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Abstract. Let
���

be the set of representatives for the nonnegative subunitary rational numbers
in their lowest terms with denominators at most � and arranged in ascending order. This finite
sequence of fractions has two remarkable basic properties. The first one asserts that the difference
between two consecutive fractions equals the inverse of the product of their denominators. The
second, called also the mediant property, says that if �����
	
� , ��� ���	
� � and ��� � ���	
� � � are consecutive
in
� �

then � � � �
	 � ����� � ��� � � � ��� � � 	 ��� 	 ��� ��� . These properties are equivalent and they were
mentioned without proof for the first time by Haros in 1802 and respectively by Farey in 1816,
independently. Thus the proper name for

���
should be “the Haros-Farey sequence” instead of

“the Farey sequence” as it is known after Cauchy.

Besides marking the two centuries anniversary of the Farey sequence, the main raison d’être of
this article is to survey some important properties of

� �
, most of them discovered recently. We

also sketch the impact of these results on different problems of Number Theory or Mathematical
Physics. There are many papers (more than five hundred published only in the last fifty years)
dealing with

���
, and here we only mention a few of them. Though, starting with the cited articles

below, one may easily track most of the remaining ones.

2000 AMS Subject Classification: 11B57, 11K99, 11L05, 11M26, 11N37, 11P21.

1. Introduction and historical notes

Since the ancient Egypt era, from which the Ahmes (Rhind) papyrus is one of the old-
est written pieces of mathematics which came down to us, fractions are widely used in
mathematics. They raise many problems, of which, even today, some remain as difficult
as they have ever been. A common fraction ����� can be viewed as a relation between
two integers � and � �!#" , and the set of all such fractions preserves all the mystery the
integers have. The Egyptians worked only with unit fractions (fractions with numerator
equal to one, known also as Egyptian fractions) and their problem was to write any given
common fraction as a sum of different unit fractions. Farey fractions may be used as a
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tool to solve Egyptian’s task and there are many algorithms which produce short repre-
sentations, and also representations with small denominators (see Bleicher [Ble1972]).

The way in which the unit fractions are positioned with respect to one another is well
understood, although this still contains a wealth of information about numbers, which
inspired John Napier [Nap1614] four hundred years ago and led to the very important
discovery of the natural logarithm. The distribution of rationals in $ "&%')( with bounded
denominator raises difficult and interesting questions.

Here, we consider all the reduced subunitary fractions with denominators bounded by
a fixed margin. More precisely, let * be a positive integer and denote by +-, the set of
irreducible fractions in $ "&%')( whose denominator does not exceed * , that is+., !0/ � ��1 "32 � 2 � 2 * %54 � % �76 !8'�9;:
The cardinality of + , is< 4 *=6 !?> +., !8'A@CBDFEHGJI 4LK 6 ! MN�O * O @QPR4 *TS�U7V5*W6 :
We assume that the elements of +X, are arranged increasingly and for any K with '�2YKT2< 4 *W6 , we write the fractions as Z D !\[^]_ ] , in which 4 � D % � D 6 !8' and "`2 � D 2 � D 2 * .
Notice the symmetry of +a, with respect of ' ��b . For example when * !?c , we havedfe !0gih jk% jl % jm % jn % jo % O l % jp % On % p l % jO % o l % pn % O p % n l % po % o n % nm % m l % j jrq5:
The sequence +., is known as the Farey sequence (series) of order * , but during the last
century a number of authors questioned this label. Farey was a geologist who published
a note [Far1816e] in which he observes the “mediant property” of +-, . This states that
if �����=st��uv����u�sw��u�ux����u u are consecutive elements of +a, then� u� u ! � @ � u�u� @ � u u : (1.1)

Reading a French translation of the note [Far1816f], in the same year, 1816, Cauchy
(see [Cau1840, Vol. I, 114–116]) proves the “curios property”, as Farey called it, and
includes the proof in an earlier edition of his Exercices de mathématique. But this is not
the first time when +a, appears on a published paper. Two hundred years ago, in 1802,
C. Haros [Har1802] showed how one could construct

dfyzy
and uses the mediant property

in the process. In fact Haros used only the fact that the mediant is between the fractions
that defines it. Although, he explicitly stated that the difference between consecutive
fractions in

dfyzy
is one over the product of their denominators, that is relation (1.2) below.

A largely quoted sentence of Hardy [Har1959] attributes “the Farey’s immortality” to
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his “failure to understand a theorem which Haros had proved perfectly fourteen years
before.” This is an overstatement, since Haros’s construction does not qualify as a proof
and there is no way to know whether Farey new about Haros’s paper (in fact Farey says
at the end of [Far1816e] that he “is not acquainted, whether this curious property of
vulgar fractions has been before pointed out; or whether it may admit of some easy or
general demonstration”). We remark the role played by tables in the discoveries made
by both Haros and Farey. More comments on the subject have been made, for example,
by Dickson [Dic1938, Vol.1, pag. 156], Hardy and Wright [HW1979]. Bruckheimer
and A. Arcavi [BA1995] give more details on the texts that propagated the error until
this day.

A natural quadratic generalization of the Farey sequences was introduced and studied
numerically by Brown and Mahler [BM1971]. Afterwards, trying to make some justice
to Haros, Delmer and Deshouillers [DD1993], [DD1995] have called this new sequence
the Haros (or quadratic) sequence. Taking all these into account, after two hundred
years one may agree that the appropriate name for what is largely known as “the Farey
sequence” should be “the Haros-Farey sequence”. But still, even in the present survey,
we are forced by the multitude of articles on the subject to keep in use the historical
name.

There is a second basic property of +X, , equivalent to (1.1), which characterizes consec-
utive fractions of +a, . This says that{ 4 Z�| % Z�|)} j 6 !8'�% for any '~2���2 < 4 *W6a� 'a% (1.2)

in which
{ 4 ZF� % Z�|�6 ! { 4L��%�� 6 ! �R�� [��H[��_ � _ � �� % for any Zr� ! �F�����
� and Z7| ! ��|�����| in +., :

Different geometric interpretations of the Farey sequence show their usefulness in differ-
ent contexts. One of them is through Ford’s circles (see [For1938] and [Max1985]). But
the first interpretation one could imagine is to represent each fraction ����� with "`2 � 2� 2 * as a lattice point 4 � % ��6 in the cartesian plane. This was the source of inspiration to
an ingenious proof of (1.1) discovered by Sylvester. We call a fraction ����� visible if the
segment of the straight line connecting the origin with the point 4 � % ��6 contains no other
lattice points. Now if we send a ray from the origin along the � -axis and then rotate it
counterclockwise, it is clear that the ray will end up only in points with 4 � % �76 !8' . This
means that we have a perfect correspondence between the fractions from +-, and the set
of visible points situated in the triangle with vertices 4�"&%�" 6 %a4 * %�" 6 %.4 * % *=6 . Moreover,
each fraction equals the slope of the line connecting the origin to the corresponding
point, and the ray touches the points successively in an order that agrees with the as-
cending order of +a, . In particular, if Z u ! � u ��� u and Z u u ! � u u ��� u u are consecutive
Farey fractions, than the triangle with vertices 4�"&%�" 6 %a4 �ku % �Fuv6 %�4 ��u u % �Fu�u�6 contains no other
lattice points inside or on the edges. The area of this triangle equals ' ��b . (Sylvester
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observed this directly, but afterwards, in 1899, Pick discovered a more general statement
that says: “The area of a polygon whose vertices are lattice points equals the number of
points inside plus a half of the number of points on the boundary minus one.”) On the
other hand, from analytic geometry we know that the area of the triangle is also equal to{ 4 Z u % Z u�u 6z��b . This proves (1.2), and (1.1) follows immediately from it. There are many
other different arguments to prove the two equivalent basic properties, three of them
presented by Hardy and Wright [HW1979, Chapter III].

We remark that relations (1.1) and (1.2) allow us to determine recursively all the elements
of +., . Thus, starting with two “parent fractions” from +-, , one can insert successively all
the mediants with denominators at most * to get all the Farey fractions in that interval.
In particular starting with " � ' and ' � ' , one obtains all the elements of + , . On the other
hand, (1.2) produces the fractions in a row increasingly (or decreasingly). We see that
for any two relatively prime integers "�2 � j % � O 2 * there exists exactly one pair of
consecutive fractions in +X, with denominators � j % � O . Also, a neighbor denominator is
uniquely determined by � j and � O (for more details see Section 4).

Farey fractions are often better suited than regular continued fractions in all kind of
approximation problems. They are a useful tool in a variety of domains, especially in
the circle method (started by Hardy and Littlewood in the early 1920’s and significantly
enhanced over the years, see [DFI1994]) and in the rational approximation to irrationals
(see the head-stone paper of Hurwitz [Hur1894]). The proof of a nice recent result of
Aliev and Zhigljavsky [AZ1999] requires approximations with Farey fractions. They
determine, for any given irrational number ��� 4�"&%' 6 , the two-dimensional asymptotic
distribution of the pairs � KJ�R�x� �H� %�KA4�' � ����� �H��6�� , with '�2t� 2wK , as K¢¡¤£ , where��� 1 !¥� � 4�� Ur¦ ' 6 are the elements of the Weyl sequence of order K . (A remarkable
fact says that for any K , the interval $ "&%')( is partitioned 4�� U&¦ ' 6 by the Weyl sequence
in subintervals of only two or three distinct lengths.) Also, many sieve methods appeal
to Farey fractions and almost any application of the large sieve to number theory starts
with a sum over the elements of +a, (see Montgomery [Mon1978, § 8]).

Generalizations of the real Farey fractions to the complex plane were tried by Cas-
sels, Ledermann and Mahler [CLM1951] and by Schmidt [Sch1969]. Cassels, Led-
ermann and Mahler introduced and studied the so-called Farey sections for ¨ 4L�^© ª 6
with ª«!¬'�% M (see also Leveque [LeV1952]). Schmidt’s approach is along different
lines. He generalizes the Farey interval (distance between two consecutive Farey frac-
tions) to Farey triangles and Farey quadrangles. This applies only for a few quadratic
fields, ¨ 4L� © ª 6 with ª!®'�% b % M %^c . Schmidt uses his construction to investigate the
approximation spectra of the corresponding fields. (In the case of ¨ 4L� © ª 6 , the ap-
proximation spectra is the set of all constants ¯ 4L° 6 , where ¯ 4L° 6 for any ° ��Q¨ 4L� © ª 6
is defined as ¯ 4L° 6 ! S �x�Y±�²�³�4�´ � ´
´ � ° �¶µ ´ 6�· j , the S �x�Y±�²�³ being taken over all alge-
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braic integers � % µ¸�¹¨ 4�� © ª 6 , �¶�!¥" .) Building along the same ideas is the work of
Moeckel [Moe1982] and the concept of Farey tesselations of Vulakh [Vul1999].

There are many more papers dealing with Farey fractions and the ones presented here
may serve as good starting points. We end this section by mentioning one more work
of Plagne [Pla1999], who uses Farey fractions as a tool to prove a uniform version of
Jarnı́k’s theorem, which states that for any given function º 4 ��6 tending to infinity there
exists a strictly convex curve » and a strictly increasing sequence of integers 4 � D 6 D�¼ h ,
such that for each K , �� »¾½ 4 j_ ]�¿ 6 O ���À _zÁ�Â�Ã]Ä�Å _ ]�Æ .
2. Farey fractions and the Riemann Hypothesis

The first one who noticed the connection between the distribution of + , and the Rie-
mann hypothesis (to shorten, RH from now on) was Franel [Fra1924]. His result was
then clarified by Landau [Lan1924] and [Lan1927]. For a different, more elementary
approach, see Zulauf [Zul1977].

The Farey fractions are very nicely distributed in $ "&%')( . Before the computer era, this
even made Neville [Nev1950] to compile a book with over four hundred pages contain-
ing the M 'Çkc�È7É elements of

d j h O n . One way to measure the departure of +a, from a
perfectly uniformly distributed sequence is to find the displacements Ê^| ! Z7|~� |Ë Å G Æ
and to show that in average they are small. But this is not easy at all, since Franel proved
the equivalence ÌfÍ Î�Ï Ë Å G ÆB|)Ð j ´ Ê | ´7!?P � * j�Ñ O }�Ò � : (2.1)

In fact he showed that the estimate is equivalent to another real line statement of RH,
which says that Ó DFE�Ô�Õ 4LK 6 !ÖP�4 * j�Ñ O }�Ò 6 % where Õ 4LK 6 is the Möbius function. Landau
gives a similar version showing thatÌfÍ Î�Ï Ë Å G ÆB|)Ð j Ê O| !ÖP � * · j }�Ò � :
On the lower bound side Stechkin [Ste1997] showed unconditionally thatË Å G ÆB|^Ð j Ê O|`× * · j SxU7VØ* %
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disproving a conjecture of Sato, who guessed that the lower bound should be no more
than *3· j 4 S�U7VÙSxU7VÙS�U7V5*W6 O . Answering a question of Davenport, Huxley [Hux1971]
proved a result for Dirichlet Ú -functions which is similar to that of Franel.

Subsequently different authors proved that other statements of this sort are equivalent to
RH. Some interesting examples are:ÌfÍ Î�Ï Ë Å G ÆB|)Ð jTÛ Z O| � 'M�Ü !?P ��* j�Ñ O }�Ò � %ÌfÍ Î�Ï Ë Å G ÆB|)Ð jTÛ Z p| � 'Ý Ü !?P � * j�Ñ O }�Ò � %
which are due to Kopriva, Mikolás and Zulauf, or the asymmetric ones:ÌfÍ Î�Ï Þ Ë Å G Æ Ñ OàßB|^Ð j Û Z7|Ø� 'Ý Ü !?P � * j�Ñ O }�Ò � %ÌáÍ Î�Ï �R���h E�â�E j ��� Bã � E�â Êz| ��� !ÖP � * j�Ñ O }�Ò � %
which are stated by Zulauf and respectively by Kanemitsu and Yoshimoto. Using arith-
metical considerations on Dirichlet characters and Ú -functions, in [KY1997] were es-
tablished other “short-interval” results, that is

jn % jm -results. More generally, Kanemitsu
and Yoshimoto [KY1996] showed that for any function º belonging to a large class of
so called Kubert functions, the following equivalence holds:ÌáÍ Î�Ï Ë Å G ÆB|)Ð j º 4 Z | 6 !?P � * j�Ñ O }�Ò � :
For a general account on the connections between RH and the Farey fractions see [KY1996],
[Yos1998], [KY1997], [Yos2000] and the references therein.

Another way to see if a sequence is nicely distributed is to see if its discrepancy is small.
The discrepancy of +a, is defined asä G 1 ! ±�²�³h E�årE j ����� >æ4 +a,R½T$ "&%�çi( 6< 4 *W6 � ç ����� :
Improving on an earlier result of Neville, Niederreiter [Nie1973] has shown that for anyç with "�2èçé2#' , we have

ä G�ê 4ë> +a,i6�· j�Ñ O ê *;· j . Later Dress [Dre1999] proves
the unexpected equality

ä G ! *;· j :
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In fact, we already knew that + , is uniformly distributed 4�� U&¦ ' 6 , since for any Rie-
mann integrable function º defined on $ "&%')( , one has

S �x�GiìJí '< 4 *=6 Ë Å G ÆB|)Ð j º 4 Z�|�6 !
jî h º 4Lï 6rð ïH%

verifying Weil’s criterion, as Mikolás [Mik1949] has proved. This inspired Koch to ask
for which functions ºt�wÚ j $ "&%')( is the Riemann hypothesis equivalent to the estimateñ Ä 4 � % *W6 !?P�4 * j�Ñ O }�Ò 6 . Here

ñ Ä 4 � % *W6 is the shorter interval Koch-Mikolás remainder:ñ Ä 4 � % *W6 !�Bã � E�Ô º 4 Z7|ò6.� < 4 *W6
Ôî h º 4Lï 6rð ïH%

The point here is that knowing good bounds for
ñ Ä 4 � % *W6 for certain classes of test func-

tions º may lead to some insight in understanding RH. This problem was considered, for
example, by Codecà [Cod1981], Codecà and Perelli [CP1988], Yoshimoto and others in
a series of papers (see [Yos1998], [Yos1998]).

3. The distribution of spacings between Farey points

It is generally accepted that the Farey sequence is uniformly distributed in $ "&%')( , but it is
rather hard to measure the size of this uniformity. One believes that there might be some
correspondence between consecutive Farey points and differences between consecutive
zeros of ó 4�ô 6 . What is presently known is that if there is such a correspondence, it is not
a trivial one, because these two sequences have different distributions.

Since the discovery in the early 1970’s of the fact that the zeros of the Riemann zeta
function and the eigenvalues of GUE matrices have the same pair correlation function
(the GUE hypothesis or the Mongomery-Odlyzko Law), much effort has been put by
number theorists trying to develop techniques to prove the conjecture. Following the
principle that says to try first the analogue of an inabordable problem in different settings
and along the way to learn techniques that might prove useful, over the years different
authors studied the distribution of a number of sequences, such as the prime numbers
(under the õ -tuple conjecture), the values of the Kloosterman sums, the primitive roots� U&¦;ö , the set of fractional parts ÷ ç º 4LK 6�ø , where ç is real and º 4 ��6 is a polynomial
with integer coefficients, the Montgomery-Odlyzko Law for some classes of zeta and
L-functions over finite fields, etc.
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As in music, where simple notes are not interesting in themselves and intervals between
them create the melody, spacings between the elements of a sequence are those who de-
termine the distribution. There is no general best concept that measures the distribution
of a sequence, but two ways to proceed are widely accepted. One of them is to obtain
the ª -level correlation measure for any ª À b , while the other asks for the õ -th level
consecutive spacing measure for any õ À b . The basic properties (1.1) and (1.2) make
the second approach to be more convenient for +X, .

3.1. Notations. Most of the statements we present about the distribution of the Farey
sequence apply for the fractions in a subinterval of $ "&%')( . This leads us to introduce
some appropriate notations. A basic property of the Farey sequence is a type of heritage
property. This manifests mainly when * gets large. Then, on average, the elements of+a, relate to one another on short intervals in the same way as on the complete interval$ "&%')( , and as a consequence, the corresponding distribution functions are the same. In
general this can be proved by bringing into play the “Kloosterman machinery”, as the
authors first realized during the Christmas holiday of 1996 at a meeting at the University
of Rochester. The basic idea is to write the condition Z�|R��ù in terms of denominators
only. This is achieved by observing that the equality Zk|Ù�¸Z7| · j ! ��|ò����|Ù� ��| · j ����| · j !' � 4 � | · j � | 6 implies � | !ûú� | · j 4�� Ur¦�� | 6 . Then, if ù is a subinterval of $ "&%')( , the state-
ment Z7|���ù is equivalent to ú�^| · j ����|
ù , as needed.

Let ù ! $ çA%zü�( be a subinterval of $ "&%')( and denote by +X, 4 ù&6 1 ! +.,R½ ù the set of Farey
fractions of order * from ù . The number of elements of +X, 4 ùr6 is< 4 * % ù&6 !0´ ù ´�ý < 4 *W6 @QPR4 *TS�U7V5*W6 ! M ´ ù ´ * O � N O @YPR4 *TS�U7V5*W6 :
A fundamental geometrical interpretation of +-, is through the set of lattice points with
relatively prime coordinates in the triangle with vertices 4 * %�" 6 , 4 * % *W6 and 4�"&% *W6 .
These points are in correspondence with the set of pairs of consecutive denominators
of fractions from +a, . By down-scaling by a factor of * , we get þ , the so called Farey
triangle. This is defined byþ ! g 4 � %zÿ 6�� " sY� 2Ö'�%H" s ÿ¾2 '�% � @éÿ��Ö' q :
Further, keeping the new scale and looking at consecutive denominators, we consider for
each 4 � %zÿ 6W��� O , the sequence g Ú � 4 � %zÿ 6 q � ¼ h defined by Ú h 4 � %zÿ 6 ! � , Ú j 4 � %zÿ 6 !0ÿ
and then recursively, for � À b ,Ú-� 4 � %zÿ 6 ! � 'A@ ÚA� · O 4 � %zÿ 6Ú-� · j 4 � %zÿ 6�� Ú-� · j 4 � %zÿ 6.��Ú-� · O 4 � %zÿ 6 : (3.1)
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For each cube » ! 4�ç j %zü j 6
	 ý
ý
ý 	 4�ç��&%zü�� 6� 4�"&%^£ 6 � , let ��
� be given by:���� ! ����Ð j�� 4 � %zÿ 6 �¢þ 1 MN O ü � swÚA� · j 4 � %zÿ 6àÚA� 4 � %zÿ 6 s MN O ç ��� : (3.2)

3.2. The õ -spacing distribution. To define the õ -spacing distribution of a sequence,
one must first apply a standard normalization to the sequence in order to get a measure
suitable to be compared with those attached to other sequences. Thus, we suppose that� h 2 � j 2 ý
ý
ý�2 � Ë are

<
given real numbers with mean spacing about ' . Then theõ â � level consecutive spacing (probability) measure � � is defined on $ "&%^£ 6 � byî

Þ h�� í Æ�� º~ð�� �W! '< ��õ Ë · �B|)Ð j º5���r|)} j � �r| % �&|^} O � �&|^} j %
:
:
:ò% � |^} � �T� |^} � · j � %
for any º¢� ¯��k�^$ "&%^£ 6 � � .
More precise information on a sequence is known if one gets the õ -level of the inter-
vals
j

distribution of a sequence. For any integer ð À ' , the õ â � level of the ð intervals
probability ���� is defined on $ "&%^£ 6 � similarly byî
Þ h�� í Æ � º ð�� �� ! '< ��õ Ë · �B|^Ð j º � � |)} � } j � �r| % � |)} � } O � �r|)} j %
:
:
:% � |)} � } � � � |^} � · j � %

for any º¢� ¯�� � $ "&%^£ 6 � � . One should notice that � j� ! � � .
3.3. The distribution Õ � . Following the general rule to get the õ -spacing distribution,
in the particular case of +X, , we first normalize the sequence +a, 4 ù&6 and put � D !< 4 * % ù&6�Z D � ´ ù ´ to get, for each * , the sequence ÷� D ø j E�DFE Ë Å G � � Æ with mean spacing
unity. Correspondingly, we obtain a sequence g Õ � � �G q G.¼ j of probability measures on$ "&%^£ 6 � . The convergence of this sequence assures the existence of the õ -spacing distri-
bution of +., . This was proved by Augustin, Boca, Cobeli and Zaharescu in [ABCZ2001].
They showed that the sequence g Õ � � �G q G.¼ j converges weakly to a probability measureÕ � , which is independent of ù . The repartition of Õ � is given byÕ ��4 »i6 ! b! #"%$ �H4 �� � 6 % for any box »& 4�"&%^£ 6 � .'

We use the word interval also with a meaning as in the intervollic theory from music. Here the spacing( �*) ',+ ( � determines an interval of a second, ( �*) Á + ( � determines an interval of a third, ( �*) Ã + ( �
determines an interval of a fourth, and so on.
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The case õ ! ' and ù ! $ "&%')( has been considered by Hall [Hal1970] and later De-
lange [Del1974] generalized the result for shorter intervals. Tâm [Tam1974] treated the
bidimensional case showing that the the pairs * O 4 Z |)} j � Z | % Z |^} OÙ� Z |)} j 6 % have a limit
distribution as * tends to infinity.

The repartition function of Õ j is given by- j 4Lï 6 ! íî â ð Õ j 4 ��6 !8' ��b! ."%$ � � gH4 � %zÿ 6 �0/0��� ÿ�� M � 4 N O ï 6 q �
!

1222223 222224 '�% for "`2wïÙ2 MN O ,� 'A@ ÈN�O ï � ÈN�O ï S�U7V MN�O ï % for MN�O 2wïÙ2 ' bN�O ,� 'A@ ÈN�O ï @65 ' � ' bN�O ï � ' bN�O ï S�U7V 'A@67 ' � j O8 Á âb % for
' bN�O 2wï .

(3.3)

This shows that Õ j is absolutely continuous with respect to the Lebesgue measure on$ "&%^£ 6 . The density of Õ j , denoted by 9 j 4Lï 6 , has different formulae on each of the three
intervals from (3.3). This is

9 j 4Lï 6 ! 12222223 2222224
"&% for "32wïÙ2 MN�O ,ÈN�O ï O S�U7V Û N O ïM Ü % for MN�O 2wïÙ2 ' bN�O ,' bN�O ï O S�U7V;: N O ïÈ : ' � 5 ' � ' bN�O ï=<>< % for

' bN�O 2wï^% (3.4)

and the graph of 9 j 4Lï 6 is shown in Figure 3.1. The fact that 9 j 4Lï 6 vanishes on an entire
interval to the right of the origin means that if we were sitting at a Farey point it is
extremely unlikely that we will find another point close by.

Let us see where this stands on the larger picture that concerns the distribution of numeri-
cal sequences. For randomly distributed numbers–the Poissonian case–, the õ -level con-
secutive spacing limiting measure Õ � is ð Õ ��4@? j %
:
:
:�%A?�� 6 !CB · ÅED ' }�FGFGF } D � Æ ð ? j :
:
: ð ?H� .
By (3.3) one finds that the proportion of differences between consecutive elements of+a, that are larger than the average equals

- j 4�' 6 ! È � ' � S�U7V � M � N O ��� � N O � 't!"&: M7M 'JI :
:
: as * ¡ £ , which is smaller than the value ' � B3!#"&: M Èkc!IkcÙ:
:
: , expected if
the Farey fractions were placed in $ "&%')( as a result of a Poisson process. The shape of
the density (3.4) places the Farey sequence at one end, a Poissonian distributed sequence
at the other end, and somewhere in the middle the statistical model of Random Matrix
Theory that corresponds to GUE. In this last case, the density of the nearest neighbor
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distribution of the bulk spectrum of random matrices–known as the Gaudin density–has
no closed form, but can be computed numerically. In Figure 3.2 the Gaudin density is
compared to the Poissonian density with mean ' . One can see that in the Poissonian
case, small spacings are quite probable, they are rare in the GUE case, while in the case
of +., they are completely missing. Thus one can say that the eigenvalues repel one
another in the GUE case, and that each Farey fraction is isolated from the others.

K L M
K

Figure 3.1: The density NPO ��Q�� . K L M
K
Figure 3.2: The Gaudin density compared
to the poissonian density.

As noticed before, Õ � is the first term in the sequence of the õ â � level of the ð intervals
probabilities ÷ Õ �� ø � ¼ j for the Farey sequence. In [CZ2002] it is proved that Õ �� exists for
any ð À b .
3.4. The index of a Farey fraction and the support of Õ � . We denote by RS�� the
support of Õ �� , and in particular R ��! R j� is the support of Õ � . It turns out that RT��
has nice topological properties, unlike in most other cases of remarkable sequences for
which the intervals distribution exists. In this section we look at R � and in the next one
at RU�� for ð À b .
Let V � 1 þ ¡ 4�"&%^£ 6 � be the map defined byV ��4 � %zÿ 6 ! p8 Á Û jWYX Å Ô � Z Æ W ' Å Ô � Z Æ % jW ' Å Ô � Z Æ W Á Å Ô � Z Æ %
:
:
:% jW ��[ ' Å Ô � Z Æ W � Å Ô � Z Æ Ü :
In [ABCZ2001] it is shown that R � coincides with the closure of the range of the func-
tion V ��4 � %zÿ 6 . From (3.3) one sees that R j !]\ M � N O %^£ � . For õ À b , R � is strictly
smaller than \ M � N O %^£ � � . Taking into account the fact that Ú.| 4 � %zÿ 6 are defined recur-
sively, we need to introduce an integer valued function that keeps the counting of the
integer values involved. This is done by the map^ 1 þ ¡ 4`_ba 6 � % ^ 4 � %zÿ 6 ! � � j 4 � %zÿ 6 %
:
:
:ò%��c�H4 � %zÿ 6 � %
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where, for '~2���2 õ , � | 4 � %zÿ 6 ! � 'A@ Ú�| · j 4 � %zÿ 6Ú�| 4 � %zÿ 6 � :
The function � j 4 � %zÿ 6 is used to define the index of a Farey fraction. If Z ! �����3sQZ�u !� u ��� u are consecutive Farey fractions, then � G 4 Z u 6 1 !?� j � _G % _*dG � is called the index of Z u
(see Hall and Shiu [HS2001]). In Section 5.2 we present estimates for the moments of
Farey fractions.

For any
^ � 4`_ a 6 � , we denote byþfe ! g�4 � %zÿ 6 �¢þ 1 ^ 4 � %zÿ 6 ! ^ q

the domains on which the map
^ 4 � %zÿ 6 is locally constant. Another way to express þHe is

through the area-preserving transformation g 1 þ ¡ þ defined byg 4 � %zÿ 6 ! Û ÿ�%�h j } ÔZji ÿ � � Ü :
One should notice that if Z u sYZ u�u sQZ u u�u are consecutive elements in

d G , then g 4 Z u % Z u�u 6 !4 Z u�u % Z u�u u 6 . Then for any
^ !04�� j %
:
:
:�%��c� 6 � 4`_ a 6 � , we haveþfe ! þ�� ' ½kg · j þ�� Á ½ ý
ý
ý ½�g · � } j þ�� � :

(When õ ! ' and � � _ a , we also write þ�� ! g 4 � %zÿ 65�¢þ 1 \ j } ÔZml !?� q .) This shows
that þfe is a convex polygon and they form a partition of þ , that is þ ! neco Åqpsr Æ � þfe andþfe�½æþfe d !ut whenever

^ �! ^ u . We remark that when õ À b , some of the polygons þ�e
are empty. More explicitly, for õ !8' , we haveþ�� !0/X4 � %zÿ 6 �¢þ 1 'Ù@ ��J@è' s ÿ¾2 'A@ �� 9
and for õ ! b , if � and v are positive integers, thenþ�� � w ! / 4 � %zÿ 6 ��þ�� 1 � 'Ù@�ÿ�rÿ � �x� ! v 9! / 4 � %zÿ 6 ��þ�� 1 'A@?4 v @è' 6����4 v @¶' 6.� ' s ÿ¾2 'A@ v �� vH� ' 9 :
Roughly speaking, þ�� corresponds to the set of 3-tuples 4 Z�u % Z�u�u % Z�u�u ux6 of consecutive el-
ements of + , with the property that

{ 4 Z u % Z u�u u 6 ! � . Similarlly, þ�� � w corresponds to the
set of 4-tuples 4 Z u % Z u�u % Z u�u u % Z �zy 6 of consecutive elements of +a, with the property that{ 4 Z u % Z u�u u 6 !8� and

{ 4 Z u�u % Z �Ey 6 ! v . We remark that þ j � j !{t , and also þ�� � w !{t when-
ever both � and v are À b except in the cases 4���% v�6Ø� g 4 b % bk6A� 4 b % M 6A� 4 b % Ý 6�� 4 M % b�6A� 4 Ý % bk6 q .
In Figures 3.3 and 3.4 one can see the polygons þ�e for õ !8' and õ ! b .
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Figure 3.3: The polygons �c� for � ��� .

�q� � �q� � �z� � �q� � �q� � �q� ���� � ��� ���� � ��� �
� �

� � ��z� � ��� � �� � �� �� ��E� ���� � ��z� � ��� � ��z� ���� � � � � � � �� � �q� ���� � ��z� ��q��E� � �� � �q� �� � �G��!�� � �q� �� � ���

� � � � ���� � � �� �� � � ����� � � � ���� � � ����� � � � � �� � � ����� � � �� �� � � �� � �G�

� ��E� � � � ��q� � � � � �q� � � � � �� � � �� � �

��� � � � �

�q� �
� � � � � � �� � �

� � � �� � �q� � � �� � ���� � � �� � �z���� � ���
Figure 3.4: The polygons �P� for � ��� .

The map V5O 4 � %zÿ 6 transforms each þ�� with � À b into a curved edge quadrangle andV O 4 þ j 6 is an unbounded curved edge triangle. Each of these sets is symmetric with
respect to   !¢¡ (   %£¡ being the variables of the system of coordinates in which R O is
drawn) and their union is the support R O . The precise shape of

ä O is shown in Figure 3.7.
It looks like a swallow with the top of the beak at 4 p8 Á % p8 Á 6 and a one-fold tail along the
diagonal   !¤¡ . The lines   ! p8 Á and ¡ ! p8 Á are asymptotes to the wings. The tail
looks like a collection of diamonds parallel to each other, with two vertices symmetric
with respect to   !¢¡ and the other two vertices on the line   !¢¡ arranged in such a
way that the K -th and the 4LKR@ Ý 6 -th diamonds have a common vertex. Formulae for the
edges of all these constituents of R=O are given explicitly in [ABCZ2001]. We remark
that each of these curves is an algebraic curve.

For õ À M the support
ä � looks more complicated, but we can look at the plotting of the

projection of
ä � on the 2-dimensional plane given by the first and last component. We

denote this projection by ¥ä � . In particular we have ¥ä O ! ä O .
A picture that approximates

ä p with the points that come from
d G with * ! M "7" is

shown in Figure 3.5. In passing from õ ! b to õ ! M the swallow seem to have suffered
some kind of a metamorphosis losing its tail. Actually it is easy to see that the tail is
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Figure 3.5: The projection of the support of¦�§ on the ¨�©�ª plane for � �¬«®� . Figure 3.6: The projection of the support of¦ O¯O on the ¨�©�ª plane for � �°«®� .
lost for good, in the sense that no other ¥ä � will have a tail along the diagonal   !¢¡ .
Indeed, a point with a large coordinate   comes from an 4 õ @¶' 6 -tuple 4[ X_ X %k[ '_ ' %
:
:
:�% [ �_ � 6of consecutive Farey fractions with �)| 2 * , for "è2¥�?2 õ , with the property that[ '_ ' � [ X_ X ! j_ X _ ' is much larger than

jG Á . Thus one of the denominators � h and � j will be
much smaller than * . Now the points with denominators much smaller than * are far
away from each other. So for any fixed õ and * ¡ £ we can not have one of � h , � j
small and also one of � � · j , � � small. Hence no ¥ä � with õ À M will have a tail along the
diagonal. For õ ! b the pairs 4   %£¡ 6 come from triplets 4[ X_ ' %k[ '_ ' %�[ Á_ Á 6 and here the middle
fraction [ '_ ' contributes to both coordinates   and ¡ . So when � j is small we get a point
close to the diagonal and this is how the tail of the swallow is obtained. We also remark
that as õ increases, the support of Õ � becomes more diffused. An example is presented
in Figure 3.6. In the two pictures, 3.5 and 3.6, different scales were adapted to present
the central parts of the projections. For guidance, one can use the fact that the beaks of
“the animals” are the same.

3.5. The support of Õ �� . For the intervals of a third distribution (the case ð ! b ) the
analogue of V O 4 � %zÿ 6 is the map V O� 1 þ ¡ 4�"&%^£ 6 � defined byV O� 4 � %zÿ 6 ! p8 Á Û � ' Å Ô � Z ÆWYX Å Ô � Z Æ W Á Å Ô � Z Æ % � Á Å Ô � Z ÆW ' Å Ô � Z Æ W Ã Å Ô � Z Æ %
:
:
:�% � � Å Ô � Z ÆW �±[ ' Å Ô � Z Æ W � ) ' Å Ô � Z Æ Ü :
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In particular, when õ ! b , R OO is the image of V OO 1 þ ¡ � O , V 4 � %zÿ 6 ! p8 Á Û �ÔJ² % wZ â Ü %in which for any 4 � %zÿ 6¸�#þ�� � w , the variables ³ and ï are given by ³ ! � � �rÿ , ï !ÿ �jv ï . A throughout computation allows to find explicitly the boundaries of V OO 4 þ36 .
The image obtained is shown in Figure 3.8. It is the two-fold tail swallow. All the
equations of the boundaries of V OO 4 þ�� � w 6 are either of the form

p8 Á ý ´ â[ }¶µ â }¶� © â Å â ·H� Æ , withï in a certain interval that can be unbounded, or the symmetric with respect to � !¶ÿ of
such a curve. Here � % µ %%·�% ð %¸B are integers. The map V OO 4 � %zÿ 6 has a “symmetrisation”
property. This makes V OO 4 þ D � ¹ 6 to be symmetric with respect to the first diagonal   !m¡
to V OO 4 þ ¹º� D 6 , for any ªT%zK À ' . The “quadrangle” V OO 4 þ O � O 6 is the single nonempty
domain V OO 4 þ�� � w 6 that has   !m¡ as axis of symmetry. The top of the beak of the swallowR OO has coordinates 4�È � N O %�È � N O 6 . The asymptotes of the wings are � ! È � N O and¡`!¶È � N O .

»» ¼
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À

Figure 3.7: The support of ¦�ÁÁ . »» ¼
¼

½
½

¾
¾

¿
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Figure 3.8: The support of ¦ §Á .
For larger intervals, that is for ð À M , numerical computations show that the supportRS�O also looks like a swallow, which always has a three fold tail. As ð increases, Rk�O
departs more and more from the origin, with the coordinates of the beak in arithmetic
progression situated always on the principal diagonal. Figures 3.9 and 3.10 present a
picture of RT�O for ð ! M and ð !8'7' obtained from the intervals of +X, with * ! M "7" . (In
order to get a better understanding of the shapes, different scales were used in the two
pictures.)
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Figure 3.9: Pairs of neighbor intervals of a
fourth.

Figure 3.10: Pairs of neighbor intervals of an
eleventh.

3.6. A view of +a, from the outside. A different approach to understand the distribu-
tion of +., was taken by Kargaev and Zhigljavsky [KZ1997], [KZ1996] who studied the
distance function from any ��� 4�"&%' 6 to +a, . Putting Â G 4 ��6 1 !è�R�x� ã o�Ã , ´ ��� Z ´ , among
other things, they derived the asymptotic distribution of * O Â G 4 ��6 . More precisely, as* ¡®£ , for any ?;�w" ,Õ � ÷�¢� $ "&%')( 1 * O Â G 4 ��6 2m? ø � ¡ Dî h Â 4Lï 6rð ïH%
where Õ 4àý 6 is the Lebesgue measure and the density Â 4Lï 6 is given by:Â 4Lï 6 ! 123 24 m8 Á % if "`2Yï 2 jOm8 Á â � 'A@ S�U7V 4 b ï 6a� ï � % if

jO 2Yï 2 bp8 Á â � baS�U7V 4 Ý ï 6.� Ý S�U7V 4 © ï�@ © ï � b�6�� 4 © ï � © ï ��bF6 O � % if b 2Yï 2¹£¤:
(There is an inadvertence in this formula in [KZ1997].) Notice that Â 4Lï 6 is closer to the
exponential density, having a large constant attraction interval near zero. This confirms
the fact that Farey sequences are good approximants of irrational numbers.



C. Cobeli, A. Zaharescu — The Haros-Farey Sequence at Two Hundred Years

Ä Å Æ
Ä

Figure 3.11: The density Ç �ÈQ�� .
4. Farey fractions with denominators in arithmetic progressions

Here we present some results on the set of Farey fractions with denominators in an
arithmetic progression. Let · swð be nonnegative integers and denote+ G � � � � ! g �����3�æ+., 1 �ÊÉ · 4�� U&¦¸ðr6 q :
As we saw in Section 2 that many statements on the distribution of +-, are equivalent
to the Riemann hypothesis, one would naturally expect that + G � � � � may be linked to
the Generalized Riemann Hypothesis. A result in this direction was provided by Hux-
ley [Hux1971]. We should remark that due to the symmetric role played by denomina-
tors and numerators in the basic relation � u u � u �T� u � u u ! ' , which holds between any two
consecutive fractions Z u % Z u u �¢+., , each statement on the distribution of the elements of+ G � � � � may be translated into an analogous one on the subset of Farey fractions whose
numerators are in the arithmetic progression ·T4�� U&¦¸ð&6 :
For + G � � � � with ð À b the fundamental relations (1.1) and (1.2) no longer hold true,
though they may be replaced by other relations in a more complex form. This makes the
study of + G � � � � more involved, and a first step is to look at the subset of Farey fractions
with odd denominators. We will say that a fraction is odd if its denominator is odd and
write, more significantly, + G � odd

! + G � j � O .
4.1. Distribution of Farey fractions with odd denominators. The fundamental rela-
tion

{ 4 Z u % Z u u 6 ! � u�u � u � � u � u u ! ' , whenever Z u ! � u ��� u st� u�u ��� u u ! Z u u are consecutive
elements of +a, , fails when Z�u�s¥Z�u u are consecutive in + G � ËAÌ±Ì . This raises a natural
question on how large is the number< G � Ë¸Ì±Ì 4�� 6 !?> ÷ 4 Z u % Z u�u 6 1 Z u % Z u�u consecutive in + G � Ë¸Ì±Ì % { 4 Z % Z u 6 !¶� ø %
for any integer � À ' . Knowing that< G � odd 1 !?> + G � odd

! bk* ON�O @YP�4 * S�U7VØ*=6 %
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an answer to this problem was given by Haynes [Hay2001], who showed that for � � _ a ,
the following asymptotic frequency exists:Â Ë¸Ì±Ì 4�� 6 1 ! S �v�G�ìJí < G � ËAÌ�Ì 4�� 6> + G � ËAÌ�Ì ! Ý��4��=@è' 6 4��=@ bk6 : (4.1)

Additionally, Haynes showed that the same frequency holds for the odd Farey fractions
in a subinterval of $ "&%')( .
The estimate (4.1) can be written asÂ Ë¸Ì±Ì 4�� 6 !ÎÍ ' ��b @  #"%$ ��4 þ j 6 % if ��!8'7% ."¸$ ��4 þ���6 % if � À b %
revealing the subiacent geometry. Such a relation should be true, more generally, for tu-
ples of consecutive odd fractions. The study of this structure is the object of [BCZ2002].
Thus, given the positive integers

{ j %
:
:
:i% { � , the problem requires to find the probabil-
ity that an 4 õ @#' 6 -tuple of consecutive fractions Z | sCZ |)} j s ý
ý
ý sCZ |)} � in + G � Ë¸Ì±Ì
satisfies the conditions

{ 4 Z7| % Z�|)} j 6 ! { j %
:
:
:ò% { 4 Z |)} � · j % Z |)} � 6 ! { � . For this, one
considers< G � ËAÌ±Ì 4 { j %
:
:
:ò% { � 6 !?> � � 1 Z�|JsQZ�|)} j s ý
ý
ý sQZ |^} � consecutive in + G � ËAÌ±Ì{ 4 Z |^} w · j % Z |^} w 6 ! { w % v !8'�%
:
:
:ò% õ �
and sees whether for õ À b the probabilityÂ ËAÌ�Ì 4 { j %
:
:
:ò% { � 6 ! S �v�G�ìWí < G � ËAÌ±Ì 4 { j %
:
:
:�% { � 6< G � ËAÌ�Ì :
still exists. This is provided explicitly byÂ G � ËAÌ�Ì 4 { j %
:
:
:% { � 6 ! BÏ o!Ð ÅEÑ ' �GÒGÒGÒ � Ñ � Æ  #"%$ ��4 þ�� ' �GÒGÒGÒ � ��Ó ÔÕÓ [ ' 6 @YP#�xÖ S�U7V O ** × % (4.2)

where the index of summations runs over selected paths in a certain odd Farey tree with
label branches satisfying a natural parity condition.

For õ ! b , there are four cases, depending on the size of
{ j % { O :

1. If
{ j !8' and

{ O !8' , thenÂ Ë¸Ì±Ì 4�'�%' 6 ! B� '®ØÚÙ%ØÜÛ  ."%$ �H4 þ�� ' 6 @ B� ' Ë¸Ì±Ì  ."%$ �H4 þ�� ' ½kg · j þ j 6 @ B� Á Ë¸Ì±Ì  ."¸$ ��4 þ j ½�g · j þ�� Á 6@ B� Á ØÚÙ%Ø@Û  ."%$ ��4 þ j ½Ýg · j þ�� Á ½�g · O þ j 6
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2. If
{ j !8' and

{ O À b , thenÂ ËAÌ�Ì 4�'�% { O 6 ! B� ' ËAÌ±Ì  #"%$ ��4 þ�� ' ½kg · j þ Ñ Á 6 @ B� Á ØÚÙ%Ø@Û  ."%$ ��4 þ j ½kg · j þ�� Á ½�g · O þ Ñ Á 6 :
3. If

{ j À b and
{ O ! ' , thenÂ ËAÌ�Ì 4 { j %' 6 ! B� Á ËAÌ±Ì  #"%$ ��4 þ Ñ ' ½�g · j þ�� Á 6 @ B� Á ØÚÙ%Ø@Û  ."%$ ��4 þ Ñ ' ½�g · j þ�� Á ½�g · O þ j 6 :

4. If �R�x��4 { j % { O 6 À b , thenÂ ËAÌ�Ì 4 { j % { O 6 ! B� Á Ø@Ù%Ø@Û  ."¸$ ��4 þ Ñ ' ½�g · j þ�� Á ½Ýg · O þ Ñ Á 6 :
We remark that since neighbor Farey fractions are closely related, for random

{ j %
:
:
:ò% { �
one should expect that Â Ë¸Ì±Ì 4 { j %
:
:
:ò% { � 6 !Ö" and even that

< G � Ë¸Ì±Ì 4 { j %
:
:
:ò% { � 6 !?" .
This is certainly true in the case õ ! b , in which Â Ë¸Ì±Ì 4 { j % { O 6 are the entries of the
following matrix: Þßßßßßßßßßà

y jO j h j lO j h jzjO j h oo F n F m on F m F l om F l F á ý
ý
ýj lO j h j nO j h pO j h " " " ý
ý
ýjzjO j h pO j h " " " " ý
ý
ýoo F n F m " " " " " ý
ý
ýon F m F l " " " " " ý
ý
ýom F l F á " " " " " ý
ý
ý
...

...
...

...
...

...
. . .

âäãããããããããå
Using the Kloosterman machinery, the estimate (4.2) is extended in [BCZ2002] to the
set of odd Farey fractions in a subinterval of $ "&%')( . As was expected, the probability has
the same main term, but the error term pays the price, being replaced by PR4 * · j�Ñ O }�Ò 6 .
4.2. The relative size of consecutive denominators of Farey fractions in arithmetic
progressions. For any two consecutive Farey fractions �&ux����u�sw�Fu uv����u u one has ��u @ ��u u �* , but this is no longer true for consecutive elements of + G � odd. This raises the natural
question to find the location of the points 4 ��ux�7* % ��u�ux�7*W6 where ��u and ��u u are consecutive
denominators of fractions from + G � odd. For any nonnegative integers · sYð , we consider
the set» G � � � � ! ÷ 4 � u �7* % � u u �7*=6 1 � u % � u u consecutive denominators of fractions in + G � � � � ø :
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In particular, we write æ G ! » G � j � O and ç G ! » G � h�� O . The authors jointly with Ior-
dache [CIZ2003] show that as * ¡ £ , the limit of the sets æ G is dense in the region
bounded by the lines ÿ�!8'�% � !8'�% b�� @�ÿ�!8'�% b ÿJ@ � !8' .
A picture of the sets æ G is shown in Figure 4.1. One can show that æ , the closure of the
limit set of æ G ’s as * ¡®£ , is the unionæ ! þéè íê� Ð jcë � %
where ë j is the triangle with vertices 4�"&%' 6A� � jp % jp �ì� 4�'�%�" 6 , and for � À b the set ë � is

the quadrilateral with vertices Û � · j� } j %' Ü � Û �� } O % �� } O Ü � Û '�% � · j� } j Ü � 4�'�%' 6 . The quadri-
lateral ë � lies over ë � · j for � À M . Numerical calculations performed with relatively
small values already show their shadow over æ .

A more complex analysis is needed for the similar problem on the even Farey fractions.
This is due to the fact that between two consecutive even fractions from +A, there may
exist many odd fractions. Indeed, ' ��b has in +X, as many as \ G o l @ � odd neighbors
on each side, where � !#"&%'�%'�% b for *íÉ "&%'�% b % M 4�� U&¦ Ý 6 , respectively. Though, in
[CZ2003] the authors prove that ç , the closure of the limit as * ¡ £ of the sets ç G , is
the same quadrangle with vertices 4�'�%' 6A� 4�"&%' 6A� 4�' � M %' � M 6A� 4�'�%�" 6 , exactly as in the odd
case.

For ð À M , numerical calculations seem to suggest that » G � � � � , for any · s¹ð , is a larger
and larger quadrangle that tends to cover the unit square as ð increases. But only the first
part of this statement seems to be true, since » p � j O , the limit as * ¡¤£ of the sets » G � p � j O ,
appears to be a hexagon with vertices 4�'�%' 6A� 4�"&%' 6A� 4   %£¡ 6A� 4�' � Ér%' � É 6A� 4`¡H%  �6A� 4�'�%�" 6 ,
where   %£¡ are rational numbers,  0î c � '
"7" and ¡ î 'Ç � É�" .
We return now to the set of odd Farey fractions. In order to take into account the contri-
bution of different pairs 4 � u % � u u 6 of consecutive denominators of fractions in + G � odd, we
remark that they are either inherited from pairs of odd fractions consecutive in +A, , or
in +a, there exists exactly one even fraction in between the fractions with denominators� u % � u u . Some, but not all, of this last type of pairs still satisfy the condition � u @ � u u � * ,
as all pairs of first type do. It turns out that a pair 4 �7u % ��u u�6 of consecutive denominators
of fractions in + G � odd satisfies the condition � u @ � u u � * with probability É � È .
In [CIZ2003] it is also calculated the limit density of the points 4 �ku��7* % ��u�u��7*=6 , where� u and � u u are consecutive denominators of fractions from + G � odd in the unit square, as


