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ON THE LEAST SQUARES FITTING IN A LINEAR MODEL 
 

by 
Nicoleta Breaz 

 
Abstract. In this paper, we present a linearisable regressional model for which we obtain a full 
rank case theorem for uniquely fitting written in terms of initial matrix of sample data.The 
model considered here can be reduced to the linear one either by substitution or by written in 
other form. 
 
INTRODUCTION 
 
 In [1] we also consider a linearisable regressional model.There, the explicative 
variables from the linearised model was 1,1,1 −=∀= + pkXXZ kkk .In this paper, the 
linarisable regressional model considered will be reduced to a linear model with the 
explicative variables of the form 1,1,1 −=∀+= + pkXXZ kkk . 
As introduction we remember  some classical notions and  results from linear 
regression. 
 
Definition 1 
Let be Y a variable which depends on  some factors exprimed by others  p variables 

pXXX ,...,, 21 . The regression is a search method for dependence of variable Y on 
variables pXXX ,...,, 21  and consists in determination of a functional connection f  
such that  

( ) ε+= pXXXfY ,...,, 21  (1) 
 

where ε  is a random term (error) which include all factors that can not be 
quantificated by  f  and which satisfies the conditions: 
i) ( ) 0=εE  
ii) ( )εVar  has a small value 
 Formula (1) with conditions  i) and ii) is called regressional model, variable Y 
is called the endogene variable and variables pXXX ,...,, 21  are called the 
exogen(explicative) variables. 
 
Definition 2 
The  regression given by the following function is called a parametric regression  
 

( ) ( )ppp XXXfXXXf ααα ,...,,;,...,,,...,, 212121 = . 
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Otherwise the regression is called a nonparametric regression. 
The  regression given by the following function is called a linear regression 
 

( ) ∑
=

=
p

k
kkpp XXXXf

1
2121 ,...,,;,...,, αααα . 

 
Remark 3 
If function  f from regressional models is linear with respect to the parameters 

pααα ,...,, 21 , that is  

( ) ( )p

p

k
kkpp XXXXXXf ,...,,,...,,;,...,, 21

1
2121 ∑

=

= ϕαααα  

 
than regression can be reduced to the linear one. 
 
Definition 4 
It is called the linear regressional model beetwen variable Y and variables  

pXXX ,...,, 21 , the model 
 

∑
=

+=
p

k
kk XY

1

εα  (2) 

 
Remark 5 
The liniar regression problem consists in study of the variable  Y behavior whit respect 
to the factors  pXXX ,...,, 21 , the study made by “ evaluation” of the  regressional 
parameters pααα ,...,, 21  and random termε . 
Let be considered a sample of n data  
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Than one can make the problem of evaluation for regressional parameters  

( )∈= p
T αααα ,...,, 21 ℝp and for error term  ( )∈= n

T εεεε ,...,, 21 ℝn , from these data. 
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From this point of views the fitting of the theoretical model can offering solutions. 
Matriceal, the model (2) can be written in form  
 

εα += xy  (2’) 
 

and represent the linear regressional theoretical model. 
By fitting this  models using a condition of minimum results the fitted model 
 

exay +=  (2’’) 
 
where ∈Ta ℝp, ∈Te ℝn. 
It is desirable that residues neee ,...,, 21 to be minimal. Then can be realised using the 
least squares criteria.  
 
Definition 6 
It is called the least squares fitting, the fitting which corresponds to the solutions (a,e) 
of the sistem exay += , which minimise  the expression 
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Theorem 7(full rank case) 
If ( ) pxrank = then the fitting solution by least squares criteria is uniquely given by  
 

( ) yxxxa TT 1−
= . 

 
MAIN RESULTS 
 
In this paper we consider the folowing model  

( ) ( ) ( ) εααα +++++++= −− ppp XXXXXXY 11322211 ... , 2≥p . (3) 
For a sample of n data/variables we will use the notations 
 ( )∈= n

T yyyy ,...,, 21 ℝn, ( )∈= −121 ,...,, p
T αααα ℝp-1, 

( )∈= n
T εεεε ,...,, 21 ℝn, ( ) pnp Mxxxx ,21 ,...,, ∈= , 
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From (3) we obtain a linear model either by eliminating the brackets or by 
using the substitution 1,1,1 −=∀=+ + pkZXX kkk .  

In the first case we have a linear model with p explicative variables, 
pXXX ,...,, 21 and with some constraints on the coefficients. So, the model can be 

written as 
 

( ) ( ) ( ) εαααααααα +++++++++= −−−− ppppp XXXXXY 111233222111 ... . 
 

The estimate a, ( )Tpaaaa 121 ,...,, −= of the parameterα , ( )Tp 121 ,...,, −= αααα is 

obtained in this case, uniquely, by the least squares criteria if ( ) pxrank = . The 
estimate will has the form 
 

( )( )∈−++++−−= −− p
p

pp
T bbbbbbbbbba ,1...,...,,, 121123121 ℝp-1 

 
where  ( ) ( ) ∈==

−
yxxxbbbb TTT

p
1

21 ,...,, ℝp is the estimate  of β , 
 

( ) ( )Tppp
T

p ααααααββββ ,,...,,,...,, 1221121 −− ++== . 
 

In the second case we have a linear model with p-1 explicative variables 
121 ,...,, −pZZZ  obtained with  the above mentioned substitution.So, the model (3) 

becomes 
εααα ++++= −− 112211 ... pp ZZZY  . 

 
If we use the sample notations plus the new matrix, 1, −∈ pnMz , 
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we obtain the matriceal form, εα += zy . 
 
Thus, by linearising, we obtain a similar model with model treated by us in [1].For 
such models, according to theorem 7, the condition ( ) 1−= pzrank  is required for 
obtaining the least squares estimate a of α . 
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Corollary 8 
If ( ) 1−= pzrank  then the least squares estimate of α  is given by 
 

( ) ( )   ,...,,
1

121 yzzzaaaa TTT
p

−
− == . 

 
In that following, we try to formulate such conditions in term of the initial matrix x. 
 
Proposition 9 
We have ( ) ( ) 1  −=⇒= pzrankpxrank . 
 
Proof 
We have ( ) )( vrankxrank =  where pnMv ,∈ , 
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Then we have pvrank =)( and further, the matrix v has a minor of p order, 

different from zero. Without restricting the generality, let be this minor, the minor d, 
constructed with the first p rows. If we develop this minor in respect with the last 

column, we obtain ( )∑
=

+−=
p

k
kkp

pk dxd
1

1 , where pddd ,...,, 21  are the determinants of 

p-1 order that are implied by the developing. 
If pkdk ,1,0 =∀=  then it results 0=d that is false. Then it results that there 

exists a 0, ≠kk dd  and in fact, this is a minor of p-1 order in matrix 1, −∈ pnMz . So, 
we have ( ) 1 −= pzrank . 

Now, according to corollary 8 , the least squares estimate exists if 
( ) pxrank = .If we take into account, the form of the model, we can obtain the form of 

the estimate depending on the initial matrix x. For this, we state the folowing result 
that is obviously after some calculation. 

 
 Proposition 10 
The next equality holds: xAz = , 1, −∈ ppMA , 
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The next theorem is a consequence of the corollary 8,the proposition 9 and the 
proposition 10. 
 
 
Theorem 11 
If  ( ) pxran =k  then the least squares estimate is uniquely given by  
 

( ) ( ) yxAxAxAaaaa TTTTT
p

1
121 ,...,,

−
− == . 

 
In that following, we present another condition for the existence of the least squares 
estimate a. In [2] we prove the following result: 
 
 
Lemma 12  
Let be ( )

pjiijpp xxMx
≤≤

=∈
,1, ,  and ( )

1,11,1 ,
−≤≤−− =∈

pjiijpp zzMz  with  

 ,1++= ijijij xxz  .1,1,1,1 −=−=∀ pjpi  Then ( ) pdddz +++= ...det 21 where id  is 
the minor of 1−p  order from the matrix X, obtained by elimination of −p th row and 
the −i th column, pi ,1= . 
Now we can prove the following corollary: 
 
 
Corollary 13 
Let be 1,1,,1,,, 11,, −==∀+=∈∈ +− pjnixxzMzMx ijijijpnpn  and 1,1 −−∈ pp

kj Mx  

the matrices obtained from the first p-1 rows of x , 1,1 −= p
nCk  and by elimination of j-

th coloumn. We denote ( )kjkj xd det= . If there exists at least one 0k  such that 

∑
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p

j
jkd
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0

 then ( ) 1 −= pzrank . 
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Proof 

 Let be 0k  such that ∑
=

≠
p

j
jkd

1

0
0

. We consider in the matrix z the minor of 1−p  order 

which contains the same rows (as number of order) with the matrix jkX
0

 and we 

denote this with zd . According to lemma 12, we have 
0...det

000 21 ≠+++= pkkk dddz   and further ( ) 1 −= pzrank . 
The next theorem will be a consequence of the corollary 8, the propositon 10 and he 
corollary 13. 
 
Theorem 14 
Under the hypothesis of corollary 13, the model (3) has the least squares fitted 
coefficients uniquely given by  
 

( ) ( ) yxAxAxAaaaa TTTTT
p

1
121 ,...,,

−
− == . 

 
Remarks 15  
 

i) The condition given in corollary 13 implies that ( ) 1−= pxrank .This last 
condition is not sufficient for the existence of the least squares estimate 
because doesn’t imply ( ) 1−= pzrank . 

ii) If pjd jk ,1,
0

= defined in corollary 13 have the same signe(+ or -) then 
( ) pxrank =  imples the condition from corollary 13.Then we can state 

that, in particular case when the sample data are such that the minors 
pjdkj ,1, =  have the same signe (for each one value of k), the corollary 

13 gives an less restrictive condition than the condition from the theorem 
11.In the same time, the condition from corollary 13 is beter than the 
condition ( ) 1−= pxrank  which is not a sufficient one. So the condition 
from the corollary 13 is an intermediary condition between “ p-1 vectors  
from pkxk ,1, =  are linearly independent ( ( ) 1−= pxrank )” and “the 
vectors pkxk ,1, =  are linearly independent ( ( ) pxrank = )”. 
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