moving object
at destination node at the earliest possible).

 Course A: the arrive at 260 trip (i.e., the trip that takes the moving
object at destination node at time 260).

Figure 10. The list of parameter values.

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 434

Figure 11. Three schedules for the moving object based on different criteria.

Table 1 presents the courses computed by the system. Each course is

described by a set of records:

<(x,y) c [ta, td]>

where (x,y) are the coordinates of the nodes composing the course (grid
coordinates), c the accumulated cost at the node (for the trip from the start
node), ta the time of arrival at the node, and td the time of departure from the
node.

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 435

Table 1. Three courses descriptions for the moving object in Figure 11.

4. Conclusion

This paper introduces an algorithm for scheduling the trajectory of a
point object, which moves on a plane surface comprising of moving obstacles.
The schedule may be based on various quantitative criteria, e.g., minimum cost
course, fastest course, arrive at specific time course, etc. A prototype system
that implements the algorithm has been developed and tested through different
scenarios.

Future research directions include: (a) the optimal scheduling of
trajectories for a set of moving points; (b) the consideration of dynamic travel
cost models (Section 2.2), and (c) the optimization of the algorithm.

Acknowledgments.

This work has been done while the author was at the Autonome Intelligente
Systeme, Fraunhofer Institut, Germany, supported by an ERCIM fellowship.

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 436

References:

1. Church, R.L., Loban, S.R., and Lombard, K. (1992) An interface for
exploring spatial alternatives for a corridor location problems. Computers and
Geosciences, 18, pp. 1095-1105.
2. Douglas, D.H. (1994a) Least-cost path in GIS using an accumulated cost
surface and slopelines. Cartographica, 31(3), pp. 37-51.
3. Douglas, D.H. (1994b) The parsimonious path based on the implicit
geometry in gridded data and on a proper slope line generated from it, In
Proceedings of the 6th International Symposium on Spatial Data Handling,
Edinburgh, Scotland, pp. 1133-1140.
4. Ford, L.R., and Fulkerson, D.R. (1962) Flows in Networks (Princeton
Univ. Press). 1962.
5. Gibbons, A. (1985) Algorithmic Graph Theory (Cambridge University
Press).
6. Goodchild, M.F. (1977) An evaluation of lattice solutions to the problem
of corridor location. Environment and Planning A, 9, pp. 727-738.
7. Johnson, D.B. (1977) Efficient algorithms for shortest paths in sparse
networks, Journal of the Association of Computing Machinery, 24, pp. 1-13.
8. Laurini, R., and Thompson, D. (1992) Fundamentals of Spatial
Information Systems (Academic Press Ltd).
9. Lindgren, E.S. (1967) Proposed solution for the minimum path problem,
Harvard Papers in Theoretical Geography, Geography and the Properties of
Surfaces Series, 4.
10. Mitchell, J.S.B., and Papadimitriou, C.H. (1991) The weighted region
problem: finding shortest paths through a weighted planar subdivision. Journal
of the Association for Computing Machinery, 38, pp. 18-73.
11. Rich, E., and Knight, K. (1991) Artificial Intelligence (McGraw-Hill).
12. Russell, S.J., and Norvig, P. (1995) Artificial Intelligence: A Modern
Approach (Prentice Hall).
13. Sedgewick, R. (1990) Algorithms (Addison-Wesley).
14. Stefanakis, E., and Kavouras, M. (1995) On the determination of the
optimum path in space, In Frank, A., and Kuhn, W., (Ed’s.), Spatial
Information Theory: A Theoretical Basis for GIS (COSIT 95) (Springer-
Verlag), pp. 241-257.
15. Stefanakis, E., and Kavouras, M. (2002) Navigating in space under
constraints, International Journal of Pure and Applied Mathematics (IJPAM),
Vol. 1(1), Academic Publ., pp. 71-93.

 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with
moving obstacles

 437

16. van Bemmelen, J., Quak, W., Van Hekken, M., and van Oosterom, P.
(1993) Vector vs. raster-based algorithms for cross country movement
planning. In Proceedings of the AutoCarto 11, Minneapolis, pp. 304-317.
17. Warntz, W. (1961) Transatlantic flights and pressure patterns, The
Geographical Review, 51, pp. 187-212.
18. Worboys, M.F. (1995) GIS: A Computing Perspective (Taylor & Francis).

Author:
Emmanuel Stefanakis - Spade Team, Fraunhofer - AIS Institute, Schloss
Birlinghoven, 53754 Sankt Augustin, Germany, E-mail address:
stefanakis@ais.fraunhofer.de, url: http://www.dbnet.ece.ntua.gr/~stefanak

