ON SOME CLASSES OF BERNSTEIN TYPE OPERATORS WHICH PRESERVE THE GLOBAL SMOOTHNESS IN THE CASE OF UNIVARIATE FUNCTIONS

by Voichita Cleciu

Abstract

The aim of this paper is to describe the linear and positive operators who have the property of preservation of the global smoothness. We insist on the Bernstein and Stancu operators. We consider the case of univariate function. In order to show the preservation of global smoothness, we use the notions of modulus of continuity and K - functionals.

1. Introduction

First of all we give some notation:

- Let be the space

$$
C(I):=\{f: I \rightarrow R \quad / \quad f \quad \text { continuous \& bounded } \quad \text { on } I, \quad I \neq \theta\}
$$

- Let be $f \in \mathrm{C}(\mathrm{I})$, I a real interval and $\delta \in \mathrm{I}$. The application

$$
\omega:[0, \infty) \rightarrow R, \quad \omega(\delta):=\sup \left\{\left|f(x)-f\left(x^{\prime}\right)\right|: x, x^{\prime} \in I,\left|x-x^{\prime}\right| \leq \delta\right\}
$$

is the modulus of continuity.

- If $f \in \mathrm{C}(\mathrm{I}), \mathrm{I} \subset \mathrm{R}$ and $\mathrm{k} \in \mathrm{N}, \delta \in \mathrm{I}$ then we can define the modulus of smoothness of order k
$\omega_{f}=\omega_{k}(f, \delta):=\sup \left\{\Delta_{h}^{k} f(x)|: x, x+k h \in I,|h| \leq \delta\}\right.$ where
$\Delta_{h}^{k} f(x)=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} f(x+i h)$ is the divided differences.
- The Pochhammer symbol is defined by $(n)_{s}:=\prod_{i=0}^{s-1}(n-i)$, $\prod_{i=0}^{-1}(n-i):=1, \quad \prod_{-1}:=\{0\}$.
- $\quad K_{s}(f ; \delta):=K\left(f ; \delta ; C[0,1], C^{s}[0,1]\right):=\inf \left\{\|f-g\|+\delta\left\|g^{(s)}\right\|: g \in C^{s}[0,1]\right\}$
where $f \in C[0,1]$ and $\delta \geq 0$, are K - functionals of order $\mathrm{s}, \mathrm{s} \geq 1$.

Voichita Cleciu - On some classes of bernstein type operators which preserve the global smoothness in the case of univariate functions

- Let be the compacts intervals I and I', I' \subseteq I. For $r \geq 1$ an operator $L: C(I) \longrightarrow C\left(I^{\prime}\right)$ is almost convex of order $\mathrm{r}-1$, if the following holds:

Let $\mathrm{K}_{\mathrm{I}, \mathrm{i}}:=\left\{f \in \mathrm{C}(\mathrm{I}):\left[\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{i}} f\right] \geq 0\right.$ for any $\left.\mathrm{x}_{0}<\mathrm{x}_{1}<\ldots<\mathrm{x}_{\mathrm{i}} \in \mathrm{I}\right\}$. There exist $\mathrm{p} \geq 0$, integers $\mathrm{i}_{\mathrm{j}, 1} \leq \mathrm{i} \leq \mathrm{p}$, satisfying $0 \leq \mathrm{i}_{1}<\ldots<\mathrm{i}_{\mathrm{p}}<\mathrm{r}$ such that

$$
f \in\left(\bigcap_{j=1}^{p} K_{I, i_{j}}\right) \bigcap K_{I, r} \rightarrow L f \in K_{I^{\prime}, r}
$$

For $\mathrm{p}=0$ we put $\bigcap_{j=1}^{p} K_{I, i_{j}}:=C(I)$. In this case $\mathrm{K}_{\mathrm{I}, \mathrm{r}}$ is mapped by L into $\mathrm{K}_{\mathrm{r}, \mathrm{r}}$ and L is called "convex" of order $\mathrm{r}-1 \geq 0$.

2. The operators

We introduce here the well-known Bernstein and Stancu operators.

- The Bernstein operators are defined for $f:[0,1] \rightarrow \mathrm{R}$ as

$$
\left(B_{m} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{k}{m}\right) ; \quad p_{m, k}(x)=\binom{m}{k} x^{k}(1-x)^{m-k}, \quad k=\overline{0, m}, \quad x \in[0,1]
$$

- The Stancu operators.

In paper [13] D.D. Stancu has introduced and investigated a linear operator $\mathrm{S}_{\mathrm{m}}{ }^{(\alpha)}: \mathrm{C}[0,1] \rightarrow \mathrm{C}[0,1]$ defined by

$$
\begin{gathered}
\left(S_{m}{ }^{(\alpha)} f\right)(x)=\sum_{k=0}^{m} \omega_{m, k}(x ; \alpha) f\left(\frac{k}{m}\right) \\
\omega_{m, k}(x ; \alpha)=\binom{m}{k} \frac{\prod_{v=0}^{k-1}(x+v \alpha) \prod_{\mu=0}^{m-k-1}(1-x+\mu \alpha)}{(1+\alpha)(1+2 \alpha) \ldots(1+(m-1) \alpha)}
\end{gathered}
$$

α being a parameter which may depend only on the natural number m. If $\alpha \geq 0$, then these operators preserve the positivity of the function f. For $\alpha=0, \mathrm{P}_{\mathrm{m}}{ }^{(\alpha)}$ coincides with the Bernstein operator.

3. The preservation of the global smoothness

Even since 1951 the mathematicians have been showing their interest for the problem of the preservation of the global smoothness preservation by linear operators. In this year, in his paper [14], S.B. Steckin give as the following

Theorem 1. For fixed $\mathrm{s}, \mathrm{n} \in \mathrm{N}$ and $f \in C_{2 \pi}$ let t_{n} be a trigonometric polynomial of degree \leq n such that $\quad\left\|f-t_{n}\right\| \leq c_{1} \cdot \omega_{s}\left(f ; \frac{1}{n}\right)$.

Then for all $\delta>0$ one has

$$
\omega_{s}\left(t_{n}, \delta\right) \leq\left(\sin \frac{1}{2}\right)^{-s}\left(1+2^{s} \cdot c_{1}\right) \omega_{s}(f, \delta)
$$

On 1965 a result on smoothness preservation by the Bernstein operators B_{m} on C $[0,1]$ was given by Hajek [8] :

Theorem 2. Let $f \in \operatorname{Lip}_{M}(1 ;[0,1])$. Then $B_{m} f \in \operatorname{Lip}_{M}(1 ;[0,1])$.
A few years later, this result was generalized by Lindvall [9] and Brown, Elliott \& Paget [3]. They showed that we could replace the statement $\operatorname{Lip}_{M}(1 ;[0,1])$ by $\operatorname{Lip}_{M}(\alpha ;[0,1]), \quad \alpha \in[0,1]$. This means that, if global smoothness of a function $f \in C[0,1]$ is represented by stating that it satisfied a certain Lipschitz condition, then the same is true for its approximant $\mathrm{B}_{\mathrm{n}} f$.

Regarding Stancu operators, in 1987, in paper [5] B. Della Vecchia was proved:
Theorem 3. If $f \in \operatorname{Lip}_{M}(1 ;[0,1])$ then $S_{m}{ }^{(\alpha)} f \in \operatorname{Lip}_{M}(1 ;[0,1])$ for $\mathrm{m} \in \mathrm{N}, \alpha \geq 0$.
Anastassiou, Cottin and Gonska was generalized the second theorem in 1991 [2], so that we have:

Theorem 4. For $\forall f \in C[0,1]$ and $\delta \geq 0$, for the Bernstein operator B_{m}

$$
\omega_{1}\left(B_{n} f ; \delta\right) \leq 1 \cdot \varpi_{1}(f ; \delta) \leq 2 \cdot \omega_{1}(f ; \delta)
$$

Here $\varpi_{1}(f ;)$ denotes the least concave majorant of $\omega_{1}(f ;)$. The constants 1 and 2 are best possible.

Another important fact is that Theorem 4 can be generalized by express global smoothness preservation in terms of K - functionals of order s , as Cottin \& Gonska showed in [4]:

Theorem 5. For the operators B_{m}, one has for $\forall s \in N, f \in C[0,1], \delta \geq 0$ the inequalities

$$
K_{s}\left(B_{n} f ; s\right) \leq 1 \cdot K_{s}\left(f ; \frac{(n)_{s}}{n^{s}} \cdot \delta\right) \leq K_{s}(f ; \delta)
$$

For the case $s=1$, Theorem 5 implies Theorem 4. Next we have a generalized version of Theorem 5 for a certain class of operators which includes those of Bernstein as special cases:

Theorem 6. Let $\mathrm{k} \geq 0, \mathrm{~s} \in \mathrm{~N}^{*}$ and let $\mathrm{I}:=[\mathrm{a}, \mathrm{b}]$ and $\mathrm{I}^{\prime}:=[\mathrm{c}, \mathrm{d}] \subset[\mathrm{a}, \mathrm{b}]$ be compact intervals with non-empty interior $(a \neq b, c \neq d)$. If L is a linear operator satisfying

$$
\begin{aligned}
& L: C^{k}(I) \longrightarrow C^{k}\left(I^{\prime}\right) \quad \text { such } \quad \text { that }\left\|(L f)^{(k)}\right\|_{I^{\prime}} \leq a_{k, l} \cdot\left\|f^{(k)}\right\|_{I}, \quad a_{k, l} \neq 0 \\
& \text { for all } f \in C^{k}(I)
\end{aligned}
$$

as well as
$L: C^{k+s}(I) \longrightarrow C^{k+s}\left(I^{\prime}\right) \quad$ such that $\left\|(L g)^{(k+s)}\right\|_{I^{\prime}} \leq b_{k, s, l} \cdot\left\|g^{(k+s)}\right\|_{I^{\prime}}$,
for all $g \in C^{k+s}(I)$
then for all $f \in C^{k}[I]$ and $\delta>0$ one has

$$
K_{s}\left((L f)^{(k)} ; \delta\right)_{I^{\prime}} \leq a_{k, l} \cdot K_{s}\left(f^{(k)} ; \frac{b_{k, s, l}}{a_{k, l}} \delta\right)_{I}
$$

Because we introduced the notion of almost convexity the next theorem prove the preservation of global smoothness by operators being almost convex of appropriate orders.

Theorem 7. [4] Let $\mathrm{k} \geq 0, \mathrm{~s} \in \mathrm{~N}^{*}$ and I , I ' be given as above. Let $L: C^{k}(I) \longrightarrow C^{k}\left(I^{\prime}\right)$ be a linear operator having the following properties:
(1) L is almost convex of orders $\mathrm{k}-1$ and $\mathrm{k}+\mathrm{s}-1$
(2) $\quad L$ maps $C^{k+s}(I)$ into $C^{k+s}\left(I^{\prime}\right)$
(3) $\mathrm{L}\left(\Pi_{k-1}\right) \subseteq \Pi_{k-1}$ and $\mathrm{L}\left(\Pi_{\mathrm{k}+\mathrm{s}-1}\right) \subseteq \Pi_{\mathrm{k}+\mathrm{s}-1}$
(4) $\quad \mathrm{L}\left(\mathrm{C}^{\mathrm{k}}(\mathrm{I})\right) \not \subset \Pi_{\mathrm{k}-1}$

Then for $\forall f \in C^{k}[I]$ and $\delta>0$ we have

$$
K_{s}\left((L f)^{(k)} ; \delta\right)_{I^{\prime}} \leq \frac{1}{k!} \cdot\left\|\left(L e_{k}\right)^{(k)}\right\| \cdot K_{s}\left(f^{(k)} ; \frac{1}{(k+s)_{s}} \cdot \frac{\left\|\left(L e_{k+s}\right)^{(k+s)}\right\|}{\left\|\left(L e_{k}\right)^{(k)}\right\|} \delta\right)_{I}
$$

with $\mathrm{e}_{\mathrm{k}}=\mathrm{x}^{\mathrm{k}}$.
Proof. We show that the assumptions of Theorem 6 are satisfied. Let $\mathrm{l} \in\{\mathrm{k}, \mathrm{k}+\mathrm{s}\}$ and $L: C^{p}(I) \longrightarrow C^{p}\left(I^{\prime}\right)$ which is almost convex of order l-1, satisfying $\mathrm{L}\left(\Pi_{1-1}\right) \subseteq \Pi_{1-1}$.

- For $l=0, L$ is positive, maps $C^{0}(I)$ into $C^{0}\left(I^{\prime}\right)$, and the third assumption is satisfied. For such operators we know that $\|L f\|_{I^{\prime}} \leq\left\|L e_{0}\right\|_{I^{\prime}} \cdot\|f\|_{I}$.
- For $\mathrm{l} \geq 1$, define $I_{l}: C(I) \longrightarrow C^{l}(I)$ by

$$
I_{l}(f ; x)=\int_{a}^{x} \frac{(x-t)^{l-1}}{(l-1)!} \cdot f(t) d t
$$

Since L is almost convex of order $1-1$, the operator Q_{1} given by $\mathrm{Q}_{1}:=\left(\mathrm{L} \mathrm{I}_{1}\right)^{(1)}$ is linear and positive. The assumption $\mathrm{L}\left(\Pi_{1-1}\right) \subseteq \Pi_{1-1}$ implies $\mathrm{Q}_{1} \mathrm{f}^{(\mathrm{l})}=(\mathrm{Lf})^{(\mathrm{l})}$ for $\forall f \in C^{l}[I]$. Hence

$$
\left\|(L f)^{(l)}\right\|=\left\|Q_{l} f^{(l)}\right\| \leq\left\|Q_{l}\right\| \cdot\left\|f^{(l)}\right\| \quad \text { for } \forall f \in C^{l}(I)
$$

Since Q_{1} is positive, we have $\left\|Q_{l}\right\|=\left\|Q_{l} e_{0}\right\|=\left\|\frac{1}{l!} \cdot\left(L e_{l}\right)^{(l)}\right\|$.

Putting now

$$
a_{k, l}:=\left\|\frac{1}{k!}\left(L e_{k}\right)^{(k)}\right\| \quad \text { and } \quad b_{k, s, l}:=\left\|\frac{1}{(k+s)!}\left(L e_{k+s}\right)^{(k+s)}\right\| \quad \text { yields } \quad \text { two }
$$

nonnegative constants for which the assumption of Theorem 6 are satisfied.
All that we still have to do is to proof that $a_{k, 1} \neq 0$. Suppose that $\left\|\frac{1}{k!}\left(L e_{k}\right)^{(k)}\right\|=\left\|Q_{l}\right\|=0 \quad \Rightarrow \quad(L f)^{(k)}=0 \quad$ for $\forall f \in C^{k}(I)$ or $L: C^{p}(I) \longrightarrow \prod_{k-1}$. But this contradicts condition (4) and the proof is complete.

Now, we apply the general result to the classical Bernstein operators $B_{n}: C[0,1] \longrightarrow \prod_{n}$.

Proposition 8. [4] Let $\mathrm{k} \geq 0$ and $\mathrm{s} \in \mathrm{N}^{*}$ be fixed. Then for $\forall \mathrm{n} \geq \mathrm{k}+\mathrm{s}, \forall f \in C^{k}[0,1]$ and $\forall \delta \geq 0$ the following inequality holds:

$$
K_{s}\left(\left(B_{n} f\right)^{(k)} ; \delta\right)_{[0,1]} \leq \frac{(n)_{k}}{n^{k}} K_{s}\left(f^{(k)} ; \frac{(n-k)_{s}}{n^{s}} \cdot \delta\right)_{[0,1]}
$$

Proof.

- We have the next representation

$$
\left(B_{n} f\right)^{(l)}(x)=\frac{(n)_{l}}{n^{l}} \cdot l!\cdot \sum_{k=0}^{n-l}\left[\frac{k}{n}, \ldots, \frac{k+l}{n} ; f\right] \cdot C_{n-l}^{k} \cdot x^{k} \cdot(1-x)^{n-l-k}
$$

due to Lorentz [10] which show as the fact that condition (1) is satisfied (B_{n} is almost convex for $\forall 1-1 \geq-1$).

- Since B_{n} is a polynomial operator, the general assumption and condition (2) from Theorem 7 are satisfied.
- Since B_{n} maps a polynomial of degree 1 into a polynomial of degree $\min \{n, l\}$, condition (3) is also satisfied for $\forall n \in N$.
- We consider the k-th monomial $e_{k} \in C^{k}[0,1]$. From the assumption that $n \geq k+s$ it follows that $B_{n} e_{k} \in \Pi_{k} \backslash \Pi_{k-1}$ so that condition (4) is also verified.

Gonska gives the representation $\left(B_{n} e_{l}\right)^{(l)}=\frac{(n)_{l}}{n^{l}} \cdot l!$, in paper [6] and plugging into the inequality of Theorem 7 yields our claim.

The main result of this paper regards the case of Stancu operator.
Proposition 9. Let $\mathrm{k} \geq 0$ and $\mathrm{s} \in \mathrm{N}^{*}$ be fixed. Then for $\forall \mathrm{n} \geq \mathrm{k}+\mathrm{s}, \forall f \in C^{k}[0,1]$ and \forall $\delta \geq 0$ the following inequality holds:

$$
K_{s}\left(\left(S_{n}^{(\alpha)} f\right)^{(k)} ; \delta\right)_{[0,1]} \leq \beta_{m, k}^{\alpha} \cdot K_{s}\left(f^{(k)} ; \frac{\beta_{m, k+s}^{\alpha}}{\beta_{m, k}^{\alpha}} \cdot \delta\right)_{[0,1]}
$$

Proof. The four condition and general assumption from Theorem 7 are again satisfied.

The representation of $\left(\mathrm{B}_{\mathrm{m}}{ }^{\alpha} \mathrm{f}\right)^{(1)}$ is due to the Mastroianni and Occorsio [11]:

$$
\begin{aligned}
& \left(S_{m}^{(\alpha)} f\right)^{(l)}=l!\prod_{v=1}^{l} \frac{1-\frac{v-1}{m}}{1+(m-v) \alpha} \sum_{i=0}^{m-l} \omega_{m-l, i}(\alpha, x)\left[\frac{i}{m}, \frac{i+1}{m}, \ldots, \frac{i+l}{m} ; f\right]+ \\
& +\sum_{h \in I_{p}-\{0\}} a_{h} \sum_{i=0}^{v_{l}} \omega_{v_{l}, i}(\alpha, x) \prod_{j=1}^{l} \frac{1}{u_{j}} \Delta_{u_{j}} f\left(\frac{i}{m}\right)
\end{aligned}
$$

Given the notation :

$$
\begin{aligned}
& \beta_{m, l}^{\alpha}=\prod_{v=1}^{l} \frac{1-\frac{v-1}{m}}{1+(m-v) \alpha} \\
& \lambda_{h, l}(\alpha, x)=a_{h} \sum_{i=0}^{v_{l}} \omega_{v_{l}, i}(\alpha, x) \prod_{j=1}^{l} \frac{1}{u_{j}} \Delta_{u_{j}} f\left(\frac{i}{m}\right) \\
& \varphi_{m, l}(\alpha, x)=\sum_{h \in I_{p}-\{0\}} \lambda_{h, l}(\alpha, x)
\end{aligned}
$$

we can write

$$
\left(S_{m}^{(\alpha)} f\right)^{(l)}=l!\beta_{m, l}^{\alpha} \sum_{i=0}^{m-l} \omega_{m-l, i}(\alpha, x)\left[\frac{i}{m}, \frac{i+1}{m}, \ldots, \frac{i+l}{m} ; f\right]+\varphi_{m, k}(\alpha, x)
$$

Finally we have the representation of the quantities $\left(\mathrm{S}_{\mathrm{m}}{ }^{(\alpha)} \mathrm{e}_{1}\right)^{(1)}, l \in\{\mathrm{k}, \mathrm{k}+\mathrm{s}\}$ as $\left(S_{m}^{(\alpha)} e_{l}\right)^{(l)}=l!\beta_{m, l}^{\alpha}$ and plugging into the inequality of Theorem 8 our claim yields.

We now consider two special cases of $s \geq 1$, which are of particular interest.

- The first case is $s=1$:

Proposition 10. Let $\mathrm{k} \geq 0$ be a fixed integer. Then for $\forall \mathrm{n} \geq \mathrm{k}+1, \forall f \in C^{k}[0,1]$ and $\delta \geq 0$ we have:

$$
\omega_{1}\left(\left(B_{n} f\right)^{(k)} ; \delta\right) \leq \frac{(n)_{k}}{n^{k}} \cdot \varpi_{1}\left(f^{(k)} ; \frac{n-k}{n} \cdot \delta\right) \leq 1 \cdot \varpi_{1}(f ; \delta)
$$

The left inequality is best possible, means that for $\mathrm{e}_{\mathrm{k}+1}$ both sides are equal .
Proof. Proposition 8 gives the particular case

$$
K_{1}\left(\left(B_{n} f\right)^{(k)} ; \delta\right)_{[0,1]} \leq \frac{(n)_{k}}{n^{k}} \cdot K_{1}\left(f^{(k)} ; \frac{n-k}{n} \delta\right)_{[0,1]}
$$

For K-functionals K_{1} we have Brudnyî̀ representation: $K_{1}(f ; \delta)_{[0,1]}=\frac{1}{2} \varpi_{1}(f ; 2 \delta)$. Using this in both sides of the inequalities which involves K_{1} leads to the first condition fron Proposition 10. Furthermore, for the function $e_{k+1}(x)=x^{k+1}$ it can easily be verified that, for $\mathrm{n} \geq \mathrm{k}+1$, both sides in the left part of the inequality in Proposition 10 equal $\frac{(n)_{k+1}}{n^{k+1}} \cdot(k+1)!\delta \geq 0, \quad$ for $\delta>0$.

- The case $s=2$.

As an immediate consequence of Proposition 8 we get:
Consequence 11. For a fixed integer $k \geq 0$ and $\forall n \geq k+2$ one has that

$$
K_{2}\left(\left(B_{n} f\right)^{(k)} ; \delta\right) \leq \frac{(n)_{k}}{n^{k}} \cdot K_{2}\left(f^{(k)} ; \frac{(n-k)(n-k-1)}{n^{2}} \cdot \delta\right) \leq K_{2}\left(f^{(k)} ; \delta\right)
$$

Proposition 10 was derived from Proposition 8 by an representation of Kfunctionals K_{1} using modulus of continuity ω_{1}. We present only the case $s=2$ because only in this situation we know some constants involving in this relations. We use, for $\delta \in[0,1 / 2]$:

$$
\frac{1}{4} \omega_{2}(f ; \delta) \leq K_{2}\left(f ; \frac{1}{4} \delta^{2}\right) \leq \frac{9}{8} \omega_{2}(f ; \delta)
$$

Similar statements involving $\omega_{2}\left(f^{(\mathrm{k})} ; \delta\right)$ are obtained if one starts with $\omega_{2}\left(\left(\mathrm{~B}_{\mathrm{n}} f\right)^{(\mathrm{k})} ; \delta\right)$. As the result we have:

Proposition 12. For fixed integer $\mathrm{k} \geq 0, f \in \mathrm{C}^{\mathrm{k}}[0,1]$ and all $\delta \geq 0$ the B_{m} operator satisfy the inequality

$$
\omega_{2}\left(\left(B_{n} f\right)^{(k)} ; \delta\right) \leq 3 \frac{(n)_{k}}{n^{k}}\left[1+\frac{(n-k)(n-k-1)}{2 n^{2}}\right] \cdot \omega_{2}\left(f^{(k)} ; \delta\right)
$$

In particular, for $\mathrm{k}=0$ we have

$$
\omega_{2}\left(B_{n} f ; \delta\right) \leq 3\left[1+\frac{n-1}{2 n}\right] \omega_{2}(f ; \delta) \leq 4,5 \omega_{2}(f ; \delta)
$$

References.

[1] Agratini O., "Aproximare prin operatori liniari", Presa Univ. Clujeana, 2000, p. 354
[2] Anastassiou G.A., Cottin C., Gonska H., "Global Smoothness of Approximatting Functions", Analysis, 11 (1991), 43 - 57
[3] Brown B.M., Elliott D., Paget D.F., "Lipschitz Constants for the Bernstein Polynomials of a Lipschitz Continuous Function", J. of Approx. Theory 49 (1987), 196 - 199
[4] Cottin C., Gonska H.H., "Simultaneous Approximation and Global Smoothness Preservation", Rend. Circolo Matematico di Palermo, no. 33 (1993), 259 - 279 (suppl.)
[5] Della Vecchia B., "On the Preservation of Lipschitz Constants for Some Linear Operators", Boll. Un. Mat. Ital. B. (7), 3 (1989), 125 - 136
[6] Gonska H.H., "Quantitative korovkin - type Theorems on Simultaneous Approximation", Math. Z., 186 (1984), 419 - 433
[7] Gonska H.H., "Simultaneous Approximation by Algebraic Blending Functions", Alfred Haar Memorial Conference (Proc. Int. Conference Budapest 1985), Colloq. Soc. Janos Bolyai 49, Amsterdam-Oxford-New York:Nord Holland (1987), 363 382
[8] Hajek O., "Uniform polynomial Approximation", Amer. Math. Monthly, 72 (1965), 681
[9] Lindvall T., "Bernstein Polynomials and the Law of Large Numbers", Math. Scient, 7 (1982), 127 - 139
[10] Lorentz G.G., "Bernstein Polynomials", Toronto, 1953
[11] Mastroianni G., Occorsio M., "Sulle derivate dei polinomi di Stancu", Rend. Accad. Sci. Fis. Mat., Napoli, IV, vol. 45, 1978, 273-281
[12] Stancu D.D., "Asupra unor polinoame de tip Bernstein", Stud. Cerc. Mat. Iasi, 11 (1960), 221 - 233
[13] Stancu D.D., "Approximation of functions by a new class of linear polynomial operators", Rev. Roumaine Math. Pures Appl, 13, 8 (1968), 1173-1194
[14] Steckin S.B., "On the Order of Best Approximation of Periodic Functions", Izv. Akad. Nauk URSS, 15 (1951), 219 - 242

Author:

Voichita Cleciu, "Babes Bolyai" University of Cluj Napoca, Romania, email: vcleciu@econ.ubbcluj.ro

