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Abstract. An algorithm for scheduling the trajectory of a point object, which moves on a plane 
surface comprising of moving obstacles, is introduced. Different quantitative criteria may be 
met by the schedule, e.g., the course connecting two individual locations being the shortest in 
length, the least expensive, the fastest as regard to its duration, etc. A prototype system that 
implements the algorithm is presented. Several example scenarios are also discussed. 
Keywords. Spatio-temporal modeling, graphs, trajectory schedule, optimum paths, moving 
objects. 
 
1. Introduction 
 

The scheduling of an object (e.g., a vessel) trajectory is a common 
problem in human navigation and appears very often in applications such as 
Cartography, Logistics, Robotics and Geographic Information Systems (GIS). 
Moving between two physical locations can be, basically, accomplished based 
on various alternative schedules. Each schedule can be characterized and 
quantitatively described by some objective criteria. For instance, we may look 
for – to name a few: 

 the shortest, longest, fastest, or least expensive trajectory 
connecting the two locations, 

 a trajectory that departs from the start location at time ts, and arrives 
at destination at time td, 

 a trajectory, which further adds to the previous one the constraint to 
cross an intermediate location at time ti and reside there for the time 
interval [ti, tj]. 

 
Obviously, there are three additional parameters that should be clarified, 

before we browse for the trajectory that meets the criteria above. These 
describe (a) the dimensions of the space where movement takes place, (b) the 
constraints of movement, and (c) the dynamic nature of space in time. 

As for the space, all intermediate locations that compose the trajectory 
(including start and destination locations) belong to a space that may have – 
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depending on the application – one, two, two and a half (for curved surfaces, 
like the earth) or three dimensions in general. In this study, we limit the 
discussion on movements in a two-dimensional (plane) surface. All concepts 
can be readily extended and applied to spaces of higher dimensionality 
(Stefanakis and Kavouras 1995). 

As for the constraints of movement, the trajectory connecting two 
physical locations may be limited to the chains of an existing linear network or 
not. In the former case, graph theory can be applied to simulate the movement 
(Johnson 1977, Gibbons 1985, Sedgewick 1990, Rich and Knight 1991, 
Russell and Norvig 1995). In the latter case, where the movement is not 
confined to a linear network, existing raster-based (Warntz 1961, Lindgren 
1967, Goodchild 1977, Church et al. 1992, van Bemmelen et al. 1993, Douglas 
1994ab) or vector-based (Mitchel and Papadimitriou 1991) approaches may be 
applied. In this study, we examine trajectories in space, and we apply an 
approach, recently introduced by Stefanakis and Kavouras (1995, 2002). This 
algorithm is based on the degeneration of the space under study into a network, 
which can be simulated by a weighted graph, so that algorithms of graph theory 
and artificial intelligence can be easily adopted to indicate the optimum path(s) 
for the desired trip. 

Finally, as for the dynamic nature of space in time, there are two 
alternatives. In the first alternative, the space is static, in the sense that the cost 
of movement per unit of movement (e.g., one meter) remains unchanged over 
time everywhere in space. In the second alternative, the cost of movement 
changes over time. The cost of movement is described through a (spatial) cost 
model (Stefanakis and Kavouras 2002). Obviously, time is a parameter of the 
cost model. In this study, we examine a simple scenario, where the cost model 
applies the function of Euclidean distance. That is, the cost of movement (cAB) 
from a location A(xA,yA) to a location B(xB,yB) is equal to: 

 
22 )()( BABAAB yyxxc −+−=  

 
Additionally, we assume that the space comprises a set of moving 

obstacles, which constraint the access to specific regions (covered by the 
obstacles) during specific temporal intervals. 

A real world application that may be supported by the configuration of 
our study is the scheduling of the sea course for a boat in a relatively small 
region of the earth (in order to satisfy the condition of planarity). The course is 
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constrained by a set of static obstacles, i.e., the islands and continents; and by a 
set of moving obstacles, i.e., the other vessels. 

The discussion is organized as follows. Section 2 describes the algorithm 
for scheduling the trajectory of an object in a dynamic space with obstacles. 
Section 3 presents a prototype system which implements the algorithm and 
several example scenarios generated by the system. Finally, Section 4 
concludes the discussion and proposes some hints for future research. 
 
2. The Algorithm 
   

Assume a two-dimensional plane surface S (Figure 1). For simplicity 
reasons, the surface is orthogonal – with its borders parallel to the X,Y-axes – 
and described through two pairs of (x,y) coordinates, the lower left (or south 
west – XLL, YLL) and the upper right (or north east – XUR, YUR) corners. The 
space is considered during a temporal interval [Tfrom, Tto], defined by a pair of 
time instances, the Tfrom and Tto, where Tto is subsequent to Tfrom. We call this 
period of time as space life. Hence, a spatio-temporal cube C defined by the 
triples (XLL, YLL, Tfrom) and (XUR, YUR, Tto) is considered. 
 

 
Figure 1. The space-time. 

 
The surface S comprises a set of moving obstacles (MO). In other words, 

a set of objects, which are moving in the spatio-temporal cube C. Each obstacle 
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MOi has a circular shape with a radius ri, and carries out a straight route with a 
constant velocity vi. Specifically, each obstacle MOi is defined by the following 
set of parameters: 
 

( ri, xfrom-i , yfrom-i , tfrom-i , xto-i , yto-i , tto-i ) 
 
where the triples (xfrom-i , yfrom-i , tfrom-i) and (xto-i , yto-i , tto-i) correspond to the 
starting and ending locations of the obstacle MOi in space-time. 

Figure 2 presents an example obstacle MOi with radius ri on surface S (a 
projective view), which travels from point A(xA,yA) to point B(xB,yB), during 
the temporal interval [tA-i,tB-i] . The object velocity is constant and equal to: 
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What we are looking for is the schedule (if any) of a point object, which moves 
on the surface S and its course: (a) connects two specific locations in space, (b) 
falls inside the spatio-temporal cube C, (c) satisfies the schedule criteria, and 
(d) does not hit any moving object. 
 

 
Figure 2. An example of a moving obstacle. 

 
In order to accomplish this task, we adopt the approach introduced by 
Stefanakis and Kavouras (1995, 2002) – which supports the navigation in a 
static space based on quantitative criteria – and extend it here so that it may be 
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applicable to a dynamic space. As stated previously, the discussion is limited to 
a plane surface, which comprises a set of moving obstacles of circular shape. 
The schedule refers to a point object, which moves on this surface and does not 
hit any moving obstacle at any time. Notice that obstacles size may be enlarged 
appropriately to include the moving object size – if the latter is not a point 
object – and/or the security distance (buffer zone) between the point object and 
the obstacles themselves (to avoid collision). 
 

The algorithm consists of the five steps, which are described in the 
following Subsections: 

1. Establishment of a network in space 
2. Formulation of the travel cost model 
3. Computation of the temporal intervals during which nodes and 
edges are not accessible 
4. Solving the network 
5. Determination of the schedule 

 
2.1 Establishment of a network in space 
 

The inconvenience of movement in space is the infinite number of spots 
(i.e., point locations or nodes), involved in the determination of a path. The 
proposed solution (Stefanakis and Kavouras 1995, 2002) to overcome this 
problem is based on the technique of discretization of space. Discretization 
(Laurini and Thompson 1992, Worboys 1995) is the process of partitioning the 
continuous space into a finite number of disjoint areas or volumes (cells), 
whose union results in the space. By representing each of these cells with one 
node (e.g., its center point), a finite set of nodes is generated. 

Obviously, the number of nodes depends on the size of the cell. If these 
nodes are interconnected through edges, a linear network is established, and 
appropriate algorithms available in graph theory and artificial intelligence can 
be applied to support the navigation. How nodes are interconnected is related 
to the degrees of freedom characterizing the movement. In this study we adopt 
a common scheme, which is based on the regular grid tessellation. More 
details can be found in Stefanakis and Kavouras 2002. 

Specifically, a regular grid is superimposed on the plane surface. A 
network node is then located on the centroid of each cell (Figure 3). Then, 
network edges are established to connect the network nodes. These edges are 
driven from the regular grid as follows. Each cell has three types of neighbor 
cells (Figure 4): (a) direct, i.e., neighbors with shared edges; (b) indirect, i.e., 
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neighbors with common vertices; and (c) remote neighbors. The level of 
proximity to the cell of reference characterizes remote neighbors. 

For instance, level-one (level-two) remote neighbors are the cells, which 
are direct or indirect neighbors of the direct or indirect neighbors of the cell of 
reference (of the level-one remote neighbors of the cell of reference). 
Interconnecting the direct neighbors leads to a set of four directions of 
movement from each node (rook’s move is allowed – Figure 5a). 
Interconnecting the indirect neighbors adds another set of four directions 
(queen’s move is allowed – Figure 5b). Interconnecting the level-one remote 
neighbors adds another set of eight directions of movement (queen’s+knight’s 
moves are allowed – Figure 5c). An exhaustive network would interconnect all 
direct, indirect and remote (of any level) neighbors. 
 

 
Figure 3. Establishing the network nodes. The space (a), the tessellation 

superimposed on the space (b), and the resulting nodes (c). 
 

 
Figure 4. Types of cell neighbors in a regular grid. 
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Figure 5. Four (a), eight (b) and sixteen (c) directions of movement. 

 
2.2 Formulation of the travel cost model 
 

The travel cost model assigns weights to the edges of the network 
established in the previous step. Its form depends on both the space under study 
and the application needs. Some representative examples of travel cost models 
are: 

 the model of distance (assign the overall distance) 
 the model of time (assign the overall time) 
 the model of expenses (assign the overall expenses) 
 the model of risk (assign a measure for the overall risk) 

 
In each case the space under study consists of areas that are characterized 

by a weight, which indicates the cost of movement across them per unit of 
movement; and depends on the travel cost model in use. A detailed analysis is 
can be found in Stefanakis and Kavouras 2002. 

In this paper we consider the cost model of Euclidean distance of the 
two nodes connected by the edge of reference. More sophisticated models can 
be easily applied. 
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2.3 Computation of the temporal intervals during which nodes and edges are 
not accessible 
 

After the network has been established, the obstacles are considered in 
order to compute all those temporal intervals during which nodes and edges are 
not accessible. This information is needed when the network is solved in Step 
4, so that the schedule for the moving object is determined in Step 5. 

All nodes and edges locations are compared against all moving obstacles 
locations in time. At the end of this comparison, each individual node and edge 
of the network is assigned a list of temporal intervals during which it is not 
accessible, because an obstacle intersects it. 

Figure 6 presents an example of two nodes A, B and the edge A_B 
connecting them. An obstacle moves from point K to point L. As it is shown, 
the obstacle covers node A during the temporal interval [t2,t3] and intersects the 
edge A_B during the temporal interval [t2,t4]. During these temporal intervals 
the corresponding node and edge are not accessible. 
 

 
Figure 6. An example of a moving object (a), and the temporal intervals during 

which nodes A,B and edge A_B are not accessible (b). 
 
2.4 Solving the network 

 
After the completion of the previous step, each individual node and edge 

of the network is assigned a list of those temporal intervals during which it is 
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not accessible. In this step the actual solving of the network is performed. For 
this reason, appropriate algorithms available in graph theory and artificial 
intelligence can be applied. In our study we make use of Ford’s algorithm 
(Ford and Fulkerson 1962). 

Provided a graph G(N, E) (where N, E the sets of nodes and edges 
constituting the graph respectively), and c(m,n) the cost of traversing the edge 
m_n, starting from node m and ending to node n, Ford suggests the following 
algorithm to find the minimum accumulated cost of each network node n 
(denoted by C[n]) for the trip from a start node no: 
 

 
 

The complexity of Ford’s algorithm depends on the number of both the 
nodes and edges of the network and is equal to O(|N| |E|). 

In this study, we extend Ford’s algorithm to solve the spatio-temporal 
network. By executing the algorithm, each node of the network is assigned a 
list of temporal intervals, during which the node is accessible from the moving 
object with the minimum accumulated cost for the trip from the start node no. 
We call these intervals as accessible temporal intervals. Obviously, the 
temporal intervals during which nodes and edges are not accessible (computed 
in the previous step) are taken into account. 

Figure 7 presents the idea through a simplified example. The network 
(part of) consists of four successive nodes, which are connected through three 
edges (Figure 7a). The temporal interval during which the network is 
considered is [0,200] (time units). We call this period of time as network life. 
The moving object departs from node 1 (start node) at time 10. The duration 
and cost of traversing each edge of the network are constant during the network 
life (Figure 7b). However, these nodes and edges are not always accessible. 
Moving obstacles may constraint the traversing during some temporal 
intervals. These non-accessible temporal intervals have been computed in the 
previous step (Figure 7c). 
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Provided that the trip starts at time 10, the moving object can reside at 
node 1 during part or the whole interval defined by time 10 and the next time 
when instance node 1 is not accessible. Therefore, the accessible temporal 
interval for the moving object at node 1 is [10,30] (Figure 7d,c). The 
accumulated cost for node 1 is equal to 0 and there is no previous node. 

Considering the movement along the edge 1_2, the following apply. The 
moving object may depart from node 1 at any time during the interval [10,30]. 
The edge 1_2 is accessible all the time (Figure 7c). Provided that the duration 
of traversing edge 1_2 is equal to 20, node 2 can be reached at any time during 
the interval [30,50]. Node 2 is accessible all this period. The accumulated cost 
at node 2 will be 0+8=8. Additionally, the moving object may reside at node 2 
until the next time instance when the node is not accessible. Therefore, the 
accessible temporal interval for the moving object at node 2 is extended to 
[30,170] (Figure 7e). 

Considering the movement along the edge 2_3, the following apply. The 
moving object may depart from node 2 at any time during the interval [30,170]. 
The edge 2_3 is accessible all the time (Figure 7c). Provided that the duration 
of traversing edge 2_3 is equal to 10, node 3 can be reached at any time during 
the interval [40,180]. The accumulated cost at node 3 will be 8+14=22. 
However, node 3 is not accessible during the interval [170,190]. Therefore, the 
accessible temporal interval for the moving object at node 3 is reduced to 
[40,170] (Figure 7f). 

Considering the movement along the edge 3_4, the following apply. The 
moving object may depart from node 3 at any time during the interval [40,170]. 
The edge 3_4 is accessible all the time (Figure 7c). Provided that the duration 
of traversing the edge 3_4 is equal to 20, node 4 can be reached at any time 
during the interval [60,190]. The accumulated cost at node 4 will be 22+21=43. 
However, node 4 is not accessible during the interval [100,120]. Therefore, the 
object may depart from node 3 during the intervals [40,100-20] (or [40,80]) 
and [120,170] (in here we assume that departure from a node is not allowed 
when the edge to traverse and the opposite edge node are not accessible). This 
results in the accessible temporal interval for the moving object at node 4 being 
split to [60,100] and [120,190] (Figure 7g). Additionally, the latter is extended 
to [120,200], based on the previous discussion. 

All accessible temporal intervals and accumulated costs of the nodes at 
the example in Figure 7 are subject to change during the iterative execution of 
Ford’s algorithm and the consideration of other nodes and edges in a more 
complex network. Figure 8 provides an example of such a change. One node 
and two edges are added at the network in Figure 7, i.e., node 5, edge 1_5 and 
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edge 5_3. Node 5 is accessible all the time during the network life; as well as 
edge 5_3. On the other hand, edge 1_5 is not accessible during the temporal 
interval [0,20] (Figure 8a). 
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Figure 7. A simplified scenario. 
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Figure 8. A more complex network. 
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Figure 8b shows the accessible temporal interval for node 5. The moving 
object may depart from node 1 at any time during the interval [10,30]. 
However, edge 1_5 is not accessible during the interval [0,20]. Hence, the 
object must wait at node 1 until t=20. Provided that the duration to traverse the 
edge is equal to 20, node 5 can be reached at any time during the interval 
[40,50]. This interval is extended appropriately (to the end of the network life), 
since node 5 is always accessible. 

Node 2 remains unchanged (Figure 7e). Node 3 is now accessible from 
both nodes 2 and 5. New accessible temporal intervals for the moving object at 
node 3 are computed by considering the edge 5_3. These are intersected to the 
ones shown in Figure 7f. The intervals with the minimum accumulated cost 
dominate. The result of the intersection is shown in Figure 8c. Notice that, in 
the new network, node 3 can be accessed from node 2 for the temporal interval 
[40,70], with an accumulated cost of 22; and node 3 for the temporal interval 
[70,170] and [190,200] with an accumulated cost of 12. 

Node 4 is assigned new accessible temporal intervals according to the 
new state of node 3. As shown in Figure 8d, three accessible temporal intervals 
are assigned to node 4: [60,90], [90,100] and [120,200], with accumulated 
costs of 43, 33 and 33, respectively. 
 
2.5 Determination of the schedule 
 

After the network has been solved, the schedule for the moving object 
can be determined, taking into consideration the criteria of movement. 
Specifically, the previous step has generated for each network node j (where 
j=1,2,…,N) a set of n consecutive and disjoint temporal intervals, during which 
node j is accessible (reachable) by the moving object. Each of these intervals 
[tji-from, tji-to] (where i=1,2,…,n) has assigned the accumulated cost of 
movement for the trip from the start node s (cji) and the corresponding previous 
node (pji), i.e., 
 
node j: {[tj1-from, tj1-to, cj1, pj1], [tj2-from, tj2-to, cj2, pj2], [tj3-from, tj3-to, cj3, pj3], …, [tjn-

from, tjn-to, cjn, pjn]} 
 

This set can be exploited to determine the schedule. The next paragraphs 
describe some common scenarios. 

In order to schedule the minimum cost trip, we choose the temporal 
interval i at the destination node d with the minimum cdi value. Then, we add 
to the empty stack T – describing the trip – the following triplet: 



 Emmanuel Stefanakis - Scheduling trajectories on a planar surface with 
moving obstacles 

 431

< tdi-from, cdi, locd > 
 

where locd is the location of the destination node. The process is applied 
recursively to the node pdi, etc., until start node s is reached. The triplets at T 
describe the movement of the object. Notice that the cost assigned to the edges 
of the network may be their length or the expenses to traverse them (e.g., 
expressed in petrol consumption), etc. In the former case, the shortest in length 
trip is scheduled. In the latter case, the least expensive trip is scheduled. 
In order to schedule the fastest trip, we choose the first temporal interval 
assigned to the destination node d. Then we add to an empty stack T – 
describing the trip – the following triplet: 
 

< td1-from, cd1, locd > 
 
The process is applied recursively to the node pd1, etc., until start node s is 
reached. The triplets at T describe the movement of the object. 

In order to schedule the trip that takes the moving object at destination at 
time ta, we choose the temporal interval k, assigned to the destination node, 
which contains time ta (i.e., ta 0¸[tdk-from, tdk-to]) Then we add to an empty stack 
T – describing the trip – the following triplet: 

 
< ta, cdk, locd > 

 
The process is applied recursively to the node pdk, etc., until start node s 

is reached. The triplets at T describe the movement of the object. 
 
3. Prototype System and Example Scenarios 
 

A prototype system has been developed in Java to implement the 
algorithm described in the previous Section. Figure 9 presents the interface of 
the system. What is shown is the snapshot of the situation at time 114 (for a 
network life of [0,400]). Four moving obstacles are alive then. The current 
location of the moving object is at point c. Start and destination nodes are 
marked with s and d respectively. 
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Figure 9. The interface of the system. 
 

Figure 10 shows the values of the parameters that are read by the system 
for the example in Figure 9. The spatio-temporal cube is defined by the triplet 
(0,0,0) and (1000,1000,400). Cell size is equal to 100x100 (Figure 3), and 16 
directions of movement are considered (Figure 5c). Start and destination points 
are located at (0,400) and (1000,100) respectively. Their closest network nodes 
are considered as start and destination nodes (see Figure 10). The start time for 
the trip is equal to 0. The velocity of the moving object is constant and equal to 
5 distance_units/time_units. The system is asked to compute only the minimum 
cost schedule. Eight moving obstacles are considered. The first of them (id = 1) 
has a radius of 60 units, and moves from point (0,300) to point (300,300) 
during the temporal interval [0,60]. The costs assigned to the edges of the 
network are equal to their length (Euclidean distance). 

Figure 11 presents three schedules for the moving object based on 
different criteria. With the parameter values listed in Figure 10, the system is 
asked to simulate the courses of the moving object which satisfy: 
 

 Course M: the minimum cost trip (i.e., the minimum length trip; given 
that our cost model is based on the distance measure). 
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 Course F: the fastest cost trip (i.e., the trip that takes the moving object 
at destination node at the earliest possible). 

 Course A: the arrive at 260 trip (i.e., the trip that takes the moving 
object at destination node at time 260). 

 

 
 

Figure 10. The list of parameter values. 
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Figure 11. Three schedules for the moving object based on different criteria. 

 
Table 1 presents the courses computed by the system. Each course is 

described by a set of records: 
 

<(x,y) c [ta, td]> 
 
where (x,y) are the coordinates of the nodes composing the course (grid 
coordinates), c the accumulated cost at the node (for the trip from the start 
node), ta the time of arrival at the node, and td the time of departure from the 
node. 
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Table 1. Three courses descriptions for the moving object in Figure 11. 
 

 
 
 
4. Conclusion 
 

This paper introduces an algorithm for scheduling the trajectory of a 
point object, which moves on a plane surface comprising of moving obstacles. 
The schedule may be based on various quantitative criteria, e.g., minimum cost 
course, fastest course, arrive at specific time course, etc. A prototype system 
that implements the algorithm has been developed and tested through different 
scenarios. 

Future research directions include: (a) the optimal scheduling of 
trajectories for a set of moving points; (b) the consideration of dynamic travel 
cost models (Section 2.2), and (c) the optimization of the algorithm. 
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