ON SOME PROPERTIES OF THE SYMPLECTIC AND HAMILTONIAN MATRICES

by Dorin Wainberg

Abstract: In the first part of the paper the symplectic and Hamiltonian matrices are defined and some properties are pointed, and in the second part a relation between those two sets of matrices is proved.

1. Proprieties of symplectic and Hamiltonian matrices

For the beginning it will be introduced the square matrix $J \in M_{2n \times 2n}(b)$ defined by

$$J = \begin{bmatrix} 0_n & I_n \\ -I_n & 0_n \end{bmatrix}$$
(1)

where: $0_n \in M_{n \times n}(b)$ – zero matrix

 $I_n \in M_{n \times n}(b)$ – identity matrix

Remark 1

It is not very complicated to prove that the next properties of the matrix J are real (properties that will be very useful to prove some propositions that follow):

i)
$$J^{t} = -J$$

ii) $J^{1} = J^{t}$
iii) $J^{t}J = I_{2n}$
iv) $J^{t}J^{t} = -I_{2n}$
v) $J^{2} = -I_{2n}$
vi) $\det J = \pm 1$

Now the definition of the symplectic and Hamiltonian matrices are given:

Definition 1

A matrix
$$A \in M_{2n \times 2n}()$$
 is called symplectic if:
 $A^{t}JA = J$
(2)

where $J \in M_{2n \times 2n}$ () is from (1).

We will denote by SP(n, |) $\stackrel{\text{not}}{=} \{A \in M_{2n \times 2n}(|) | A^t J A = J\}$ the set of $2n \times 2n$ real symplectic matrices.

Definition 2

A matrix $A \in M_{2n \times 2n}([))$ is called Hamiltonian if: $A^{t}J + JA = 0$

(3)

where $J \in M_{2n \times 2n}(\ |\)$ is from (1).

We will denote by $\operatorname{sp}(n, b) \stackrel{\text{not}}{=} \{A \in \mathbb{M}_{2n \times 2n}(b) | A^t J + JA = 0\}$ the set of $2n \times 2n$ real Hamiltonian matrices.

In the next part some properties of those sets of matrices will be proved, for example:

Proposition 1

Let $A, B \in SP(n, b)$. The next relations are true:

a)
$$A$$
 is nonsingular;
b) $A^{-1} = -J A^{t} J$;
c) $A^{t}, A^{-1}, AB \in SP(n, ||).$

Proof

a) From the definition of symplectic matrices we have $A^t J A = J \Rightarrow \det(A^t J A) = \det J \Rightarrow \det A^t \cdot \det J \cdot \det A = \det J \Rightarrow \det A^t \det A = 1 \Rightarrow (\det A)^2 = 1 \Rightarrow \det A = \pm 1 \neq 0 \Rightarrow A$ is nonsingular.

b)
$$A \in SP(n, |) \Rightarrow A^t J A = J | A^{-1} \Rightarrow A^t J = J A^{-1} \Rightarrow J^1 A^t J = A^{-1} \Rightarrow A^{-1} \Rightarrow J^{-1} A^{-1} \Rightarrow J^$$

$$J^{t} A^{t} J = A^{-1} \stackrel{-J=J^{t}}{\Rightarrow} \Rightarrow A^{-1} = -J A^{t} J. \text{ More, we have: } A = -J A^{-1} J.$$

c) $A \in SP(n, |) \Rightarrow A^{t} J A = J | \cdot J \Rightarrow A^{t} J A J = J^{2} = -I_{2n} | \cdot A^{t} \Rightarrow A^{t} J$

 $A J A^{t} = -A^{t}$ Now, multiplying at the left side by $(A^{t})^{-1}$, we will obtain: $J A J A^{t}$ = $-I_{2n}$. Multiplying again at the right side by J^{-1} : $A J A^{t} = -J^{-1} = -(-J) = J$ $\Rightarrow A J A^{t} = J \Rightarrow (A^{t})^{t} J A^{t} = J \Rightarrow A^{t} \in SP(n, [)$

We will proof now that $A^{-1} \in SP(n, |)$. Using the relation $A^{-1} = -JA^tJ$ (from the point b)) we have successive:

 $(A^{-1})^{t} J A^{-1} = (-J A^{t} J)^{t} J (-J A^{t} J) =$

$= J^t (JA)^t J J A^t J =$	$J^2 = - I_{2n}$
$= J^t A J^t (- I_{2n}) A^t J =$	
$= - J^t A J^t A^t J =$	$A J^{t} A^{t} = (A^{t}JA)^{t} = J^{t}$
$=$ - $J^t J^t J^=$	$J^t J^t = - I_{2n}$
$= J \Rightarrow A^{-1} \in \operatorname{SP}(n, \)$	
will proof now that $AB \in SP(n,)$:	

We will proof now that $AB \in SP(n, |)$: $(AB)^{t} JAB = B^{t} A^{t} JAB =$ $= B^{t} JB =$ $= J \implies AB \in SP(n, |)$

Consequence. The set of symplectic matrices SP(n, ||) is a subgroup of the set of nonsingular matrices GL(n, ||) reported to multiplication. Indeed we have $AB \in SP(n, ||)$, $\forall A, B \in SP(n, ||)$, and $AB^{-1} \in SP(n, ||)$, $\forall A, B \in SP(n, ||)$. **Proposition 2**

Let $A \in SP(n, ||)$ and $p_A(x)$ - the characteristic polynomial of the matrix A. If $p_A(c) = 0$, then $p_A(\frac{1}{c}) = p_A(\overline{c}) = p_A(\frac{1}{c}) = 0$, where $c \in ||$.

Proof

$$p_{A}(x) = \det(A - xI_{2n}) = A = -JA^{-1}J$$

$$= \det(-JA^{-1}J - xI_{2n}) = I_{2n} = -J^{2}$$

$$= \det(J(-A^{-1})J + xJ^{2}) = I_{2n} = -J^{2}$$

$$= \det(J(-A^{-1})J + xJ^{2}) = I_{2n} = -J^{2}$$

$$= \det(J(-A^{-1} + xI_{2n})J) = I_{2n} = I_{2n}$$

Proposition 3

The next relations are equivalent:

a) *A* is a Hamiltonian matrix;

b)
$$A = JS$$
, where $S = S^{t}$;
c) $(JA)^{t} = JA$.

Proof

$$\begin{array}{l} \text{,, a } \Leftrightarrow \text{ b} \text{ ''} \\ A = J \ J^{-1}A \Leftrightarrow \underline{A} = J(-J)\underline{A} \stackrel{A \in sp(n,R)}{\Leftrightarrow} (J(-JA))^{t}J + JA = 0 \Leftrightarrow (-JA)^{t} \ J^{t} \ J \\ = -JA \stackrel{J^{t}J = I_{2n}}{\Leftrightarrow} (-JA)^{t} = -JA \Leftrightarrow \underline{J}(-JA)^{t} = \underline{A} \\ \text{If } -JA = S \Leftrightarrow A = J(-JA) = J(-JA)^{t} \Leftrightarrow A = JS = JS^{t} \Rightarrow S = S^{t} \\ \text{,, a } \Leftrightarrow \text{ c} \text{ ''} \\ A^{t} \text{ J} + \text{JA} = 0 \Leftrightarrow A^{t} \text{ J} = -JA \stackrel{()^{t}}{\Leftrightarrow} (A^{t} \text{ J})^{t} = (-JA)^{t} \Leftrightarrow \text{ J}^{t}A = -(JA)^{t} \Leftrightarrow -JA = -(JA)^{t} \Leftrightarrow (JA)^{t} = JA \end{array}$$

Proposition 4

Let $A, B \in sp(n, b)$. The next relations are true:

a)
$$A + B \in \operatorname{sp}(n, |);$$

b) $\alpha A \in \operatorname{sp}(n, |), \alpha \in |;$
c) $[A, B] \in \operatorname{sp}(n, |), \text{ where } [A, B] \stackrel{def}{=} AB - BA$

Proof

a) Because A and B are Hamiltonian matrices it results that $A^t J + JA = 0$ respectively $B^t J + JB = 0$. By adding those two relations we will obtain:

 $(A^t + B^t) J + J(A + B) = 0 \iff (A + B)^t J + J(A + B) = 0 \iff A + B \in \operatorname{sp}(n, h).$

ii)
$$A^t J + JA = 0 \mid \alpha \iff A^t J\alpha + JA\alpha = 0 \iff A^t \alpha J + J(A\alpha) = 0 \iff (A\alpha)^t J + J(A\alpha) = 0 \iff \alpha A \in \operatorname{sp}(n, |).$$

iii) We will prove that [A, B] = J M, where $M = M^t$. We know that A = JS and B = JR, where $S = S^t$ and $R = R^t$. [A, B] = AB - BA = JSJR - JRJS = J(SJR - RJS), from where, making the notation SJR - RJS = M we will obtain [A, B] = J M.

Now we will show that $M = M^t$

 $M^{t} = (SJR - RJS)^{t} = (SJR)^{t} - (RJS)^{t} = R^{t}J^{t}S^{t} - S^{t}J^{t}R^{t} = -RJS + SJR = SJR$ -RJS = M

Consequence. (sp(n, b), $[\bullet, \bullet]$) is a Lie algebra.

Proof. We will prove the necessary properties of the bracket $[\bullet, \bullet]$: bilinearity, antisymmetry and Jacobi's relation.

i) $[\alpha A + \beta B, C] = \alpha[A, C] + \beta[B, C]$ - evidently \Rightarrow the operation is bilinear.

ii) $[A, B] = AB - BA = -(BA - AB) = -[B, A] \implies$ the operation is antisymmetric.

iii) Jacobi's relation is satisfied:

[[A, B], C] + [[C, A], B] + [[B, C], A] = [AB - BA, C] + [CA - AC, B] + [BC - CB, A] = =ABC - BAC - (CAB - CBA) + CAB - ACB - (BCA - BAC) + BCA - CBA - (ABC - ACB) = 0

Proposition 5

Let $A \in sp(n, b)$ and $p_A(x)$ - the characteristic polynomial of the matrix A. Then:

a) $p_A(x) = p_A(-x)$ b) if $p_A(c) = 0$, then $p_A(-c) = p_A(\overline{c}) = p_A(-\overline{c}) = 0$, where $c \in |$. **Proof** a) $p_A(x) = \det(A - x I_{2n})$, but $A = J A^t J \implies$ $p_A(x) = \det(J A^t J - x I_{2n})$ $= \det(J A^t J - J x J) =$ $= \det(J (A^t + x I_{2n})J) =$ $= \det(J(A^t + x I_{2n})J) =$ $= \det(A^t + x I_{2n}) = \det(A^t + x I_{2n}^t) =$ $= \det(A + x I_{2n}) = \det(A - (-x) I_{2n}) = p_A(-x)$ b) $p_A(c) = 0 \stackrel{a)}{\Rightarrow} p_A(-c) = 0.$ $p_A(x)$ is a real coefficients polynomial $\implies p_A(\overline{c}) = 0 \stackrel{a)}{\Rightarrow} p_A(-\overline{c}) = 0.$

2.A relation between the sets sp(n, b) and SP(n, b)

Theorem:

Let $A \in M_{2n \times 2n}$ (b). The next relations are equivalent: a. $A \in \text{sp}(n, | b)$ b. $\exp(At) \in \text{SP}(n, | b)$ **Proof** $A \in \text{sp}(n, | b) \Leftrightarrow A^t J + JA = O$

⁴⁴⁶

Let $U(t) = (\exp(At))^{t} J \exp(At)$ But, on the other hand we have: $\frac{\mathrm{dU}}{\mathrm{dt}} = \left[\frac{\mathrm{d}}{\mathrm{dt}}\exp(At)\right]^{t} J \exp(At) + \left[\exp(At)\right]^{t} J \left[\frac{\mathrm{d}}{\mathrm{dt}}\exp(At)\right]$ $= [A \exp(At)]^{t} J \exp(At) + [\exp(At)]^{t} J A (\exp(At))$ $= \left[\exp(At)\right]^{t} A^{t} J \exp(At) + \left[\exp(At)\right]^{t} J A \exp(At)$ $= \left[\exp(At)\right]^{t} \left[A^{t} J + J A\right] \exp(At) = 0.$ $\Rightarrow U(t) - \text{constant.}$ (*) But $U(0) = (\exp(A \land O))^t J \exp(A \land O) = J$ (**) From (*) and (**) $\Rightarrow U(t) = 0 \Rightarrow (\exp(At))^t J \exp(At) = J \Rightarrow \exp(At)$ \in SP (n.). $,,b \Rightarrow a$ " $\exp(At) \in \operatorname{sp}(n, |) \Rightarrow (\exp(At))^{t} A J A \exp(At) = J. \Rightarrow$ $\Rightarrow \frac{d}{dt} [(\exp(At))^t J A (\exp(At))] = 0 \Rightarrow$ $\Rightarrow \left[\frac{d}{dt}\exp\left(At\right)\right]^{t} J\exp\left(At\right) + \left(\exp\left(At\right)\right)^{t} J\left[\frac{d}{dt}\exp\left(At\right)\right] = 0$ $\Rightarrow (A \exp(At))^{t} J \exp(At) + (\exp(At))^{t} J A \exp(At) = 0$ $\Rightarrow (\exp(At))^{t} A^{t} J \exp(At) + (\exp(At))^{t} J A \exp(At) = 0$ $\Rightarrow (\exp(At))^t [A^t J + JA] \exp(At) = 0$

Multiplying at the right by $((\exp (At))^t)^{-1}$ and at the left by $(\exp (At))^{-1}$ we will obtain:

 $A^{t}J + JA = 0 \implies A \in \operatorname{sp}(n, \mathbb{h}).$

References:

[1] Mircea Puta – Calcul matriceal, Timişoara, Editura Mirton, 2000

[2] Mircea Puta – Varietăți diferențiabile - probleme, Timișoara, Editura Mirton, 2002

[3] Mircea Puta – Hamiltonian Mechanical Systems and Geometric Quantinization, Kluwer, 1993.

[4] R. Abraham, J. Marsden and T. Ratiu - *Manifolds, Tensor Analysis and Applications*, Second Edition, Applied Math. Sciences 75, Springer Verlag, 1988.

Author:

Dorin Wainberg, "1 Decembrie 1918" University of Alba Iulia, E-mail address: wainbergdorin@yahoo.com