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GENERALIZED BIRKHOFF INTERPOLATION SCHEMES: 

CONDITIONS FOR ALMOST REGULARITY 
 

by 
Nicolae Crainic 

 
 
Abstract: Classically, Birkhoff interpolation schemes depend on a ``lower set’’ S, which 
defines the interpolation space the solutions are required to belong to. In this paper we extend 
some of the notions/results to the case where S is arbitrary. Particular cases will be 
``generalized Lagrange schemes’’, and others (see subsection 9). After basic definitions, we 
present several conditions that are necessary for the almost regularity of the schemes 
(subsections 10-17), and also a condition that forces singularity. In the last part (subsections 
18-20), we give some examples (with general S), some of which are singular, some almost 
regular, and also some for which the normality, the almost regularity, the regularity, or the 
Abel type are all equivalent. 
 
 
 We first introduce some basic notions: 

 1. If S  is a subset of dIN , define SP  as the spaceof polynomials of type  
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for Sd ∈= ),...,,( 21 αααα , d
d IRxxx ∈= ),...,,( 21x , α ≤ i  (i.e. 

dkikk ,1)(, =∀≤α ). We call it the space of derivatives of order 

dααα +++= ...21α  of P  (see [8]). 

 2. For S∈α ⊂ dIN , define αS  as the set consisting of those S∈i  
satisfying iα ≤ .  

 3. Given two subsets X  and S  of dIN , we say that X  is lower with 
respect to S  if 
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X∈i , S∈j , ij ≤  ⇒  X∈j  
(see [5]). 

 4. A multidimensional (polynomial) interpolation scheme (of dimension 
d), denoted ),,( ESZ , consists of the following 

(a) A set of nodes  

Z = m
qq 1}{ =z  = { }m

qdqqq zzz
1,2,1, ),...,,(
=

dIR⊂ , 

(b) A subset S  of dIN , 

(c) An incidence matrix E= )( ,αqe , indexed by mq ≤≤1  (which label 
the nodes qz ) and by the elements S∈α .  

The interpolation problem associated to the scheme ),,( ESZ  consists of 
finding  

SPP∈  
satisfying:  
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for all mq ,1∈  and Sd ∈= ),...,,( 21 αααα  with 1, =αqe , where the α,qc ’s are 
arbitrary real constants. 
 If the incidence matrix E  has a column consisting only of 1’s, and the 
remaining elements are zero, we say that ),,( ESZ  is a  generalized Lagrange 
scheme. If S∈α  defines the non-vanishing column, we also say that ),,( ESZ  
is a Lagrange scheme with respect to α . 
 If S  is lower with respect to dIN , then ),,( ESZ  is a Birkhoff 
interpolation scheme (see [12]). 

 5. We say that E = )( ,αqe  is an Abel matrix is, for each S∈α , there 
exists precisely one   

q m,1∈  with the property that 1, =αqe . The associated schemes, and the 
associated problems are called Abel interpolation schemes, and Abel 
interpolation problems, respectively.  

 6. For an incidence matrix E, one defines 
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E  = ∑∑
= ∈
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q S
qe

1
,

α
α , 

which is the number of nonvanishing elements of E .  
An interpolation scheme ),,( ESZ  is called  normal if  

|| SE =   
(where || S  is the cardinality of S ).  

 7. Given a normal interpolation scheme ),,( ESZ , we say it is: 
)(i  regular if , for all choices of the set Z  of nodes, the 

determinant ),,( ESZD  does not vanish Z , 
)(ii  almost regular if, for at least one choice of the set Z  of nodes, the  

determinant ),,( ESZD  does not vanish.  
(iii) singular if, for any ste of nodes Z , the determinant ),,( ESZD  is 

zero. 

 8. Given the scheme ),,( ESZ , one defines the support of the incidence 
matrix E  as the set of the order of derivatives that appear in the associated 
interpolation problem:  

},1,1:{ , mqeSA q ==∈= αα . 
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is lower with respect to dIN  and any subset S  of dIN  can be written as: 
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(see [6]). 

 In the remaining part of this paper, unless otherwise specified, all 
schemes will be assumed to be normal, and  S  will be an arbitrary subset of 
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dIN .  

 Of course, one would like to have criterias, hopefully simple enough so 
that they are usable, to decide when an interpolation scheme is regular, almost 
regular, or singular. In general, finding complete criterias (necessary and 
sufficient) is a very difficult problem, and one looks for partial criterias (which 
are implied by almost regularity).   
 Before presenting some criterias, we need the following: 

10. Lemma. Consider an interpolation scheme ),,( ESZ  , with 

XE = )( ,αqe , mq ,1∈ , SX ⊂∈α . 

 If A  is the support of E , and SCB ⊆⊆ , then  

1) AEE A ==  , 

2) XAE ∩ = XE , SX ⊆∀)( , 

3) CB EE ≤ , BCBC EEE −=\ . 

Proof: 1) and 2) are immediate, and, for 3), we write  

CE  = ∑∑
= ∈

m

q C
qe

1
,

α
α =∑ ∑∑

= ∈∈








+

m

q BC
q

B
q ee

1 \
,,

α
α

α
α =∑∑

= ∈

m

q B
qe

1
,

α
α +∑ ∑

= ∈

m

q BC
qe

1 \
,

α
α = 

= BE + BCE \ .□ 

 In what follows we will exploit the following simple guiding principle: if 
a matrix has non-vanishing determinant, then the matrix cannot have ``too 
many zeros’’. One example of this is the following simple remark: 

11. Lemma. If the matrix )(IRMA n∈  has a  row and b  columns with the 
property that all  the  ab  elements situated at the intersection of these rows 
and columns are zero, and 0det(A) ≠ , then 

nba ≤+ .      (1) 

 Proof: Taking the a  rows from the statement, and removing the ab  
elements that vanish, we obtain a matrix with a  rows and bn −  columns, call 
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it 1A . We do the same for b  columns, and we obtain a matrix 2A  with an −  
rows and b  columns.  
 In the limit case, i.e. nba =+ , it follows that both 1A  and 2A  are suqare 
matrices, and the Laplace formulla tells us that  

)det()det()det( 21 AAA = . 

 Assume now that nba >+ , and we prove that 0)det( =A . Let 0b  so that 
nba =+ 0 , and then we choose 0b  columns out of those in the statement (this 

is possible since bb <0 ). We apply the first part to these 0b  columns and a  
rows from the statement, to conclude that )det()det()det( 21 AAA = . On the 
other hand, since bb <0 , the matrix 1A  (of type )),( 0bna −  contains at least 
one column consisting on zero elements only. Hence 0)det( 1 =A , and then 

0)det( =A  as desired. □ 

12. Theorem. If ),,( ESZ  is almost regular, then  

LEL ≥       (2) 

for all sets L  which are lower with respect to S  ( SL ⊂ ). 

 Proof: Let L  be a subset that is lower with respect to S . Since 
LSLS \+= , LSL EEE \+=  (by Lemma 10) and SE =  (the normality 

of the scheme), it follows that  

LSL EE \+ = LSL \+  
 This implies that  

LSE \ LS \≤ ⇔ LEL ≥ .   (3) 

 On the other hand, the elements of the matrix ),,( ESZM  situated at the 
intersection of the columns indexed by L  become zero when we consider 
derivatives that come LS \ . 
 Applying the previous lemma, we must have 

LSEL \+ S≤ . 
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 Since LSLS \+= , we get LSE \ LS \≤  and then, by (3),   

LEL ≥ , 
which proves the theorem. □ 

13. Remark. The theorem can also be proven by the method given in [12] in 
the case where S  is a lower set with respect to dIN . 

 For the case of lower sets, the theorem above is known under the Polya 
condition. Accordingly, we introduce the following terminology: 

14. Definition. We say that an interpolation scheme ),,( ESZ  (or an incidence 
matrix E ) satisfies the Polya condition if LEL ≥ , for all sets L  which are 

lower with respect to S  ( dINSL ⊂⊂ ).  

15. Remarks. 1. In the uni-dimensional case, the Pólya condition is equivalent 
to the almost regularity of the scheme: a scheme is almost regular if and only if 
it satisfies the Polya condition (cf.  [12], theorem 2.2.5). In the 
multidimensional case this is not longer true. Nevertheless, there are particular 
classes of interpolation schemes for which the Pólya condition is equivalent to 
the almost regularity (actually there are classes for which the normality of the 
scheme is equivalent to the almost regularity  (see e.g. theorem 19 below). 

 2. A restatement of the previous theorem says that an interpolation 
scheme whose incidence matrix does not satisfy the Pólya condition cannot be 
almost regular. This is very useful in practice when we try to construct 
interpolation schemes that are almost regular (or regular). 

 Hence the theorem, and the Pólya condition, give us lower bounds for the 
numbers of interpolations that are necessary on the derivatives P , so that the 
almost regularity of the scheme is not spoiled. Next, we are looking for 
conditions for almost regularity which do not lower the number of nodes or the 
number of derivatives in the interpolation problem. Such a condition is 
presented in the next theorem. Although this theorem is a consequence of the 
Pólya condition, it does give a criteria which bounds the numbers of 
interpolations of a given order (for the derivatives) depending on the dimension 
of the space of derivatives of the given order. Of course, when we are trying to 
construct regular interpolation schemes, such conditions are easy to check.  

16. Theorem. If ),,( ESZ  is almost regular, then,  for all α A∈  (where A  is 
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the support of E , see (8)) 

}{αE α)(dim SP≤ . 

 Proof: Given α A∈ , we consider αSSL \= , where αS  was defined in 
(2). We have }{\ αAAL ⊂∩ . Applying lemma 10,  

}\{αAAL EE ≤∩  and LAL EE =∩ . 

 Next, we apply the Pólya condition to L  (which is lower with respect S  
by construction), and the previous relations to conclude:   

αα SSSS \=− = LEL ≤ = ALE ∩ }\{αAE≤ = }{αEEA − . 

 Since AES =  (the normality of ),,( ESZ ), it follows that   

}{αE αS≤ = α)(dim SP , 

and the theorem is proven. □ 

17. Remark. Hence 

}{αE α)(dim SP> , 

with α SA ⊂∈ , is sufficient to ensure the singularity of the interpolation 
),,( ESZ . 

   

 We now present the two examples promised in the abstract. 

18. Theorem. If ),,( ESZ  is a Lagrange interpolation scheme with respect to  
'α = S',...,',α' d ∈)( 21 αα , then: 

(i) if there exists dk ,1∈  and Siiii dk ∈= ),...,,...,,( 21i  such that 

kki 'α< , then the scheme ),,( ESZ is singular,  
(ii) if iα' ≤  for all Siii d ∈= ),...,,( 21i , then the scheme ),,( ESZ is 

almost regular.  
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Proof: 
 i) )(α'P  that appear in the interpolation problem will not contain 

dk i
d

i
k

ii xxxx ......21
21 , hence the corresponding column in the matrix ( )ESZM ,,  

associated to the scheme has only zero elements. Hence the determinant must 
be zero, and the scheme must be singular.  
 ii) In this case, the spaces containing the polynomial )(α'P  and P  have 
the same dimension. Clearly, in this case there exists Z , such that the 
interpolation problem associated to ( )ESZ ,,  has solution. Hence ),,( ESZ  is 
almost regular. □ 

19. Theorem. Consider the interpolation scheme ),( '
'
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in (9). Then the normality of the scheme, the Pólya condition, the almost 
regularity, the regularity, and the Abel type condition, are all equivalent. 

Proof: Since ,SPP∈  with S = d
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i.e. they are constant for all x = ),...,,( 21 dxxx dIR∈ , and 

),...,,( 21 diii=i ∈ d
kt

∆ , nt ,0= .  
 It follows that, if the scheme is normal, then each derivative will be 
interpolated exactely once, and this means that the scheme is Abel  (see the 
definition in 5.). Conversely, if the scheme is Abel, then, from the definition, 
each derivative is interpolated exactely once. It follows that the number of 
interpolations (hence also of the equations) equals to the cardinality of the 

}),...,,({ 21
d
kd t

∆∈= αααα , i.e. with ,dim SP  S = d
kt

∆ . This means that the 
scheme must be normal.  
 The rest is proven similarly. □ 
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20. Corollary. The interpolation scheme ),( '
'

d
tkt

Ed
k ∆

∆ , nt ,0∈ , cannot be 

Lagrange. 

 Since d
kt

∆∈α , and for d
kt

S ∆=  we have dim )(α
SP =1, it follows that each 

derivative can be interpolated at most once, hence the corollary. 
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