SOME PROBLEMS ON COMBINATIONAL LOGICAL CIRCUITS

by
Ion Mihail Nichita and Florin Felix Nichita

Abstract

In this paper we study some constructions of big combinational logical circuits from smaller combinational logical circuits. We also present the set-theoretical Yang-Baxter equation, and show that the problems presented in this paper are related to it.

1. INTRODUCTION

The present paper represents a connection between the two scientific directions
treated by this journal: mathematics and informatics.
This paper is related to a previous paper on combinational logical circuits which appeared in this journal (see [1]). In that paper, the authors presented an application of feed-forward neural networks: the simulation of combinational logical circuits, CLC's for short. For more details on neural networks we refer to [2] and [3].

We will consider some different constructions in this paper. Starting with small combinational logical circuits, we build bigger combinational logical circuits.

Our paper is organized as follows. Section 2 is an informal introduction to combinational logical circuits. Our material might be sufficient for readers with background in the area, but for those who need a review on combinational logical circuits we recommend [1]. We also define when two CLC's are equivalent. In section 3, we give a set of problems. For some of them we give solutions. In section 4, we present the set-theoretical Yang-Baxter equation. We show that the problems 2 and 3 are a particular case of this famous equation. On the other hand, they highlight the signification of this equation.

2. PRELIMINARIES

A combinational logical circuit (CLC) is an electronic circuit with n inputs, and m outputs, for which the outputs could be expresed according to the inputs.

We propose the following notation for this combinational logical circuit: CLC[n,m].

The following are notations from [1]:
\mathbf{X} - the set of input variables,
\mathbf{Z} - the set of output variables
$\mathbf{F}: \mathbf{X} \rightarrow \mathbf{Z}$ - the input-output function.
Starting with small combinational logical circuits, we can build a bigger CLC:

In this paper we start the study of this type of constructions. Since the general case is too complex, we will consider just constructions of combinational logical circuits with 3 inputs and 3 outputs, denoted CLC[3,3], from combinational logical circuits with 2 inputs and 2 outputs, CLC[2,2]. For example, we can use two identical CLC[2,2]

to construct the following $\operatorname{CLC}[3,3]$:

Of course, there are other ways to construct a CLC[3,3]!
So, we give the following definition.
Definition. Two combinational logical circuits with the input-output functions $\mathbf{F}: \mathbf{X} \rightarrow \mathbf{Z}$,

G:X $\rightarrow \mathbf{Z}$

are called equivalent if:

$$
\begin{aligned}
& \mathrm{F}(0,0, \ldots, 0,0)=\mathrm{G}(0,0, \ldots, 0,0) \\
& \mathrm{F}(0,0, \ldots, 0,1)=\mathrm{G}(0,0, \ldots, 0,1) \\
& \ldots \ldots \ldots . . \\
& \mathrm{F}(1,1, \ldots, 1,0)=\mathrm{G}(1,1, \ldots, 1,0) \\
& \mathrm{F}(1,1, \ldots, 1,1)=\mathrm{G}(1,1, \ldots, 1,1)
\end{aligned}
$$

Example of equivalent CLC's. Let us consider the following two CLC[2,2] :
i)

the input-output function:

$$
\begin{aligned}
& \mathbf{F}: \mathbf{X}=\{(0,0),(0,1),(1,0),(1,1)\} \rightarrow \mathbf{Z}=\{(0,0),(0,1),(1,0),(1,1)\}, \\
& \mathbf{F}(\mathrm{X}, \mathrm{Y})=((\mathrm{X} \vee \mathrm{Y}) \wedge \mathrm{Y}, \mathrm{X})
\end{aligned}
$$

ii)

the input-output function:

$$
\begin{array}{r}
\mathbf{G}: \mathbf{X}=\{(0,0),(0,1),(1,0),(1,1)\} \rightarrow \mathbf{Z}=\{(0,0),(0,1),(1,0),(1,1)\}, \\
\mathbf{G}(\mathrm{X}, \mathrm{Y})=(\mathrm{Y}, \mathrm{X})
\end{array}
$$

Proof. We just need to check the definition:

$$
\begin{aligned}
& \mathrm{F}(0,0)=((0 \vee 0) \wedge 0,0)=(0 \wedge 0,0)=(0,0)=\mathrm{G}(0,0) \\
& \mathrm{F}(0,1)=((0 \vee 1) \wedge 1,0)=(1 \wedge 0,0)=(1,0)=\mathrm{G}(0,1) \\
& \mathrm{F}(1,0)=((1 \vee 0) \wedge 0,1)=(1 \wedge 0,1)=(0,1)=\mathrm{G}(1,0) \\
& \mathrm{F}(1,1)=((1 \vee 1) \wedge 1,1)=(1 \wedge 1,1)=(1,1)=\mathrm{G}(1,1)
\end{aligned}
$$

3. SOME NEW PROBLEMS

Problem 1. Starting with two identical CLC[2,2] we can construct a CLC[3,3] in the following two ways:

Find a CLC[2,2] such that these two bigger combinational logical circuits are equivalent.

Solution. Hint: Construct a CLC[2,2] for the following input-output function

$$
\mathbf{G}: \mathbf{X} \rightarrow \mathbf{Z}, \quad \mathbf{G}(0,0)=(1,1) \quad \mathbf{G}(1,0)=(0,1) \quad \mathbf{G}(0,1)=(1,0) \quad \mathbf{G}(1,1)=(0,0)
$$

Problem 2. Starting with three identical CLC[2,2] we can construct a CLC[3,3] in the following two ways:

Find a CLC[2,2] such that these two bigger combinational logical circuits are equivalent.

Solution. This CLC[2,2] might be the following:

The input-output function is $\mathbf{G}: \mathbf{X} \rightarrow \mathbf{Z}, \quad \mathbf{G}(\mathrm{X}, \mathrm{Y})=(\mathrm{Y}, \mathrm{X})$.
(The reader should check the details.)
Problem 3. Find all solutions for Problem 2.
Solution. The solution will be treated in another paper.

4. THE SET-THEORETICAL YANG-BAXTER EQUATION

The Yang-Baxter equation plays an important role in theoretical physics, knot theory and quantum groups (see [4], [6]). Many papers in the literature are devoted to finding solutions for it.

Finding all solutions for this equation (the classification of solutions) is an even harder problem. A complete classification was obtained only in dimension 2, using computer calculations.

We present bellow the set-theoretical version of the Yang-Baxter equation (see [5]).

Let S be a set and $R: S \times S \rightarrow S \times S, R(u, v)=\left(u^{\prime}, v^{\prime}\right) \quad$ be a function.

We use the following notations:

$$
\begin{array}{ll}
\mathrm{R} \times \mathrm{Id}: & \mathrm{S} \times \mathrm{S} \times \mathrm{S} \rightarrow \mathrm{~S} \times \mathrm{S} \times \mathrm{S}, \\
\mathrm{R} \times \mathrm{Id}(\mathrm{u}, \mathrm{v}, \mathrm{w})=\left(\mathrm{u}^{\prime}, \mathrm{v}^{\prime}, \mathrm{w}\right) \\
\mathrm{Id}: \mathrm{R}: \mathrm{S} \times \mathrm{S} \times \mathrm{S} \rightarrow \mathrm{~S} \times \mathrm{S} \times \mathrm{S}, & \mathrm{Id} \times \mathrm{R}(\mathrm{u}, \mathrm{v}, \mathrm{w})=\left(\mathrm{u}, \mathrm{v}^{\prime}, \mathrm{w}^{\prime}\right)
\end{array}
$$

The following is the set-theoretical Yang-Baxter equation:

$$
(\mathrm{R} \times \mathrm{Id}) \mathrm{o}(\mathrm{Id} \times \mathrm{R}) \mathrm{o}(\mathrm{R} \times \mathrm{Id})=(\mathrm{Id} \times \mathrm{R}) \mathrm{o}(\mathrm{R} \times \mathrm{Id}) \mathrm{o}(\mathrm{Id} \times \mathrm{R})
$$

If the cardinality of S is 2 solving the set-theoretical Yang-Baxter equation is the same as solving Problems 2 and 3. The computations are difficult, even in this particular case; so, we need to use computer calculations. This gives a grasp about the difficulty of the original problem.

REFERENCES

[1] Remus Joldes, Ioan Ileana, Corina Rotar - Utilization of Neural Networks in the Simulation of Combinational Logical Circuits, Acta Universitatis Apulensis, no. $3 / 2002$.
[2] Ioan Ileana, Remus Joldes, Emilian Ceuca and Ioana-Maria Ileana, Optoelectronic Neural Networks. Optical Interconnectation of Neurons by Computer Generated Holograms (I), Acta Universitatis Apulensis, no. 3 /2002.
[3] D. Dumitrescu, H. Costin - Neural Networks. Theory and applications. Ed. Teora, Bucharest, 1996.
[4] Florin Felix Nichita - On Yang-Baxter Systems, ICTAMI 2002, "1 Decembrie 1918" University of Alba Iulia (lecture notes at the conference).
[5] J.H. Lu, M. Yan, Y.C. Zhu - On the set-theoretical Yang-Baxter equation Duke Mathematical Journal, Vol.104, No. 1, 2000.
[6] L. Lambe and D. Radford - Introduction to the quantum Yang-Baxter equation and quantum groups: an algebraic approach. Mathematics and its Applications, 423. Kluwer Academic Publishers, Dordrecht, 1997.

Authors:

Ion Mihail Nichita, minichita@fx.ro , Center of Computer Science, Ploiesti, Romania.

Florin Felix Nichita, Florin.Nichita@imar.ro, Institute of Mathematics of the Romanian Academy, Bucharest, Romania.

