R-SEQUENCES AND APPLICATIONS

by
 Dorin Andrica and Mihai Piticari

Abstract. In this paper the R-sequences are defined. The main result shows that the sequence $\left(a_{n}\right)_{n \geq 1}, a_{n}=\frac{1}{n^{p}}$, where $\mathrm{p}>0$, defining the Riemann zeta function, is not an R-sequence.

Mathematics subject classification (2000): 26A03, 26A99.
A sequence $\left(a_{n}\right)_{n \geq 1}$ of real numbers is called a rational sequence or shortly R-sequence if there exists a rational function R such that for any positive integer $n \geq 1$ the following relation holds

$$
\begin{equation*}
a_{1}+a_{2}+\ldots+a_{n}=R(n) \tag{1}
\end{equation*}
$$

Example 1. The sequence $\left(x_{n}\right)_{n \geq 1}, x_{n}=\frac{1}{n(n+1)}$, is an R-sequence. Indeed, for any positive integer $n \geq 1$, we have $x_{1}+x_{2}+\ldots+x_{n}=R(n)$, where $R(x)=\frac{x}{x+1}$.

Example 2. (Romanian Mathematical Olympiad, [1, pp. 8 and 53], [4, pp. 170 and 514]) The sequence $\left(y_{n}\right)_{n \geq 1}, y_{n}=\frac{1}{n!}$, is not an R-sequence.
The argument follows by contradiction. Assume that for any positive integer $n \geq 1$

$$
\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}=\frac{A(n)}{B(n)}=R(n)
$$

where $A, B \in I R[x]$ and $\operatorname{deg}(A)=k, \operatorname{deg}(B)=m$. From $\lim _{n \rightarrow \infty} \frac{A(n)}{B(n)}=e$ it follows that $k=m$. Consider the polynomial function given by $Q(x)=A(x+1) B(x)-A(x) B(x+1)$. It is clear that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{Q(x+1)}{Q(x)}=\lim _{n \rightarrow \infty} \frac{Q(n+1)}{Q(n)}=1 \tag{2}
\end{equation*}
$$

Taking into account that $A(n+1)=R(n+1) B(n+1)$ and $A(n)=R(n) B(n)$, we obtain

$$
\begin{aligned}
& Q(n)=A(n+1) B(n)-B(n+1) A(n)= \\
& =R(n+1) B(n+1) B(n)-R(n) B(n) B(n+1)= \\
& =B(n) B(n+1)(R(n+1)-R(n))=\frac{B(n) B(n+1)}{(n+1)!}
\end{aligned}
$$

Therefore

$$
\frac{Q(n+1)}{Q(n)}=\frac{B(n+1) B(n+1)}{B(n) B(n+1)} \cdot \frac{(n+1)!}{(n+2)!}=\frac{B(n+2)}{B(n)} \cdot \frac{1}{n+2}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{Q(n+1)}{Q(n)}=\lim _{n \rightarrow \infty} \frac{B(n+2)}{B(n)} \cdot \lim _{n \rightarrow \infty} \frac{1}{n+2}=1 \cdot 0=0
$$

relation which contradicts (2).
Example 3. The sequence $\left(z_{n}\right)_{n \geq 1}, z_{n}=\frac{1}{n}$, is not an R-sequence.
If for any positive integer $n \geq 1$

$$
\begin{equation*}
1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}=\frac{P(n)}{Q(n)} \tag{3}
\end{equation*}
$$

where $P, Q \in I R[x]$, then from well-known relation

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)=+\infty
$$

it follows $\operatorname{deg}(P)>\operatorname{deg}(Q)$, i.e. $\operatorname{deg}(P) \geq \operatorname{deg}(Q)+1$.
On the other hand, from (3) one obtains

$$
\begin{equation*}
\frac{1+\frac{1}{2}+\ldots+\frac{1}{n}}{n}=\frac{P(n)}{n Q(n)} \tag{4}
\end{equation*}
$$

By using Cesaro' Lemma we have

$$
\lim _{n \rightarrow \infty} \frac{1+\frac{1}{2}+\ldots+\frac{1}{n}}{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

and from (4) it follows $\lim _{n \rightarrow \infty} \frac{P(n)}{n Q(n)}=0$, i.e. $\operatorname{deg}(P)<\operatorname{deg}(Q)+1$ in contradiction with the relation $\operatorname{deg}(P) \geq \operatorname{deg}(Q)+1$.
The main purpose of this present paper is to prove that the sequence $\left(a_{n}\right)_{n \geq 1}, a_{n}=\frac{1}{n^{p}}$, where $\mathrm{p}>0$, is not an R-sequence.
It is well-known that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is divergent when $p \in(0,1]$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\varsigma(p) \tag{5}
\end{equation*}
$$

where ς is the Riemann function, when $p>1$.
Lemma 1. Consider $f:[1, \infty) \rightarrow[0, \infty)$ a continuous and decreasing function. Let F be a differentiable function such that its derivative is f. Then the sequence $\left(x_{n}\right)_{n \geq 1}$, given by

$$
\begin{equation*}
x_{n}=f(1)+f(2)+\ldots+f(n)-F(n), n \geq 1 \tag{6}
\end{equation*}
$$

is convergent.
Proof. Applying Lagrange' Theorem to F on the interval $[k, k+1], k \geq 1$, it follows that there exists $c_{k} \in(k, k+1)$ such that

$$
F(k+1)-F(k)=f\left(c_{k}\right)
$$

By using the monotony of function f we obtain

$$
\begin{equation*}
f(k+1) \leq F(k+1)-F(k) \leq f\left(c_{k}\right) \tag{7}
\end{equation*}
$$

Taking $k=1,2, \ldots, n$ in (7) and adding all these inequalities we get

$$
\begin{equation*}
f(2)+f(3)+\ldots+f(n+1) \leq F(k+1)-F(k) \leq f(1)+f(2)+\ldots+f(n) \tag{8}
\end{equation*}
$$

On the other hand let us note that

$$
x_{n+1}-x_{n}=F(n)-F(n+1)+f(n+1) \geq 0, n \geq 1
$$

that is the sequence $\left(x_{n}\right)_{n \geq 1}$ is increasing.
From the left inequality in (8) we obtain

$$
x_{n}=f(1)+f(2)+\ldots+f(n)-F(n) \leq f(1)-F(1), n \geq 1
$$

that is the sequence $\left(x_{n}\right)_{n \geq 1}$ is upper bounded.

Lemma 2. (Stolz-Cesaro' Theorem, the case 0/0).
Let $\left(\alpha_{n}\right)_{n \geq 1},\left(\beta_{n}\right)_{n \geq 1}$ be two se-quences of real numbers satisfying the following hypothesis:

1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\lim _{n \rightarrow \infty} \beta_{n}=0$;
2) The sequence $\left(\beta_{n}\right)_{n \geq 1}$ is strict decreasing (or strict increasing);
3) There exists $\lim _{n \rightarrow \infty} \frac{\alpha_{n+1}-\alpha_{n}}{\beta_{n+1}-\beta_{n}}=A$ (finite or not).

Then $\left(\alpha_{n} / \beta_{n}\right)_{n \geq 1}$ is convergent and $\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\beta_{n}}=A$.
For the proof of this variant of well-known Stolz-Cesaro' theorem we refer to the papers
[3] and [2].
Let now state our main result.

Theorem. The sequence $\left(a_{n}\right)_{n \geq 1}, a_{n}=\frac{1}{n^{p}}$, where $p>0$, is not an R-sequence.
Proof. We will consider few situations on $p>0$.
Case 1: $p \in(0,1)$. Assume that there exists a rational function R such that for any $n \geq 1$

$$
\frac{1}{1^{p}}+\frac{1}{2^{p}}+\ldots+\frac{1}{n^{p}}=R(n)
$$

From Lemma 1 we obtain that the sequence $\left(x_{n}\right)_{n \geq 1}$, where

$$
x_{n}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\ldots+\frac{1}{n^{p}}-\frac{1}{(1-p) n^{p-1}}
$$

is convergent. Therefore the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(R(n)-\frac{1}{(1-p) n^{p-1}}\right) \tag{9}
\end{equation*}
$$

is finite. But

$$
\lim _{n \rightarrow \infty} R(n)=\lim _{n \rightarrow \infty}\left(\frac{1}{1^{p}}+\frac{1}{2^{p}}+\ldots+\frac{1}{n^{p}}\right)=+\infty
$$

implies the relation $R=P+R_{1}$, where P is a polynomial function and R_{1} is a rational function with $\lim _{n \rightarrow \infty} R_{1}(n)=0$. It follows

$$
\lim _{n \rightarrow \infty}\left(R(n)-\frac{1}{1-p} n^{p-1}\right)=\lim _{n \rightarrow \infty}\left(P(n)-\frac{1}{1-p} n^{p-1}\right)=+\infty
$$

by contradicting the finiteness of limit (9).
Case 2: $p=1$. We already proved this case in Example 3. Now we will indicate a different argument.
As in the previous case, the sequence $\left(y_{n}\right)_{n \geq 1}$

$$
y_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}-\ln n
$$

is convergent. Therefore $\lim _{n \rightarrow \infty}(R(n)-\ln n)$ is finite. But

$$
\lim _{n \rightarrow \infty}(R(n)-\ln n)=\lim _{n \rightarrow \infty}(P(n)-\ln n)=+\infty
$$

which is a contradiction.
Case 3: $p>1, p \notin Z_{+}$. In this situation, the sequence $\left(z_{n}\right)_{n \geq 1}$
$z_{n}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\ldots+\frac{1}{n^{p}}$ is convergent to $\varsigma(p)$. Then

$$
\lim _{n \rightarrow \infty}\left(z_{n}-\varsigma(p)\right)=\lim _{n \rightarrow \infty}(R(n)-\varsigma(p))=0
$$

It follows that for any $n \geq 1$ the relation holds

$$
R(n)-\varsigma(p)=\frac{P_{1}(n)}{Q_{1}(n)}
$$

where P_{1}, Q_{1} are polynomial functions and $\operatorname{deg}\left(P_{1}\right)<\operatorname{deg}\left(Q_{1}\right)$.
On the other hand, there exists a positive integer k such that $\operatorname{deg}\left(x^{k} P_{1}\right)=\operatorname{deg}\left(Q_{1}\right)$.
It follows that the limit

$$
\lim _{n \rightarrow \infty} \frac{n^{k} P_{1}(n)}{Q_{1}(n)}
$$

is finite and different from zero. Therefore, the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k}\left(1+\frac{1}{2^{p}}+\ldots+\frac{1}{n^{p}}-\varsigma(p)\right) \tag{10}
\end{equation*}
$$

is finite and different from zero.
But, we can write the limit (10) in the following way by using Lemma 2 :

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n^{k}\left(1+\frac{1}{2^{p}}+\ldots+\frac{1}{n^{p}}-\varsigma(p)\right)=\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1)^{p}}}{\frac{1}{(n+1)^{k}}-\frac{1}{n^{k}}}= \\
& =-\lim _{n \rightarrow \infty} \frac{n^{k}(n+1)^{k}}{(n+1)^{p}\left[(n+1)^{k}-n^{k}\right]}=-\lim _{n \rightarrow \infty} \frac{n^{k}(n+1)^{k}}{(n+1)^{p}\left[\binom{k}{1}^{k-1}+\ldots\right]}
\end{aligned}
$$

The last limit is finite and different from zero if and only is $p+k-1=2 k$, i.e. if and only if $p=k+1$. This relation is not possible since p is not an integer.

Case 4: $p>1, p \in Z$. Suppose that for any integer $n \geq 1$

$$
\frac{1}{1^{p}}+\frac{1}{2^{p}}+\ldots+\frac{1}{n^{p}}=R(n)
$$

where $R=\frac{P}{Q}$ and $\operatorname{gcd}(P, Q)=1$.
It follows $R(n+1)-R(n)=\frac{1}{(n+1)^{p}}$, i.e.

$$
\frac{P(n+1)}{Q(n+1)}-\frac{P(n)}{Q(n)}=\frac{1}{(n+1)^{p}}, n \geq 1 .
$$

This is equivalent to

$$
(n+1)^{p}(P(n+1) Q(n)-P(n) Q(n+1))=Q(n) Q(n+1), n \geq 1 .
$$

It is necessary to have the equality

$$
\begin{equation*}
(x+1)^{p}(P(x+1) Q(x)-P(x) Q(x+1))=Q(x) Q(x+1) \tag{11}
\end{equation*}
$$

for any $x \in R$.
Denote $U(x)=\operatorname{gcd}(Q(x), Q(x+1))$ and obtain

$$
Q(x)=R_{1}(x) U(x), Q(x+1)=R_{2}(x) U(x)
$$

where . The relation (11) is equivalent to

$$
(x+1)^{p}\left(P(x+1) R_{1}(x)-P(x) R_{2}(x+1)\right)=U(x) R_{1}(x) R_{2}(x)
$$

Because R_{1}, R_{2} are relatively prime, it follows that at least one of then is relatively prime to $(x+1)^{p}$. Let say that the polynomial R_{1} has this property. Then R_{1} divides the polynomial $P(x+1) R_{1}(x)-P(x) R_{2}(x)$, i.e. R_{1} divides P. Taking into account that $R_{1} \mid Q$ and $\operatorname{gcd}(P, Q)=1$, it follows that R_{1} is constant.
From the equality $Q(x)=R_{1}(U(x))$ it follows that $Q(x+1)=R_{1} U(x+1)$. Combining with $Q(x+1)=R_{2}(x) U(x)$ one obtains the relation

$$
U(x+1)=\frac{R_{2}(x)}{R_{1}} U(x) .
$$

But $\operatorname{deg}(U(x+1))=\operatorname{deg}(U(x))$ implies R_{2} is also constant and one obtains $Q(x+1)=\alpha Q(x), x \in R$, where α is a constant. The last relation implies that Q is constant and we get

$$
\frac{1}{1^{p}}+\frac{1}{2^{p}}+\ldots+\frac{1}{n^{p}}=k P(n), n \geq 1
$$

and

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{2^{p}}+\ldots+\frac{1}{n^{p}}\right)= \pm \infty
$$

a contradiction.

REFERENCES

[1] Andrica, D., Jecan, E., Mathematical Problems (Romanian), GIL Publishing House,
1995.
[2] Mihet , D., On the computation of some limits of sequences (Romanian), R.M.T., 2(1990), 1-4.
[3] Rizzoli, I., A Stolz-Cesaro’ theorem (Romanian), G.M. 10-11-12(1990), XCV, 281-
284.
[4] Tomescu, I., Editor, Romanian Mathematics Olympiads (1950-1990) (Romanian), Editura Stiintifica, Bucharest, 1992.

Authors:

Dorin Andrica
"Babes-Bolyai" University
Faculty of Mathematics and Computer Science
R-3400 Cluj-Napoca, Romania
e-mail: dandrica@math.ubbcluj.ro
Mihai Piticari
"Dragos-Voda" National College R-5950 Campulung Moldovenesc
Romania

