R-SEQUENCES AND APPLICATIONS

by Dorin Andrica and Mihai Piticari

Abstract. In this paper the *R*-sequences are defined. The main result shows that the sequence $(a_n)_{n\geq 1}, a_n = \frac{1}{n^p}$, where p > 0, defining the Riemann zeta function, is not an R-sequence.

Mathematics subject classification (2000): 26A03, 26A99.

A sequence $(a_n)_{n\geq 1}$ of real numbers is called a **rational sequence** or shortly *R*-sequence if there exists a rational function *R* such that for any positive integer $n\geq 1$ the

following relation holds

$$a_1 + a_2 + \dots + a_n = R(n)$$
 (1)

Example 1. The sequence $(x_n)_{n\geq 1}$, $x_n = \frac{1}{n(n+1)}$, is an *R*-sequence. Indeed, for any positive integer $n \geq 1$, we have $x_1 + x_2 + \dots + x_n = R(n)$, where $R(x) = \frac{x}{x+1}$.

Example 2. (Romanian Mathematical Olympiad, [1, pp. 8 and 53], [4, pp. 170 and 514]) The sequence $(y_n)_{n\geq 1}, y_n = \frac{1}{n!}$, is not an *R*-sequence.

The argument follows by contradiction. Assume that for any positive integer $n \ge 1$

$$\frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} = \frac{A(n)}{B(n)} = R(n)$$

where $A, B \in IR[x]$ and deg(A) = k, deg(B) = m. From $\lim_{n \to \infty} \frac{A(n)}{B(n)} = e$ it follows that

k = m. Consider the polynomial function given by Q(x) = A(x+1)B(x) - A(x)B(x+1). It is clear that

$$\lim_{x \to \infty} \frac{Q(x+1)}{Q(x)} = \lim_{n \to \infty} \frac{Q(n+1)}{Q(n)} = 1$$
(2)

Taking into account that A(n+1) = R(n+1)B(n+1) and A(n) = R(n)B(n), we obtain

$$Q(n) = A(n+1)B(n) - B(n+1)A(n) =$$

= $R(n+1)B(n+1)B(n) - R(n)B(n)B(n+1) =$
= $B(n)B(n+1)(R(n+1) - R(n)) = \frac{B(n)B(n+1)}{(n+1)!}$

Therefore

$$\frac{Q(n+1)}{Q(n)} = \frac{B(n+1)B(n+1)}{B(n)B(n+1)} \cdot \frac{(n+1)!}{(n+2)!} = \frac{B(n+2)}{B(n)} \cdot \frac{1}{n+2}$$

and

$$\lim_{n \to \infty} \frac{Q(n+1)}{Q(n)} = \lim_{n \to \infty} \frac{B(n+2)}{B(n)} \cdot \lim_{n \to \infty} \frac{1}{n+2} = 1 \cdot 0 = 0$$

relation which contradicts (2).

Example 3. The sequence $(z_n)_{n \ge 1}, z_n = \frac{1}{n}$, is not an R-sequence. If for any positive integer $n \ge 1$

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \frac{P(n)}{Q(n)}$$
(3)

where $P, Q \in IR[x]$, then from well-known relation

$$\lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) = +\infty$$

it follows $\deg(P) > \deg(Q)$, i.e. $\deg(P) \ge \deg(Q) + 1$. On the other hand, from (3) one obtains

$$\frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{n} = \frac{P(n)}{nQ(n)}$$
(4)

By using Cesaro' Lemma we have

$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{n} = \lim_{n \to \infty} \frac{1}{n} = 0$$

and from (4) it follows $\lim_{n \to \infty} \frac{P(n)}{nQ(n)} = 0$, i.e. $\deg(P) < \deg(Q) + 1$ in contradiction with the relation $\deg(P) \ge \deg(Q) + 1$.

The main purpose of this present paper is to prove that the sequence $(a_n)_{n\geq 1}, a_n = \frac{1}{n^p}$, where p > 0, is not an *R*-sequence.

It is well-known that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is divergent when $p \in (0,1]$ and $\sum_{n=1}^{\infty} \frac{1}{n^p} = \zeta(p)$ (5)

where ς is the Riemann function, when p > 1.

Lemma 1. Consider $f:[1,\infty) \to [0,\infty)$ a continuous and decreasing function. Let *F* be a differentiable function such that its derivative is *f*. Then the sequence $(x_n)_{n\geq 1}$, given by

$$x_n = f(1) + f(2) + \dots + f(n) - F(n), n \ge 1$$
(6)

is convergent.

Proof. Applying Lagrange' Theorem to *F* on the interval $[k, k+1], k \ge 1$, it follows that there exists $c_k \in (k, k+1)$ such that

$$F(k+1) - F(k) = f(c_k)$$

By using the monotony of function f we obtain

$$f(k+1) \le F(k+1) - F(k) \le f(c_k) \tag{7}$$

Taking k = 1, 2, ..., n in (7) and adding all these inequalities we get

$$f(2) + f(3) + \dots + f(n+1) \le F(k+1) - F(k) \le f(1) + f(2) + \dots + f(n)$$
(8)

On the other hand let us note that

 $x_{n+1} - x_n = F(n) - F(n+1) + f(n+1) \ge 0, n \ge 1$

that is the sequence $(x_n)_{n\geq 1}$ is increasing. From the left inequality in (8) we obtain

$$x_n = f(1) + f(2) + \dots + f(n) - F(n) \le f(1) - F(1), n \ge 1$$

that is the sequence $(x_n)_{n\geq 1}$ is upper bounded.

Lemma 2. (Stolz-Cesaro' Theorem, the case 0/0).

Let $(\alpha_n)_{n\geq 1}, (\beta_n)_{n\geq 1}$ be two sequences of real numbers satisfying the following hypothesis:

- 1) $\lim_{n\to\infty} \alpha_n = 0$ and $\lim_{n\to\infty} \beta_n = 0$;
- 2) The sequence $(\beta_n)_{n\geq 1}$ is strict decreasing (or strict increasing);

3) There exists $\lim_{n \to \infty} \frac{\alpha_{n+1} - \alpha_n}{\beta_{n+1} - \beta_n} = A$ (finite or not).

Then $(\alpha_n / \beta_n)_{n \ge 1}$ is convergent and $\lim_{n \to \infty} \frac{\alpha_n}{\beta_n} = A$.

For the proof of this variant of well-known Stolz-Cesaro' theorem we refer to the papers

[3] and [2].

Let now state our main result.

Theorem. The sequence $(a_n)_{n\geq 1}$, $a_n = \frac{1}{n^p}$, where p > 0, is not an *R*-sequence. **Proof.** We will consider few situations on p > 0.

Case 1: $p \in (0,1)$. Assume that there exists a rational function *R* such that for any $n \ge 1$

$$\frac{1}{1^p} + \frac{1}{2^p} + \dots + \frac{1}{n^p} = R(n)$$

From Lemma 1 we obtain that the sequence $(x_n)_{n\geq 1}$, where

$$x_n = \frac{1}{1^p} + \frac{1}{2^p} + \dots + \frac{1}{n^p} - \frac{1}{(1-p)n^{p-1}}$$

is convergent. Therefore the limit

$$\lim_{n \to \infty} \left(R(n) - \frac{1}{(1-p)n^{p-1}} \right)$$
(9)

is finite. But

$$\lim_{n \to \infty} R(n) = \lim_{n \to \infty} \left(\frac{1}{1^p} + \frac{1}{2^p} + \dots + \frac{1}{n^p} \right) = +\infty$$

implies the relation $R = P + R_1$, where *P* is a polynomial function and R_1 is a rational function with $\lim_{n\to\infty} R_1(n) = 0$. It follows

$$\lim_{n \to \infty} \left(R(n) - \frac{1}{1-p} n^{p-1} \right) = \lim_{n \to \infty} \left(P(n) - \frac{1}{1-p} n^{p-1} \right) = +\infty$$

by contradicting the finiteness of limit (9).

Case 2: p = 1. We already proved this case in Example 3. Now we will indicate a different argument.

As in the previous case, the sequence $(y_n)_{n\geq 1}$

$$y_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$

is convergent. Therefore $\lim_{n\to\infty} (R(n) - \ln n)$ is finite. But

$$\lim_{n \to \infty} (R(n) - \ln n) = \lim_{n \to \infty} (P(n) - \ln n) = +\infty$$

which is a contradiction.

Case 3: $p > 1, p \notin Z_+$. In this situation, the sequence $(z_n)_{n \ge 1}$

$$z_n = \frac{1}{1^p} + \frac{1}{2^p} + \dots + \frac{1}{n^p} \text{ is convergent to } \varsigma(p). \text{ Then}$$
$$\lim_{n \to \infty} (z_n - \varsigma(p)) = \lim_{n \to \infty} (R(n) - \varsigma(p)) = 0$$

It follows that for any $n \ge 1$ the relation holds

$$R(n) - \varsigma(p) = \frac{P_1(n)}{Q_1(n)}$$

1	1
-	-

where P_1, Q_1 are polynomial functions and $\deg(P_1) < \deg(Q_1)$. On the other hand, there exists a positive integer k such that $\deg(x^k P_1) = \deg(Q_1)$. It follows that the limit

$$\lim_{n\to\infty}\frac{n^k P_1(n)}{Q_1(n)}$$

is finite and different from zero. Therefore, the limit

$$\lim_{n \to \infty} n^k \left(1 + \frac{1}{2^p} + \dots + \frac{1}{n^p} - \varsigma(p) \right) \tag{10}$$

is finite and different from zero.

But, we can write the limit (10) in the following way by using Lemma 2:

$$\lim_{n \to \infty} n^k \left(1 + \frac{1}{2^p} + \dots + \frac{1}{n^p} - \varsigma(p) \right) = \lim_{n \to \infty} \frac{\frac{1}{(n+1)^p}}{\frac{1}{(n+1)^k} - \frac{1}{n^k}} = -\lim_{n \to \infty} \frac{n^k (n+1)^k}{(n+1)^p [(n+1)^k - n^k]} = -\lim_{n \to \infty} \frac{n^k (n+1)^k}{(n+1)^p [\binom{k}{1} n^{k-1} + \dots]}$$

The last limit is finite and different from zero if and only is p + k - 1 = 2k, i.e. if and only if p = k + 1. This relation is not possible since *p* is not an integer.

Case 4: p > 1, $p \in Z$. Suppose that for any integer $n \ge 1$

$$\frac{1}{1^{p}} + \frac{1}{2^{p}} + \dots + \frac{1}{n^{p}} = R(n)$$

where $R = \frac{P}{Q}$ and $gcd(P,Q) = 1$.
It follows $R(n+1) - R(n) = \frac{1}{(n+1)^{p}}$, i.e.
 $\frac{P(n+1)}{Q(n+1)} - \frac{P(n)}{Q(n)} = \frac{1}{(n+1)^{p}}$, $n \ge 1$.

This is equivalent to

$$(n+1)^p (P(n+1)Q(n) - P(n)Q(n+1)) = Q(n)Q(n+1), n \ge 1.$$

It is necessary to have the equality

$$(x+1)^{p} (P(x+1)Q(x) - P(x)Q(x+1)) = Q(x)Q(x+1)$$
(11)

for any $x \in R$.

Denote $U(x) = \gcd(Q(x), Q(x+1))$ and obtain

$$Q(x) = R_1(x)U(x), \quad Q(x+1) = R_2(x)U(x)$$

where . The relation (11) is equivalent to

$$(x+1)^{p} (P(x+1)R_{1}(x) - P(x)R_{2}(x+1)) = U(x)R_{1}(x)R_{2}(x)$$

Because R_1, R_2 are relatively prime, it follows that at least one of then is relatively prime to $(x + 1)^p$. Let say that the polynomial R_1 has this property. Then R_1 divides the polynomial $P(x + 1)R_1(x) - P(x)R_2(x)$, i.e. R_1 divides P. Taking into account that $R_1|Q$ and gcd(P,Q)=1, it follows that R_1 is constant. From the equality $Q(x) = R_1(U(x))$ it follows that $Q(x+1) = R_1U(x+1)$. Combining with $Q(x+1) = R_2(x)U(x)$ one obtains

the relation

$$U(x+1) = \frac{R_2(x)}{R_1} U(x).$$

But $\deg(U(x+1)) = \deg(U(x))$ implies R_2 is also constant and one obtains $Q(x+1) = \alpha Q(x), x \in R$, where α is a constant. The last relation implies that Q is constant and we get

$$\frac{1}{1^{p}} + \frac{1}{2^{p}} + \dots + \frac{1}{n^{p}} = kP(n), n \ge 1$$

and

$$\lim_{n \to \infty} \left(1 + \frac{1}{2^p} + \dots + \frac{1}{n^p} \right) = \pm \infty$$

a contradiction.

REFERENCES

[1] Andrica, D., Jecan, E., Mathematical Problems (Romanian), GIL Publishing House,

1995.

[2] Mihet , D., On the computation of some limits of sequences (Romanian), R.M.T., 2(1990), 1-4.

[3] Rizzoli, I., A Stolz-Cesaro' theorem (Romanian), G.M. 10-11-12(1990), XCV, 281-

284.

[4] Tomescu, I., Editor, Romanian Mathematics Olympiads (1950-1990) (Romanian), Editura Stiintifica, Bucharest, 1992.

Authors:

Dorin Andrica "Babes-Bolyai" University Faculty of Mathematics and Computer Science R-3400 Cluj-Napoca, Romania e-mail: dandrica@math.ubbcluj.ro

Mihai Piticari "Dragos-Voda" National College R-5950 Campulung Moldovenesc Romania