TOPOLOGIES ON THE GRAPH OF THE EQUIVALENCE RELATION ASSOCIATED TO A GROUPOID

by Mădălina Roxana Buneci

Abstract. Let G be a topological groupoid r and d be the range map respectively the domain map of G. The relation $u \sim v$ if there is x such that r(x) = u and d(x) = v is an equivalence relation on the unit space $G^{(0)}$. The graph of this equivalence relation can be regarded as a groupoid R, and can be endowed with different topologies. We shall prove that if the restriction of the range map to the isotropy group bundle of G is open then we can endow R with a locally compact topology such that the existence of a Haar system on G is equivalent to the existence of a Haar system on R.

AMS Subject Classification 22A22, 43A05, 37A20

Key Words: topological groupoid, equivalence relation, orbit space, Haar system.

1. Introduction

Any groupoid G defines an equivalence relation on the unit space $G^{(0)}$. The graph R of this equivalence relation can be regarded as a groupoid called the principal groupoid associated with G If G is a topological groupoid then we can endow R with the product topology induced from $G^{(0)} \times G^{(0)}$. If the topology on G is locally compact then the product topology on R is locally compact if and only if the graph the equivalence relation is locally closed. On the other hand if we endow R with the product topology induced from $G^{(0)} \times G^{(0)}$ the existence of a Haar system on G does not necessarily imply the existence of a Haar system on R.

We shall endow R with the quotient topology from G as in [8] and we shall assume that the restriction the range map to the isotropy group bundle of G is open We shall prove that the quotient topology is locally compact and the existence of a Haar system on G is equivalent to the existence of a Haar system on R.

For establishing notation we include some definitions that can be found in several places (e.g. [7], [5]). A groupoid is a set G together with a distinguished subset $G^{(2)} \subset G \times G$ (called the set of compassable pairs), and two maps:

 $(x, y) \rightarrow xy [: G^{(2)} \rightarrow G]$ (product map)

$$x \to x^{-1}$$
 [: G \to G] (inverse map)

such that the following relations are satisfied:

1. If $(x, y) \in G^{(2)}$ and $(y, z) \in G^{(2)}$ then $(xy, z) \in G^{(2)}$, $(x, yz) \in G^{(2)}$ and (xy)z = x(yz).

- 2. $(x^{-1})^{-1} = x$ for all $x \in G$.
- 3. For all $x \in G$, $(x, x^{-1}) \in G^{(2)}$, and if $(z, x) \in G^{(2)}$ then $(zx)x^{-1} = z$. 4. For all $x \in G$, $(x^{-1}, x) \in G^{(2)}$, and if $(x, y) \in G^{(2)}$ then $x^{-1}(xy) = y$.

The maps r and d on G, defined by the formulae $r(x) = xx^{-1}$ and $d(x) = x^{-1}x$, are called the range and the source maps. It follows easily from the definition that they have a common image called the unit space of G which is denoted $G^{(0)}$. Its elements are units in the sense that xd(x) = r(x)x = x. It is useful to note that a pair (x, y) lies in $G^{(2)}$ precisely when d(x) = r(y) and that the cancellation laws hold (e.g. xy = xz if y = r(y)z).

The bres of the range and the source maps are denoted $G^{u} = r^{-1}(\{u\})$ and $G_{v} = d^{-1}(\{u\})$ ¹($\{v\}$), respectively. Also for u, $v \in G^{(0)}$, $G_v^u = G^u \cap G_v$. More generally, given the subsets A, $B \subset G^{(0)}$, we define $G^A = r^{-1}(A)$, $G_B = d^{-1}(B)$ and $G_B^A = r^{-1}(A) \cap d^{-1}(B)$. G_A^A becomes a groupoid (called the reduction of G to A) with the unit space A, if we define $(G_A^A)^{(2)} = G^{(2)} \cap (G_A^A \times G_A^A)$.

For each unit u, $G_u^u = \{ x | r(x) = d(x) = u \}$ is a group, called isotropy group at u. The group bundle

 $\{x \in G \mid r(x) = d(x)\}$

is denoted G' and is called the isotropy group bundle of G.

If A and B are subsets of G, one may form the following subsets of G:

$$A^{-1} = \{ x \in G \mid x^{-1} \in A \} \\ AB = \{ xy \mid (x, y) \in G^{(2)} \cap (A \times B) \}$$

The relation u~v if $G_v^u \neq \Phi$ is an equivalence relation on $G^{(0)}$. Its equivalence classes are called orbits and the orbit of a unit u is denoted [u]. The quotient space for this equivalence relation is called the orbit space of G and denoted $G^{(0)}/G$. The graph of this equivalence relation will be denoted in this paper by

$$R = \{ (r(x), d(x)), x \in G \}$$

A groupoid is said transitive if and only if it has a single orbit or equivalently if the map $\theta: G \to G^{(0)} \times G^{(0)}, \ \theta(x) = (r(x), d(x))$ is surjective. A groupoid is said principal if the map θ is injective.

A topological groupoid consists of a groupoid G and a topology compatible with the groupoid structure. This means that:

- 1. $x \rightarrow x^{-1}$ [: $G \rightarrow G$] is continuous.
- 2. (x, y) [: $G \rightarrow G$] is continuous where $G^{(2)}$ has the induced topology from $G \times G$.

We are concerned with topological groupoids which are second countable, locally compact Hausdorf. It was shown in [6] that measured groupoids (in the sense of Definition 2.3./p. 6 [3]) may be assume to have locally compact topologies, with no loss in generality.

If X is a locally compact space, $C_c(X)$ denotes the space of complex-valuated continuous functions with compact support. The Borel sets of a topological space are taken to be the σ -algebra generated by the open sets.

We end this introductory section with a list of structures which fit naturally into the study of groupoids:

- 1. *Groups*. A group G is a groupoid with $G^{(2)} = G \times G$ and $G^{(0)} = \{e\}$ (the unit element).
- 2. *Spaces*. A space X is a groupoid letting

 $X^{(2)} = diag(X) = \{(x, x), x \in G \}$

and defining the operations by xx = x, and $x^{-1} = x$.

3. Transformation groups. Let Γ be a group acting on a set X such that for $x \in X$ and $g \in \Gamma$, xg denotes the transform of x by g. Let $G = X \times \Gamma$, $G^{(2)} = \{ ((x, g), (y, h)) : y = xg \}$. With the product (x, g) (xg, h) = (x, gh) and the inverse $(x, g)^{-1} = (xg, g^{-1}) G$ becomes a groupoid. The unit space of G may be identified with X.

4. Equivalence relations. Let $E \subset X \times X$ be an equivalence relation on the set X. Let $E^{(2)} = \{((x_1, y_1), (x_2, y_2)) \in E \times E | y_1 = x_2\}$. With product (x, y) (y, z) = (x, z) and $(x, y)^{-1} = (y, x)$, E is a principal groupoid. $E^{(0)}$ may be identified with X. Two extreme cases deserve to be single out. If $E = X \times X$ then E is called the trivial groupoid on X, while if E = diag(X), diag X then E is called the co-trivial groupoid on X (and may be identified with the groupoid in example 2).

If G is any groupoid, then

 $R = \{ (r(x), d(x)) \mid x \in G \}$

is an equivalence relation on $G^{(0)}$. The groupoid defined by this equivalence relation is called the principal groupoid associated with G.

Any locally compact principal groupoid can be viewed as an equivalence relation on a locally compact space X having its graph $E \subset X \times X$ endowed with a locally compact topology compatible with the groupoid structure. This topology can be finer than the product topology induced from $X \times X$. We shall endow the principal groupoid associated with a groupoid G with the quotient topology induced from G by the map

 θ : G \rightarrow R, θ (x) = (r(x), d(x))

This topology consists of the sets whose inverse images by θ in G are open.

2. Continuous systems of measures

Let G be a locally compact groupoid, and R be the principal groupoid associated with G.

Throughout this section we shall fix a system of measures indexed on R.

 $\{ \beta_u^v, (\mathbf{u}, \mathbf{v}) \in \mathbf{R} \}$

satisfying the following conditions.

- 1. $\operatorname{supp}(\beta_u^v) = G_u^v$ for all u~v.
- 2. $\sup_{u,v} \beta_u^v(K) < \infty \text{ for all compact } K \subset G.$
- 3. $\int f(y)d\beta_v^{r(x)}(y) = \int f(xy)d\beta_v^{d(x)}(y) \text{ for all } x \in \text{G and } v \sim r(x).$

Different ways to constructing such systems of measure can be found in [1] (for transitive groupoids), [8], [2] (for locally compact second countable groupoids). The construction from [8] is sketched at the beginning of the next section.

Proposition 1. Let G be a locally compact second countable groupoid. Let us suppose that the map r': G' \rightarrow G⁽⁰⁾, r'(x) = r(x) is open.

Then for each $f \in C_c(G)$, the function

$$\mathbf{x} \to \int f(\mathbf{y}) d\beta_{d(\mathbf{x})}^{r(\mathbf{x})}(\mathbf{y})$$

is continuous on G.

Proof. By Lemma 1.3/p. 6 [8], for each $f: G \to C$ continuous with compact support the function $u \to \int f(y) d\beta_u^u(y)$ [: $G^{(0)} \to C$] is continuous. Let $x \in G$ and $(x_i)_i$ be a sequence in G converging to x. Let f be a continuous function with compact support on G, and let g be a continuous extension on G of $y \to f(xy)$ [: $G^{d(x)} \to C$]. Let K be the compact set

$$(\text{supp}(f) \{x, x_i, i = 1, 2, ...\}^{-1} \cup \text{supp}(g)) \cap r^{-1}(\{d(x), d(x_i), i = 0\})$$

1, 2, ...}). We have

$$\begin{split} \left| \int f(y) d\beta_{d(x)}^{r(x)}(y) - \int f(y) d\beta_{d(x_{i})}^{r(x_{i})}(y) \right| \\ &= \left| \int f(xy) d\beta_{d(x)}^{d(x)}(y) - \int f(x_{i}y) d\beta_{d(x_{i})}^{d(x_{i})}(y) \right| \\ &= \left| \int g(y) d\beta_{d(x)}^{d(x)}(y) - \int f(x_{i}y) d\beta_{d(x_{i})}^{d(x_{i})}(y) \right| \\ &\leq \left| \int g(y) d\beta_{d(x)}^{d(x)}(y) - \int g(y) d\beta_{d(x_{i})}^{d(x_{i})}(y) \right| + \\ &+ \left| \int g(y) d\beta_{d(x_{i})}^{d(x_{i})}(y) - \int f(x_{i}y) d\beta_{d(x_{i})}^{d(x_{i})}(y) \right| \\ &\leq \left| \int g(y) d\beta_{d(x)}^{d(x)}(y) - \int g(y) d\beta_{d(x_{i})}^{d(x_{i})}(y) \right| + \sup |g(y) - f(x_{i}y)| \beta_{d(x_{i})}^{d(x_{i})}(K) \end{split}$$

A compactness argument shows that $\sup|g(y) - f(x_iy)|$ converges to 0. On the other hand, $\left|\int g(y)d\beta_{d(x)}^{d(x)}(y) - \int g(y)d\beta_{d(x_i)}^{d(x_i)}(y)\right|$ converges to 0, because the function $u \rightarrow \int f(y)d\beta_u^u(y)$ is continuous on $G^{(0)}$ and $d: G \rightarrow G^{(0)}$ is also continuous. Hence

$$\int f(y)d\beta_{d(x)}^{r(x)}(y) - \int f(y)d\beta_{d(x_i)}^{r(x_i)}(y) \bigg|$$

converges to 0.

Remark 2. If G is a locally compact second countable groupoid and if the map $r' G' \rightarrow G^{(0)}$, r'(x) = r(x) is open, then for each $f \in C_c(G)$ the function

$$(\mathbf{u},\mathbf{v}) \rightarrow \int f(y)\beta_v^u(y)$$

is continuous on R, where R is endowed with the quotient topology. Indeed from the Proposition 1 it follows that the composition of this map with θ is continuous on G.

3. A locally compact topology on the graph of the equivalence relation associated to a locally compact groupoid

Let G be a locally compact groupoid, and R be the principal groupoid associated with G. In Section 1 of [8] Jean Renault constructs a Borel Haar system for G'. One way to do this is to choose a function F_0 continuous with conditionally support which is nonnegative and equal to 1 at each $u \in G_0$. Then for each $u \in G^{(0)}$ choose a left Haar measure β_u^u on G_u^u so the integral of F_0 with respect to β_u^u is 1.

Renault defines $\beta_v^u = x \beta_v^v$ u if $x \in G_v^u$ (where $x \beta_v^v(f) = \int f(xy) \beta_v^v(y)$ as usual). If z is another element in G_v^u then $x^{-1}z \in G_v^v$, and since β_v^v is a left Haar measure on G_v^v , it follows that β_v^u is independent of the choice of x. If K is a compact subset of G, then $\sup_{u,v} \beta_u^v(K) < \infty$. This system satisfies the following conditions:

1. $\operatorname{supp}(\beta_v^u) = G_v^u$ for all u~v.

2. $\sup_{u,v} \beta_v^u(K) < \infty \text{ for all compact } K \subset G.$ 3. $\int f(y) d\beta_v^{r(x)}(y) = \int f(xy) d\beta_v^{d(x)}(y) \text{ for all } x \in G \text{ and } v \sim r(x).$

Assuming that the map $r': G' \rightarrow G^{(0)}$, r'(x) = r(x) is open, and using the continuity of the map

$$(\mathbf{u},\mathbf{v}) \rightarrow \int f(y) d\beta_v^u(y)$$

we shall prove that the map θ : G \rightarrow R, $\theta(x) = (r(x), d(x))$ is open, and consequently the topology of R is locally compact. Using the same hypothesis, we shall also prove that the existence of a Haar system on G is equivalent to the existence of a Haar system on R.

Proposition 3. If G is a locally compact second countable groupoid and if the map r' $G' \rightarrow G^{(0)}$, r'(x) = r(x) is open, then the map

 $\theta: G \rightarrow R, \ \theta(x) = (r(x), d(x))$

is open, where R is endowed with the quotient topology.

Proof. We have noted in Remark 2 that the map

 $(\mathbf{u},\mathbf{v}) \rightarrow \int f(y) d\beta_v^u(y)$

is continuous for every $f \in C_c(G)$.

Let D be an open set in G, let $x_0 \in D$ and $(u_0, v_0) = \theta(x_0)$. We can choose a nonnegative continuous function with compact support, f, that is equal to 1 on a compact neighborhood of x_0 , and that vanishes outside D. The continuity of the map

$$(\mathbf{u},\mathbf{v}) \rightarrow \int f(y) d\beta_v^u(y)$$

implies that the set of $(u, v) \in \theta(G)$ with $\int f(y)d\beta_v^u(y) \neq 0$ is open. This set is a neighborhood of (u_0, v_0) contained in $\theta(D)$.

Remark. If G is a locally compact second countable groupoid and if the map r' G' \rightarrow G⁽⁰⁾, r'(x) = r(x) is open, then R is locally compact groupoid (with the quotient topology from G).

We have proved that the openness of r' implies the openness of θ . We shall prove that these conditions are in fact equivalent. We need the following lemma from [4], p.7.

Lemma 5. Let $f: X \to Z$ and $g: Y \to Z$ be two functions, and let

 $X^*Y = \{ (x, y) \in X \times Y \mid f(x) = g(y) \}$

Let π_X and π_Y be the projections of X*Y onto X and Y, respectively. The following diagram is commutative

$$\begin{array}{cccc} X^*Y & \xrightarrow{\pi_X} & X \\ \pi_Y \downarrow & & \downarrow f \\ Y & \xrightarrow{g} & Z \\ & & 28 \end{array}$$

and $\pi_{Y}((U \times V) \cap (X^{*}Y)) = g^{-1}(f(U)) \cap V$ for all $U \subset X$ and $V \subset Y$.

Proposition 6. Let G be a locally compact groupoid. If θ is open for the quotient topology, then the map $\delta' : G * {}_{r}G' \to G$, $\delta'(x, y) = x^{-1}y$ is open where

 $G *_{r}G' = \{ (x, y) \in G \times G' \mid r(x) = r(y) \}$

is endowed with the topology induced from $G \times G$.

G

Proof. Since the inverse map $x \to x^{-1}$ is a homeomorphism from G to G and θ is an open map it follows that the map $x \to \theta(x^{-1})$ is an open map from G to R endowed with the quotient topology. Let

$$G^*G = \{ (x, y) \in G \times G \mid \theta(x) = \theta(y^{-1}) \}$$

It is not hard to see that

 $(x, y) \rightarrow (x, x^{-1}y) [: G^*G' \rightarrow G^*G]$

is a homeomorphism. Therefore for proving that δ^\prime is open it is enough to show that

$$(x, y) \xrightarrow{\pi_2} y \ [: G^*G \to G]$$

is open. We consider the following commutative diagram:
$$G^*G \xrightarrow{\pi_1} G$$

$$\pi_2 \downarrow \qquad \qquad \downarrow \theta$$

 $y \rightarrow \theta(y^{-1})$

Let U and V two open subsets of G. Applying Lemma 5 and Proposition 3 we obtain that

$$\pi_2((\mathbf{U}^*\mathbf{V}) \cap (\mathbf{G} \times \mathbf{G}^{\prime})) = \theta^{-1}(\theta(\mathbf{U})^{-1}) \cap \mathbf{V} = \theta^{-1}(\theta(\mathbf{U}^{-1})) \cap \mathbf{V},$$

R

is open. Since the sets of the form $(U \times V) \cap (G^*G)$ constitute a basis for the topology on G^*G , it follows that π_2 is open.

Corollary 7. Let G be a locally compact groupoid and R be the associated principal groupoid endowed with the quotient topology. If the map $\theta : G \to R$, $\theta(x) = (r(x), d(x))$ is open then for each open subset U of G, UG' is open in G.

Proposition 8. Let G be a locally compact groupoid and R be the associated principal groupoid endowed with the quotient topology. If the map $\theta : G \to R$, $\theta(x) = (r(x), d(x))$ is open then the map r' G' $\to G^{(0)}$, r'(x) = r(x) is open.

Proof. Applying the preceding corollary we obtain that UG' is open in G, for each open subset U of G. Consequently, $G'U^{-1} = (UG')^{-1}$ is open in G. Now the openness of the map r' follows noticing that

r' ($\widetilde{U} \cap G'$) = G'U $\cap G^{(0)}$, U $\subset G$.

Proposition 9. Let G be a locally compact second countable groupoid and R be the associated principal groupoid endowed with the quotient topology. Then the map r' G' \rightarrow G⁽⁰⁾, r'(x) = r(x) is open if and only if θ : G \rightarrow R, θ (x) = (r(x), d(x)) is open.

Proof. It follows from Remark 2 and Proposition 8.

Remark 10. If G is a principal topological groupoid then the map $r' G' \rightarrow G^{(0)}, r'(x) = r(x)$ is open. Indeed, to see this, we just notice that $r' (U \cap G') = U \cap G^{(0)}$

for any subset U of G.

Definition 11. A Haar system on a locally compact groupoid G is a family of positive Radon measures on G, { $v^u \in G^{(0)}$ }, having the following properties:

1. For all
$$u \in G^{(0)} \operatorname{supp}(v^{u}) = G^{u}$$
.
2. For all $f \in C_{c}(G)$
 $u \rightarrow \int f(x) dv^{u}(x) \quad [: G^{(0)} \rightarrow C]$
is continuous.
3. For all $f \in C_{c}(G)$ and all $x \in G$,
 $\int f(y) dv^{r(x)}(y) = \int f(xy) dv^{d(x)}(y)$.

The system of measures { $\nu^u \in G^{(0)}$ } will be called Borel Haar system if it has the properties 1., 3. and

2' For all $f \ge 0$ Borel on G,

$$u \rightarrow \int f(x) dv^u(x) \ [:G^{(0)} \rightarrow \overline{R}]$$

is a real extended Borel map, where the Borel sets of a topological spaces G and $G^{(0)}$ are taken to be the algebra generated by the open sets.

Proposition 12. Let G be a second countable locally compact groupoid which admits a Haar system { $v^u \in G^{(0)}$ }. Let R be the associated principal groupoid endowed with the quotient topology. If the map r' G' \rightarrow G⁽⁰⁾, r'(x) = r(x) is open, then R admits a Haar system.

Proof. By Lemma 1.7/p. 9 [8] there is a unique Borel Haar system α on R with the property that for every $u \in G^{(0)}$ we have:

$$\mathbf{v}^{\mathrm{u}} = \int \beta_{\mathrm{v}}^{\mathrm{u}} d\alpha^{\mathrm{u}}(\mathrm{w},\mathrm{v}) \, .$$

Let g be a function on R continuous with compact support for the quotient topology. Since G is locally compact and θ is open from G to R, there is a compact subset K of G such that $\theta(K)$ contains the support of h. Let $F_1 \in C_c(G)$ be a nonnegative function equal to 1 on a compact neighborhood U of K. Let $F_2 \in C_c(G)$ be a function which extends to G the function $x \to F_1(x) / \int F_1(y) d\beta_{d(x)}^{r(x)}(y)$, $x \in U$.

We have $\int F_2(y)d\beta_v^u(y) = 1$ for all $(u, v) \in \theta(K)$. Since

$$\int g(w,v)d\alpha^{u}(w,v) = \int g(w,v) \int F_{2}(y)d\beta^{u}_{v}(y)d\alpha^{u}(w,v)$$
$$= \int g(r(y),d(y))F_{2}(y)dv^{u}(y),$$

it follows that $u \to \int g(w, v) d\alpha^u(w, v)$ is continuous.

Proposition 13. Let G be a second countable locally compact groupoid for which the map r' G' \rightarrow G⁽⁰⁾, r'(x) = r(x) is open. Let R be the associated principal groupoid endowed with the quotient topology. If R admits a Haar system { $\alpha^u \in G^{(0)}$ } then G admits a Haar system.

Proof. If we define

$$v^{u} = \int \beta_{v}^{w} d\alpha^{u}(w, v)$$

then { $v^{u} \in G^{(0)}$ } is Haar system for G.

REFERENCES

- [1] M. Buneci, *Consequences of Hahn structure theorem for the Haar measure*, Math. Reports, 4(54), 4(2002), 321-334.
- [2] M. Buneci, *Haar systems and homomorphisms on groupoids*, Operator Algebras and Mathematical Physics: Conference Proceedings Constanta July 2-7, 2001, Theta Foundation (2003),35-50.
- [3] P. Hahn, *Haar measure for measure groupoids*, Trans. Amer. Math. Soc. 242(1978), 1-33.
- [4] P. Muhly, J Renault and D Williams, *Equivalence and isomorphism for groupoid C*-algebras*, J. Operator Theory 17(1987), 3-22.

- [5] P. Muhly, *Coordinates in operator algebra*, (Book in preparation).
- [6] A. Ramsay, *Topologies on measured groupoids*, J. Funct. Anal. 47(1982), 314-343.
- [7] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math., Springer-Verlag, 793, 1980.
- [8] J. Renault, *The ideal structure of groupoid crossed product algebras*, J. Operator, Theory, 25(1991), 3-36.

Author:

Mădălina Roxana Buneci – Universitatea Constantin Brâncuşi, Târgu-Jiu, Bulevardul Republicii Nr.1, Târgu-Jiu, Gorj, Romania, email: ada@utgjiu.ro