GENERALIZED BIRKHOFF INTERPOLATION SCHEMES: CONDITIONS FOR ALMOST REGULARITY

by
Nicolae Crainic

Abstract

Classically, Birkhoff interpolation schemes depend on a "lower set" S, which defines the interpolation space the solutions are required to belong to. In this paper we extend some of the notions/results to the case where S is arbitrary. Particular cases will be "generalized Lagrange schemes", and others (see subsection 9). After basic definitions, we present several conditions that are necessary for the almost regularity of the schemes (subsections 10-17), and also a condition that forces singularity. In the last part (subsections 18-20), we give some examples (with general S), some of which are singular, some almost regular, and also some for which the normality, the almost regularity, the regularity, or the Abel type are all equivalent.

We first introduce some basic notions:

1. If S is a subset of $I N^{d}$, define P_{S} as the spaceof polynomials of type

$$
P(\boldsymbol{x})=P\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{i \in S} a_{i} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}, a_{i} \in I R
$$

and define the spaces $P_{S}^{(\boldsymbol{\alpha})}=\left\{P^{(\boldsymbol{\alpha})}: P \in P_{S}\right\}$, where

$$
P^{(\boldsymbol{\alpha})}(\boldsymbol{x})=\frac{\partial^{\alpha_{1}+\ldots \alpha_{d}}}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{d}^{\alpha_{d}}} P(\boldsymbol{x})=\sum_{i_{i} S} a_{\boldsymbol{i}} \frac{i_{1}!}{\left(i_{1}-\alpha_{1}\right)!} \ldots \frac{i_{d}!}{\left(i_{d}-\alpha_{d}\right)!} x_{1}^{i_{1}-\alpha_{1}} \ldots x_{d}^{i_{d}-\alpha_{d}}
$$

for

$$
\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in S, \quad \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in I R^{d}, \quad \boldsymbol{\alpha} \leq \boldsymbol{i}
$$ $\left.\alpha_{k} \leq i_{k},(\forall) k=\overline{1, d}\right)$. We call it the space of derivatives of order $|\boldsymbol{\alpha}|=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d}$ of P (see [8]).

2. For $\boldsymbol{\alpha} \in S \subset I N^{d}$, define S_{α} as the set consisting of those $\boldsymbol{i} \in S$ satisfying $\boldsymbol{\alpha} \leq \boldsymbol{i}$.
3. Given two subsets X and S of $I N^{d}$, we say that X is lower with respect to S if

$$
\boldsymbol{i} \in X, \boldsymbol{j} \in S, \boldsymbol{j} \leq \boldsymbol{i} \Rightarrow \boldsymbol{j} \in X
$$

(see [5]).
4. A multidimensional (polynomial) interpolation scheme (of dimension d), denoted (Z, S, E), consists of the following
(a) A set of nodes

$$
\mathrm{Z}=\left\{\boldsymbol{z}_{q}\right\}_{q=1}^{m}=\left\{\left(z_{q, 1}, z_{q, 2}, \ldots, z_{q, d}\right)\right\}_{q=1}^{m} \subset I R^{d}
$$

(b) A subset S of $I N^{d}$,
(c) An incidence matrix $E=\left(e_{q, \boldsymbol{\alpha}}\right)$, indexed by $1 \leq q \leq m$ (which label the nodes z_{q}) and by the elements $\boldsymbol{\alpha} \in S$.

The interpolation problem associated to the scheme (Z, S, E) consists of finding

$$
P \in P_{S}
$$

satisfying:

$$
\frac{\partial^{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d}}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{d}^{\alpha_{d}}} P\left(z_{q}\right)=c_{q, \boldsymbol{\alpha}}
$$

for all $q \in \overline{1, m}$ and $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in S$ with $e_{q, \boldsymbol{\alpha}}=1$, where the $c_{q, \boldsymbol{\alpha}}$'s are arbitrary real constants.

If the incidence matrix E has a column consisting only of 1 's, and the remaining elements are zero, we say that (Z, S, E) is a generalized Lagrange scheme. If $\boldsymbol{\alpha} \in S$ defines the non-vanishing column, we also say that (Z, S, E) is a Lagrange scheme with respect to $\boldsymbol{\alpha}$.

If S is lower with respect to $I N^{d}$, then (Z, S, E) is a Birkhoff interpolation scheme (see [12]).
5. We say that $E=\left(e_{q, \boldsymbol{\alpha}}\right)$ is an Abel matrix is, for each $\boldsymbol{\alpha} \in S$, there exists precisely one
$q \in \overline{1, m}$ with the property that $e_{q, \boldsymbol{\alpha}}=1$. The associated schemes, and the associated problems are called Abel interpolation schemes, and Abel interpolation problems, respectively.
6. For an incidence matrix E, one defines

$$
|E|=\sum_{q=1}^{m} \sum_{\boldsymbol{\alpha} \in S} e_{q, \boldsymbol{\alpha}},
$$

which is the number of nonvanishing elements of E.
An interpolation scheme (Z, S, E) is called normal if

$$
|E|=|S|
$$

(where $|S|$ is the cardinality of S).
7. Given a normal interpolation scheme (Z, S, E), we say it is:
(i) regular if , for all choices of the set Z of nodes, the determinant $D(Z, S, E)$ does not vanish Z,
(ii) almost regular if, for at least one choice of the set Z of nodes, the determinant $D(Z, S, E)$ does not vanish.
(iii) singular if, for any ste of nodes Z, the determinant $D(Z, S, E)$ is zero.
8. Given the scheme (Z, S, E), one defines the support of the incidence matrix E as the set of the order of derivatives that appear in the associated interpolation problem:

$$
A=\left\{\boldsymbol{\alpha} \in S: e_{q, \boldsymbol{\alpha}}=1, q=\overline{1, m}\right\} .
$$

9. If

$$
\Delta_{k}^{d}=\bigcup_{i_{1}=0}^{k} \bigcup_{i_{2}=0}^{k-i_{1} k-\left(i_{1}+i_{2}\right)} \bigcup_{i_{3}=0}^{k-\left(i_{1}+\ldots+i_{d-2}\right)} \ldots \bigcup_{i_{d-1}=0}^{\left\{\left(i_{1}, i_{2}, \ldots, i_{d-1}, k-\left(i_{1}+i_{2}+\ldots+i_{d-1}\right)\right\}, ~, ~, ~\right.}
$$

then

$$
T_{n}^{d}=\bigcup_{k=0}^{n} \Delta_{k}^{d}
$$

is lower with respect to $I N^{d}$ and any subset S of $I N^{d}$ can be written as:

$$
S=\bigcup_{t=0}^{n} \Delta_{k_{t}}^{\prime d}
$$

where $k_{n}=\max _{i \in S}|\boldsymbol{i}|, 0 \leq k_{0} \leq k_{1} \leq \ldots \leq k_{n}, \Delta_{k_{t}}^{\prime d}=S \cap \Delta_{k_{t}}^{d}, t=\overline{0, n}$, and $k_{t} \in \overline{0, k_{n}}$ (see [6]).

In the remaining part of this paper, unless otherwise specified, all schemes will be assumed to be normal, and S will be an arbitrary subset of
$I N^{d}$.
Of course, one would like to have criterias, hopefully simple enough so that they are usable, to decide when an interpolation scheme is regular, almost regular, or singular. In general, finding complete criterias (necessary and sufficient) is a very difficult problem, and one looks for partial criterias (which are implied by almost regularity).

Before presenting some criterias, we need the following:
10. Lemma. Consider an interpolation scheme (Z, S, E), with

$$
E_{X}=\left(e_{q, \boldsymbol{\alpha}}\right), q \in \overline{1, m}, \boldsymbol{\alpha} \in X \subset S .
$$

If A is the support of E, and $B \subseteq C \subseteq S$, then

1) $|E|=\left|E_{A}\right|=|A|$,
2) $\left|E_{A \cap X}\right|=\left|E_{X}\right|,(\forall) X \subseteq S$,
3) $\quad\left|E_{B}\right| \leq\left|E_{C}\right|,\left|E_{C \backslash B}\right|=\left|E_{C}\right|-\left|E_{B}\right|$.

Proof: 1) and 2) are immediate, and, for 3), we write

$$
\begin{gathered}
\left|E_{C}\right|=\sum_{q=1}^{m} \sum_{\boldsymbol{\alpha} \in C} e_{q, \boldsymbol{\alpha}}=\sum_{q=1}^{m}\left(\sum_{\boldsymbol{\alpha} \in B} e_{q, \boldsymbol{\alpha}}+\sum_{\boldsymbol{\alpha} \in C \backslash B} e_{q, \boldsymbol{\alpha}}\right)=\sum_{q=1}^{m} \sum_{\boldsymbol{\alpha} \in B} e_{q, \boldsymbol{\alpha}}+\sum_{q=1}^{m} \sum_{\boldsymbol{\alpha} \in C \backslash B} e_{q, \boldsymbol{\alpha}}= \\
=\left|E_{B}\right|+\left|E_{C \backslash B}\right| . \square
\end{gathered}
$$

In what follows we will exploit the following simple guiding principle: if a matrix has non-vanishing determinant, then the matrix cannot have "too many zeros'". One example of this is the following simple remark:
11. Lemma. If the matrix $A \in M_{n}(I R)$ has a row and b columns with the property that all the ab elements situated at the intersection of these rows and columns are zero, and $\operatorname{det}(A) \neq 0$, then

$$
\begin{equation*}
a+b \leq n . \tag{1}
\end{equation*}
$$

Proof: Taking the a rows from the statement, and removing the $a b$ elements that vanish, we obtain a matrix with a rows and $n-b$ columns, call
it A_{1}. We do the same for b columns, and we obtain a matrix A_{2} with $n-a$ rows and b columns.

In the limit case, i.e. $a+b=n$, it follows that both A_{1} and A_{2} are suqare matrices, and the Laplace formulla tells us that

$$
\operatorname{det}(A)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right) .
$$

Assume now that $a+b>n$, and we prove that $\operatorname{det}(A)=0$. Let b_{0} so that $a+b_{0}=n$, and then we choose b_{0} columns out of those in the statement (this is possible since $b_{0}<b$). We apply the first part to these b_{0} columns and a rows from the statement, to conclude that $\operatorname{det}(A)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right)$. On the other hand, since $b_{0}<b$, the matrix A_{1} (of type $\left(a, n-b_{0}\right)$) contains at least one column consisting on zero elements only. Hence $\operatorname{det}\left(A_{1}\right)=0$, and then $\operatorname{det}(A)=0$ as desired.
12. Theorem. If (Z, S, E) is almost regular, then

$$
\begin{equation*}
\left|E_{L}\right| \geq|L| \tag{2}
\end{equation*}
$$

for all sets L which are lower with respect to $S(L \subset S)$.
Proof: Let L be a subset that is lower with respect to S. Since $|S|=|L|+|S \backslash L|,|E|=\left|E_{L}\right|+\left|E_{S \backslash L}\right|$ (by Lemma 10) and $|E|=|S|$ (the normality of the scheme), it follows that

$$
\left|E_{L}\right|+\left|E_{S \backslash L}\right|=|L|+|S \backslash L|
$$

This implies that

$$
\begin{equation*}
\left|E_{S \backslash L}\right| \leq|S \backslash L| \Leftrightarrow\left|E_{L}\right| \geq|L| . \tag{3}
\end{equation*}
$$

On the other hand, the elements of the matrix $M(Z, S, E)$ situated at the intersection of the columns indexed by L become zero when we consider derivatives that come $S \backslash L$.

Applying the previous lemma, we must have

$$
|L|+\left|E_{S \backslash L}\right| \leq|S| .
$$

Since $|S|=|L|+|S \backslash L|$, we get $\left|E_{S \backslash L}\right| \leq|S \backslash L|$ and then, by (3),

$$
\left|E_{L}\right| \geq|L|,
$$

which proves the theorem.
13. Remark. The theorem can also be proven by the method given in [12] in the case where S is a lower set with respect to $I N^{d}$.

For the case of lower sets, the theorem above is known under the Polya condition. Accordingly, we introduce the following terminology:
14. Definition. We say that an interpolation scheme (Z, S, E) (or an incidence matrix E) satisfies the Polya condition if $\left|E_{L}\right| \geq|L|$, for all sets L which are lower with respect to $S\left(L \subset S \subset I N^{d}\right)$.
15. Remarks. 1. In the uni-dimensional case, the Pólya condition is equivalent to the almost regularity of the scheme: a scheme is almost regular if and only if it satisfies the Polya condition (cf. [12], theorem 2.2.5). In the multidimensional case this is not longer true. Nevertheless, there are particular classes of interpolation schemes for which the Pólya condition is equivalent to the almost regularity (actually there are classes for which the normality of the scheme is equivalent to the almost regularity (see e.g. theorem 19 below).
2. A restatement of the previous theorem says that an interpolation scheme whose incidence matrix does not satisfy the Pólya condition cannot be almost regular. This is very useful in practice when we try to construct interpolation schemes that are almost regular (or regular).

Hence the theorem, and the Pólya condition, give us lower bounds for the numbers of interpolations that are necessary on the derivatives P, so that the almost regularity of the scheme is not spoiled. Next, we are looking for conditions for almost regularity which do not lower the number of nodes or the number of derivatives in the interpolation problem. Such a condition is presented in the next theorem. Although this theorem is a consequence of the Pólya condition, it does give a criteria which bounds the numbers of interpolations of a given order (for the derivatives) depending on the dimension of the space of derivatives of the given order. Of course, when we are trying to construct regular interpolation schemes, such conditions are easy to check.
16. Theorem. If (Z, S, E) is almost regular, then, for all $\boldsymbol{\alpha} \in A$ (where A is
the support of E, see (8))

$$
\left|E_{\left\{\boldsymbol{\alpha}_{\}}\right.}\right| \leq \operatorname{dim} P_{S}^{(\boldsymbol{\alpha})}
$$

Proof: Given $\boldsymbol{\alpha} \in A$, we consider $L=S \backslash S_{\alpha}$, where S_{α} was defined in (2). We have $L \cap A \subset A \backslash\{\boldsymbol{\alpha}\}$. Applying lemma 10,

$$
\left|E_{L \cap A}\right| \leq\left|E_{A\{\{\boldsymbol{\alpha}\}}\right| \text { and }\left|E_{L \cap A}\right|=\left|E_{L}\right| .
$$

Next, we apply the Pólya condition to L (which is lower with respect S by construction), and the previous relations to conclude:

$$
|S|-\left|S_{\boldsymbol{\alpha}}\right|=\left|S \backslash S_{\boldsymbol{\alpha}}\right|=|L| \leq\left|E_{L}\right|=\left|E_{L \cap A}\right| \leq\left|E_{A\{\{\boldsymbol{\alpha}\}}\right|=\left|E_{A}\right|-\left|E_{\{\boldsymbol{\alpha}\}}\right| .
$$

Since $|S|=\left|E_{A}\right|$ (the normality of (Z, S, E)), it follows that

$$
\left|E_{\left\{\boldsymbol{\alpha}_{\}}\right.}\right| \leq\left|S_{\boldsymbol{\alpha}}\right|=\operatorname{dim} P_{S}^{(\boldsymbol{\alpha})},
$$

and the theorem is proven.
17. Remark. Hence

$$
\left|E_{\left\{\boldsymbol{a}_{\}}\right.}\right|>\operatorname{dim} P_{S}^{(\boldsymbol{\alpha})},
$$

with $\boldsymbol{\alpha} \in A \subset S$, is sufficient to ensure the singularity of the interpolation (Z, S, E).

We now present the two examples promised in the abstract.
18. Theorem. If (Z, S, E) is a Lagrange interpolation scheme with respect to $\alpha^{\prime}=\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{d}^{\prime}\right) \in S$, then:
(i) if there exists $k \in \overline{1, d}$ and $\boldsymbol{i}=\left(i_{1}, i_{2}, \ldots, i_{k}, \ldots, i_{d}\right) \in S$ such that $i_{k}<\alpha_{k}$, then the scheme (Z, S, E) is singular,
(ii) if $\boldsymbol{\alpha}^{\prime} \leq \boldsymbol{i}$ for all $\boldsymbol{i}=\left(i_{1}, i_{2}, \ldots, i_{d}\right) \in S$, then the scheme (Z, S, E) is almost regular.

Proof:

i) $P^{\left(\alpha^{\prime}\right)}$ that appear in the interpolation problem will not contain $x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{k}^{i_{k}} \ldots x_{d}^{i_{d}}$, hence the corresponding column in the matrix $M(Z, S, E)$ associated to the scheme has only zero elements. Hence the determinant must be zero, and the scheme must be singular.
ii) In this case, the spaces containing the polynomial $P^{\left(\boldsymbol{\alpha}^{\prime}\right)}$ and P have the same dimension. Clearly, in this case there exists Z, such that the interpolation problem associated to (Z, S, E) has solution. Hence (Z, S, E) is almost regular.
19. Theorem. Consider the interpolation scheme $\left(\Delta_{k_{t}}^{d}, E_{\Delta_{k_{t}^{d}}^{\prime}}\right), t=\overline{0, n}$, where $k_{n}=\max _{i \in S}|i|, 0 \leq k_{0} \leq \ldots \leq k_{n}, \Delta_{k_{t}}^{d}=S \cap \Delta_{k_{t}}^{d}$, and $\Delta_{k_{t}}^{d}, t=\overline{0, n}$, are those defined in (9). Then the normality of the scheme, the Pólya condition, the almost regularity, the regularity, and the Abel type condition, are all equivalent.

Proof: Since $P \in P_{S}$, with $S=\Delta_{k_{t}}^{d}, t=\overline{0, n}$, using 1. or [6], it follows that the derivatives of order $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in \Delta_{k_{t}}^{d}, t=\overline{0, n}$ of $P=P_{k_{t}}$ are

$$
\begin{aligned}
& \frac{\partial^{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d}}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{d}^{\alpha_{d}}} P_{k_{t}}(\boldsymbol{x})=\frac{\partial^{k_{t}}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{d-1}^{\alpha_{d-1}} \partial x_{d}^{k_{d}-\left(\alpha_{1}+\ldots+\alpha_{d-1}\right)}} P_{k_{t}}(\boldsymbol{x})= \\
= & \alpha_{1}!\alpha_{2}!\ldots \alpha_{d-1}!\left[k_{t}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right]!a_{\alpha_{1}, \alpha_{2}, \ldots \alpha_{d-1}, k_{t}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right.},
\end{aligned}
$$

i.e. they are constant for all $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in I R^{d}$, and $\boldsymbol{i}=\left(i_{1}, i_{2}, \ldots, i_{d}\right) \in \Delta_{k_{t}}^{d}, t=\overline{0, n}$.

It follows that, if the scheme is normal, then each derivative will be interpolated exactely once, and this means that the scheme is Abel (see the definition in 5.). Conversely, if the scheme is Abel, then, from the definition, each derivative is interpolated exactely once. It follows that the number of interpolations (hence also of the equations) equals to the cardinality of the $\left\{\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in \Delta_{k_{t}}^{d}\right\}$, i.e. with $\operatorname{dim} P_{S}, S=\Delta_{k_{t}}^{d}$. This means that the scheme must be normal.

The rest is proven similarly.
20. Corollary. The interpolation scheme $\left(\Delta_{k_{t}}^{\prime d}, E_{\Delta_{k_{i}}^{d}}\right), t \in \overline{0, n}$, cannot be Lagrange.

Since $\boldsymbol{\alpha} \in \Delta_{k_{t}}^{d}$, and for $S=\Delta_{k_{t}}^{d}$ we have $\operatorname{dim} P_{S}^{(\boldsymbol{\alpha})}=1$, it follows that each derivative can be interpolated at most once, hence the corollary.

REFERENCES

[1] Agratini, O.,Coman, Gheorghe, Chiorean, Ioana, Trâmbițaş, Radu, Analiză numerică şi teoria aproximării, Volumul III, Presa Universitară Clujană,2002.
[2] de Boor, C. and Ron, A., On multivariate polynomial interpolation, Const. Approx., 6(1990), 287 - 302.
[3] Cavaretta, A. S., Micchelli, C. A. and Scharma, A., Multivariate interpolation and the Radon transformation, Part I, Math. Z. 174(1980), 263-279.
[4] Ciarlet, P. G. and Raviart, P. A., General Lagrange and Hermite interpolation in \mathfrak{R}^{n} with applications to finite elements methods, Arc. Rational Mech. Anal. 49(1972), 177 - 199.
[5] Crainic, N., Inferior and superior sets with respect to an arbitrary set S from $I N^{d}$ used in the multidimensional interpolation theory, Acta Universitatis Apulensis, "1 Decembrie 1918" University of Alba-Iulia, No. 4/2002, 77-84
[6] Crainic, N., Ordering of some subsets from $I N^{d}$ used in the multidimensional interpolation theory, Acta Universitatis Apulensis, " 1 Decembrie 1918" University of Alba-Iulia, No. 4/2002, 85 - 96.
[7] Crainic, N., On the necessary and sufficient condition for the regularity of a multidimensional interpolation scheme, 2003, (în curs de apariție la Studia, University of Cluj-Napoca).
[8] Crainic, N., Polinoame multidimensionale şi derivatele acestora folosite în teoria interpolării multidimensionale, Annales Univesitatis Apulensis, Universitarea "1 Decembrie 1918" Alba-Iulia, Seria matematicainformatica, (acceptat pentru publicare în nr. 3-2003),
[9] Gasca, M. and Sauer T., Multivariate polynomial interpolation, Adv. Comput. Math., 12(2000), pp. 377-410.
[10] Hack, F., On bivariate Birhoff interpolation, J. Approx. Th., 49(1987), 18-30.
[11] Lorentz, G. G., Jetter, K. and Riemenschneider, S. D., Birkhoff Interpolation, Addison -Wesley, Reading, Massachusetts, 1983.
[12] Lorentz, R. A., Multivariate Birkhoff Interpolation, Springer Verlag, Berlin, 1992
[13] Stancu, D. Dimitrie, Coman Gheorghe, Blaga Petru, Analiză numerică şi teoria aproximării, Vol. II, Presa Universitară Clujană, Universitatea "Babeş - Bolyai", 2002.
[14] Thatcher, H. C., Jr. and Milne, W. E., Interpolation in several variables, SIAM, 8(1960), $33-42$.
[15] Werner, H., remarks on Newton type multivariate interpolation for subsets of Grids, Computing, 25(1980), 181-191.

Author:

Nicolae Crainic, "1 Decembrie 1918" University of Alba Iulia, Departament of Mathematics and Computer Science

