
ACTA UNIVERSITATIS APULENSIS Special Issue

KARATSUBA AND TOOM-COOK METHODS FOR
MULTIVARIATE POLYNOMIALS

Marco Bodrato and Alberto Zanoni

Abstract. Karatsuba and Toom-Cook are well-known methods used to
efficiently multiply univariate polynomials and long integers. For multivariate
polynomials, asymptotically good approaches like Kronecker’s trick combined
with FFT become truly effective only when the degree is above some threshold.
In this paper we analyze Karatsuba and some of Toom-Cook methods for
multivariate polynomials, considering density in a different way with respect
to Kronecker, and present some algorithms for fast multivariate polynomial
multiplication in practical cases, when degrees are not huge. A fast sparse
polynomial multiplication algorithm is also proposed.

2000 Mathematics Subject Classification: 11A05, 11A25, 11K65, 11Y70

1. Introduction

Subquadratic multiplication methods for univariate polynomials were first in-
troduced in [8], [11], [5] by applying an evaluate-multiply-interpolate (EMI)
scheme. For brevity, in this paper we indicate the classical Toom-Cook k-way
splitting method with Toom-k (Karatsuba corresponds to Toom-2). Besides
the schoolbook method, multivariate polynomial multiplication was treated
e.g. by Moenck [9] by either:

• recursing on every variable with an approach having as basic case the
classical one.

• using the Kronecker trick to reduce to the univariate case, and then
applying univariate algorithms (typically, FFT).

11

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

Canny et al. [3] describe an algorithm, working in characteristic 0, based on
the generic EMI schema, whose complexity is expressed in terms of the number
of product coefficients (called T in the paper). By considering interpolation
points (pe1

1 , . . . , pen
n) with pi different primes, 0 ≤ ei < T and the complexity of

involved matrix operations, they obtain O(M(T) log T), where M(T) is uni-
variate polynomial multiplication complexity.
Pan [10], by using the EMI schema, is able to lower Kronecker+FFT method
complexity, while Cantor and Kaltofen [4] provide an algorithm with O(N log N)-
multiplications and O(N log N log log N)-sums over completely generic alge-
bras. We also point out the studies made by Fateman on representing polyno-
mials as long integers [7] and its testing [6] for sparse polynomials multiplica-
tion, in which different CAS are compared.
The authors studied in [2] the problem concerning optimal inversion sequences
for interpolation phase of classical univariate Toom methods, also for unbal-
anced cases. To the best of our knowledge, it seems that multivariate Toom
methods were not considered deeply, may be due to the presence of better
asymptotic methods. In this work we describe in full detail Karatsuba, Toom-
2.5 and Toom-3 method for multivariate polynomials, and moreover provide
as a byproduct an algorithm for fast sparse polynomial multiplication.

2. Multivariate polynomial multiplication

We introduce some notation and terminology concerning multivariate poly-
nomials. We use multindexes notation: for n-variate polynomials, let X =
(x1, . . . , xn) be a set of variables, INn the set of multindexes, and T = {Xα | α =
(α1, . . . , αn) ∈ INn} the set of terms. We will also indicate generic terms with
Ti, Tj ∈ T , when it is not necessary to put in evidence the multiexponents.
Let R be a commutative ring and X = X ∪ {x0}, where x0 is a new vari-
able. We indicate the homogenization of a polynomial p(X) ∈ R[X] with p or
p(X) ∈ R[X].

2.1 Approaches based on different density definitions

Definition 1 Let p(X) =
∑

α∈s(p)

pαXα ∈ R[X], with pα 6= 0 for all α ∈ s(p) ⊂

INn. We call the index set s(p) its support, and #p the support cardinality.

The support s(p) can be identified with the set of terms of p. We may consider
#p as the cardinality of the data set which is necessary to represent p in the
terms basis.

12

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

Definition 2 Let p be as above. We call total degree the number deg1(p) =

deg(p) = max
α∈s(p)

{ n∑
i=1

αi

}
and max degree the number deg∞(p) = max

α∈s(p)
{αi}.

A polynomial p can be represented in different ways, which we define below:
as a triangle, as a square, or sparsely.

Definition 3 We say p has a square representation (is square) when is con-
sidered as p(X) =

∑
|α|≤deg∞(p)

pαXα so that all pα with |α| ≤ deg∞(p) (even 0 ones)

are memorized.

Definition 4 We say p has a triangular representation (is triangular) when
is considered as p(X) =

∑
|α|≤deg(p)

pαXα so that all pα with |α| ≤ deg(p) (even 0

ones) are memorized.

Definition (1) refers to polynomials with sparse representation, while defini-
tions (3) and (4) to two different dense representations. Figure 1 shows what
happens in the bidimensional case for deg1(p) = deg∞(p) = 2.

x x xx xx
1 x x2

y

y2 ppppppppppppppppppppppppppp
deg1(p) = 2

x x xx x xx x x
1 x x2

y

y2 p p p p p p p p p p p p p p p p p p
ppppppppppp
ppppppp deg∞(p) = 2

Figure 1: Polynomial supports representations

The triangular representation fits particularly well with homogenization.
Infact, if p is triangular then p can be written as

p(X) =
∑

|α|=deg(p)

pαX
α

where α = (deg(p)− |α|, α1, · · · , αn)

Viceversa, if we start from a homogeneous dense polynomial, we can easily
recover from it a triangular one by dehomogenizing it.

There are cases for which one of the dense representations is better than the
other one, meaning that there are less zero coefficients. The square represen-
tation was already studied: we will analyze here the triangular representation,
which is interesting for many real world applications.

13

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

Homogeneous n -variate polynomials study leads to consider dihedrons hav-
ing dimension up to (n−1). When we use the suffix “m-dimensional” we refer
to homogeneous polynomials in m + 1 variables. In this case, classical Toom
methods will be called unidimensional, not univariate (they become bivariate
after homogenization).

We indicate with [p] the vector of the coefficients of p in the chosen repre-
sentation.

2.2 New methods for triangular density
A general description of Toom algorithm follows: it can be described in

five steps.

Splitting : Define Y = Xβ, where β is an appropriate multindex. Rewrite
â(X), b̂(X) ∈ R[X] as a(Y), b(Y) ∈ R[X][Y], having (polynomial) co-
efficients in R[X], each term of it with multiexponents componentwise
strictly less than β. Finally, homogenize a and b with respect to y0,
obtaining a, b.

Traditionally Toom-k algorithm requires balanced operands, so that da =
deg(a) = deg(b) = db = k−1, but we can easily generalize to unbalanced
ones. We assume commutativity, hence da ≥ db > 1. We call `p =(

deg(p) + n
n

)
the number of coefficients of a triangular polynomial p in

n variables.

Evaluation : We want to compute c = ab, whose degree is d = da + db,

so we need ` =

(
d + n

n

)
evaluation points Pd,n = {p1, . . . ,p`} where

pi ∈ R[x]n+1 can be a not constant polynomial vector, for each i. We
define D = maxi{maxj{deg((pi)j)}}.
The evaluation of a single polynomial (for example a) on the points pi

can be computed as a matrix by vector multiplication. To do this, we
must linearly order the coefficients and the terms of a, b, c as

a(Y) =
`a∑

i=1

aiY
αi , b(Y) =

`b∑
i=1

biY
αi , c(Y) =

∑̀
i=1

ciY
αi

We indicate with En,d,da the resulting `× `a matrix.

14

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

a(Pd,n) = En,d,da [a] =⇒

a(p1)
a(p2)

...
a(p`)

 =

pα1

1 pα2
1 · · · p

α`a
1

pα1
2 pα2

2 · · · p
α`a
2

...
...

...

pα1
` pα2

` · · · p
α`a
`

a1

a2
...

a`a

 (1)

Recursive multiplication : We compute ∀i, c(pi) = a(pi)b(pi), with a to-
tal of ` multiplications of polynomials whose degree is comparable to that
of Y . We have deg(a(pi)) ≤ Dda +deg(Y), deg(b(pi)) ≤ Ddb +deg(Y),
and the result deg(c(pi)) ≤ Dd+2 deg(Y). We note that D, d, da, db are
fixed numbers for a chosen implementation, deg(Y) will instead grow as
the operands grow.

Interpolation : This step depends only on the expected degree of the result
d, and on the ` chosen points pi, no more on da and db separately. We
want to determine the coefficients of the polynomial c. We know the
values of c evaluated at ` points, so we face a classical interpolation
problem. We need to multiply by the inverse of Ad,n, a `× ` matrix.

[c(Pd,n)] = Ad,n[c] =⇒

c1

c2
...
c`

 =

pα1

1 pα2
1 · · · pα`

1

pα1
2 pα2

2 · · · pα`
2

...
...

...

pα1
` pα2

` · · · pα`
`

−1

c(p1)
c(p2)

...
c(p`)

 (2)

Recomposition : Compute the final result with one more evaluation: ĉ(X) =
c(1, Xβ).

15

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

2.3 Complexity models
We take into consideration different models to describe the complexity of

the presented algorithms. Our landmark is the set of typically available oper-
ations in a computer. As well as addition, subtraction, left/right shift (opti-
mized multiplication/division by powers of 2) and division, we will also take
into consideration other two specific operations, that could be implemented in
an ad-hoc optimized way.

1. Consider the following two equivalent processes (A) and (B)

(A) T← 2|e|X;
Z← Y ±T; ; (B) Z← Y ± 2|e|X;

one could write a shift-add function sa(X,Y, e) 7→ (Y + sign(e)2|e|X)
performing (B) process, which reads X, Y and updates Z just once,
taking benefit of code locality.

2. Similarly, we may have an ad hoc implemented multiply-by-3-and-add
function ma(X,Y) 7→ (3X + Y), for equivalent processes (A′) and (B′)

(A′) T← 3X;
Z← T + Y; ; (B′) Z← 3X + Y;

In the following, mimicking from [2], we will indicate execution time of every
operation according to the following table

Operation Time Operation Time
Addition + A Division / D

Subtraction − A Shift-add sa A + 1 2
Shift � , � S Multiply-3-add ma A + 1 3

Usually one has 1 2 ≤ S ≤ A ≤ A + 1 2 ≤ A + 1 3 and S ≤ D. If ma is
not available, one can define it as ma(X,Y) = X + sa(X,Y,1), so that its
cost becomes A + (A + 1 2), and we can consider 1 3 = A + 1 2. If sa is not
available, its cost is given by process (A), which gives A + S, so that in this
case we have 1 2 = S and 1 3 = 2A + S.

3. Multivariate Karatsuba

16

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

Karatsuba’s idea was generalized in many ways; one of them is the exten-
sion to multivariate polynomials. Let two polynomials â(X), b̂(X) ∈ R[X] be
given: we want to compute their product ĉ(X) = â(X)b̂(X) with the trans-
formation techniques described in section 2.2. We obtain two homogeneous
polynomials

a(Y) =
∑

i

aiyi ; b(Y) =
∑

i

biyi

with ai, bi ∈ R[X], where a0, b0 are square, and the remaining ones triangular.
All evaluation and interpolation can be condensed in a one-line formula, valid
for any characteristic:

c(Y) = a(Y)b(Y) =
∑

i

(aibi) y2
i +

∑
i<j

((ai − aj)(bj − bi) + aibi + ajbj) yiyj (3)

where any product aibi is computed only once, and recycled for the compu-
tation of the coefficients of all terms yiyj. Another possible formula for the
product is the nearly equivalent

c(Y) = a(Y)b(Y) =
∑

i

(aibi) y2
i +

∑
i<j

((ai + aj)(bi + bj)− aibi − ajbj) yiyj (4)

which is interesting for the following reason: if we use this formula for an
univariate polynomial, with the identification yi = xi, we obtain the Karatsuba
generalization given by Weimerskirch and Paar in [12].
3.1 Application to sparse polynomial multiplication

As an application of multivariate Karatsuba, we propose an algorithm to
treat sparse polynomial multiplication, speeding it up in some cases. Let

â(X) =
∑

Ti∈ s(̂a)

aiTi ; b̂(X) =
∑

Ti∈ s(̂b)

biTi

be (univariate or multivariate) sparse polynomials. Let I = s(â)∩s(b̂) , S(â) =
s(a) \ I , S(b̂) = s(b̂) \ I and split â, b̂ as follows

â(X) =
∑
Ti∈ I

aiTi +
∑

Ti∈S(̂a)

aiTi ; b̂(X) =
∑
Ti∈ I

biTi +
∑

Ti∈S(̂b)

biTi

If #I > 1 then their product c(X) can then be computed as follows:

17

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

ĉ(X) = â(X) b̂(X) =
∑
Ti∈ I

(aibi) T 2
i (5)

+
∑

Ti, Tj ∈ I
i < j

((ai − aj)(bj − bi) + aibi + ajbj) TiTj (6)

+
∑

Ti ∈ I

Tj ∈ S(̂b)

(aibj) TiTj +
∑

Ti ∈ S(̂a)
Tj ∈ I

(aibj) TiTj +
∑

Ti ∈ S(̂a)

Tj ∈ S(̂b)

(aibj) TiTj

Note that the coefficients in sum (6), which would have been computed as
aibj + ajbi (2 multiplications) with ordinary coefficient multiplication, can be
instead obtained with just one multiplication if all coefficients appearing in
sum (5) have already been computed before (see [8]).
Note: the above formula is useful when the products of the coefficients is costly.
In general, more multiplications could be saved if a not too expensive criterion
to test equality TiTk = TjTh is available, because in this case it is still possible
to apply Karatsuba’s idea as follows:

(aiTi + ajTj)·(bhTh + bkTk) = (aibh)TiTh + (ajbk)TjTk + (aibk + ajbh)TiTk

= (aibh)TiTh + (ajbk)TjTk + ((ai + aj)(bh + bk)− aibh − ajbk)TiTk

4. Multivariate Toom-2.5

Multivariate Toom-2.5 concerns polynomial multiplication with unbalanced
operands (deg1(a) = 2, deg1(b) = 1). In this case we have #a = 6,# b = 3 and
#c = 10.

a(y0, y1, y2)= a5y
2
1 + a4y1y2 + a3y

2
2 + a2y0y1 + a1y0y2 + a0y

2
0

b(y0, y1, y2)= b0y0 + b1y1 + b2y2

c(y0, y1, y2)= (a5b1)y
3
1 + (a5b2 + a4b1)y

2
1y2 + (a4b2 + a3b1)y1y

2
2 + (a3b2)y

3
2

+(a5b0+a2b1)y0y
2
1 + (a4b0+a2b2+a1b1)y0y1y2 + (a3b0+a1b2)y

2
2y0

+(a2b0 + a0b1)y
2
0y1 + (a1b0 + a0b2)y

2
0y2 + (a0b0)y

3
0;

4.1 The bidimensional case in characteristic different from 2
Ordering s(c) as (y3

0, y1y
2
0, y

2
1y0, y

3
1, y

2
1y2, y1y

2
2, y

3
2, y

2
2y0, y2y

2
0, y0y1y2), here fol-

lows a corresponding partial table from which to choose 10 linearly independent
lines.

18

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

y0 y1 y2 Evaluations Matrix line
1 1 0 0 a0b0 1 0 0 0 0 0 0 0 0 0

2 1 1 0 (a5 + a2 + a0)(b0 + b1) 1 1 1 1 0 0 0 0 0 0

3 1 -1 0 (a5 − a2 + a0)(b0 − b1) 1-1 1-1 0 0 0 0 0 0

4 0 1 0 a5b1 0 0 0 1 0 0 0 0 0 0

5 0 1 1 (a5 + a4 + a3)(b1 + b2) 0 0 0 1 1 1 1 0 0 0

6 0 1 -1 (a5 − a4 + a3)(b1 − b2) 0 0 0 1-1 1-1 0 0 0

7 0 0 1 a3b2 0 0 0 0 0 0 1 0 0 0

8 1 0 1 (a3 + a1 + a0)(b2 + b0) 1 0 0 0 0 0 1 1 1 0

9 -1 0 1 (a3 − a1 + a0)(b2 − b0) -1 0 0 0 0 0 1-1 1 0

10 1 1 1 (a5 + · · ·+ a0)(b2 + b1 + b0) 1 1 1 1 1 1 1 1 1 1

11 1 -1 1 (a5−a4+a3−a2+a1+a0)(b0 − b1 + b2) 1-1 1-1 1-1 1 1-1-1
12 1 -1 -1 (a5+a4+a3−a2−a1+a0)(b0 − b1 − b2) 1-1 1-1-1-1-1 1-1 1

The matrix results to be quite sparse and mainly containing three submatrices
interlaced in a toroidal way, corresponding to three instances of unidimen-
sional Toom-2.5. We report gp code for evaluation and interpolation obtained
choosing the first 10 lines.

A = a0*y0^2 + a2*y1*y0 + a5*y1^2\ W0 = W0 + b1;

+ a1*y0*y2 + a4*y1*y2 \ W3 = W3 + a5 + a4 + a2;

+ a3*y2^2;

B = b0*y0 + b1*y1 \ W9 = W3 * W0; \\ C(1,1,1)

+ b2*y2; W0 = a0 * b0; \\ C(1,0,0)

W3 = a5 * b1; \\ C(0,1,0)

\\ Evaluation W6 = a3 * b2; \\ C(0,0,1)

W0 = b0 + b1; W9 = b0 - b1;

W3 = a5 + a0; \\ Interpolation (matrix inversion)

W6 = W3 - a2; W3 = W3 + a2;

W2 = (W2 + W1)/2;

W1 = W3 * W0; \\ C(1, 1,0) W5 = (W5 + W4)/2;

W2 = W6 * W9; \\ C(1,-1,0) W8 = (W8 + W7)/2;

W0 = b1 + b2; W9 = b1 - b2; W1 = W1 - W3; W4 = W4 - W6; W7 = W7 - W0;

W3 = a5 + a3

W6 = W3 - a4; W3 = W3 + a4; W9 = W9 - W1 - W4 - W7;

W4 = W3 * W0; \\ C(0,1, 1) W1 = W1 - W2; W4 = W4 - W5; W7 = W7 - W8;

W5 = W6 * W9; \\ C(0,1,-1) W2 = W2 - W0; W5 = W5 - W3; W8 = W8 - W6;

W0 = b2 + b0; W9 = b2 - b0; \\ Product reconstruction

W3 = a3 + a0;

W6 = W3 - a1; W3 = W3 + a1; C = W0*y0^3 + W1*y0^2*y1 + W2*y0*y1^2 +W3*y1^3\

+ W8*y0^2*y2 + W9*y0*y1*y2 + W4*y1^2*y2 \

W7 = W3 * W0; \\ C(-1,0,1) + W7*y0*y2^2 + W5*y1*y2^2 \

W8 = W6 * W9; \\ C(1,0,1) + W6*y2^3

19

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

4.2 The general case in characteristic different from 2 and 3
Toom-2.5 can be generalized to an arbitrary number of variables. If

a(Y) =
∑

i

aiy
2
i +

∑
i<j

aijyiyj ; b(Y) =
∑

i

biyi

then their product c(Y) can be obtained as

c(Y) =
∑

i

(aibi) y3
i

+
∑
i<j

(
(ai + aj + aij)(bi + bj)− (ai + aj − aij)(bi − bj)

2
− ajbj

)
y2

i yj

+
∑
i<j

(
(ai + aj + aij)(bi + bj) + (ai + aj − aij)(bi − bj)

2
− aibi

)
yiy

2
j

+
∑

i<j<h

((ai + aj + ah + aij + aih + ajh)(bi + bj + bh)

−(ai + aj + aij)(bi + bj)− (aj + ah + ajh)(bj + bh)
−(ai + ah + aih)(bi + bh) + aibi + ajbj + ahbh) yiyjyh

� Evaluation

Evaluation phase must compute

(
n + 2

3

)
values per factor. In order to

obtain good efficiency, the idea is to recycle as much as possible intermediate
obtained values. We’ll refer to the values concerning a evaluation according to
their dependency on i, (i, j) or (i, j, h) indexes, respectively, as:

vertices : ai

sides : evaluated “in 1”, (ai + aj + aij); “in −1”, (ai + aj − aij)
triangles : (ai + aj + ah + aij + aih + ajh)

Evaluations of b and vertices management do not present
any difficulty. The computation of (i, j, h) triangle is in-
stead someway tricky. The idea is to obtain it by summing
three addends: for example the (j, h) side (evaluated in
1), the “internal point” aih and a partially evaluated term
psij = ai + aij on side (i, j). This corresponds to the split-
ting (aj + ah + ajh) + aih + (ai + aij), and is pictorially
represented aside. Similar splittings considering psih or
psjh are obviously possible.

i 1 1 1
1 1
1

j

h

T
T
T
TT

�
�

�
��

�
�

�

Consider the following sequences for sides evaluation in 1 and −1:

(I)
1) v1 = ai + aj

2) v2 = v1 − aij

3) v1 = v1 + aij

; (II)
1) v1 = ai + aij

2) v1 = v1 + aj

3) v2 = v1 − (aij � 1)

20

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

The first one is optimal (with a cost of 3A), but it does not contain the
term psij. We then sometimes have to use the second one (with cost 3A+ 1 2)
in order to complete the triangle. How many partial terms do we need ? As
different splittings are possible, the idea is to use pspq for as many triangles
as possible, as term for the “lower” side (i, j), the “middle” side (i, h), or
for the “higher” side (j, h), and accordingly completing the covering of the
triangle. This leads to a someway involved code, with which the number of
(II) sequences (and therefore of extra 1 2) is remarkably small.

� Interpolation

The key point is the correct
generalization of the instruction
W9 = W9 - W7 - W4 - W1, when
operands are as shown aside.

W1 (1 1 1 0 0 0 0 0 0 0)
W4 (0 0 0 1 1 1 0 0 0 0)
W7 (0 0 0 0 0 0 1 1 1 0)
W9 (1 1 1 1 1 1 1 1 1 1)

The three subtractions use temporary (W1, W4, W7) unidimensional Toom-
2.5 values to obtain a single “1” in W9 line. This makes possible to use the three
(1 1 1) juxtaposable configurations to reduce to 3 the number of operations
needed to obtain the coefficients of the terms yiyjyh (with i < j < h), instead
of the 6 ones needed by blindly applying the inclusion-exclusion principle in
equation (). In this case we say that (i, j, h) is good.
When n > 3, it is not possible to
have the above situation for all triples
(i, j, h). What happens is e.g. the
configuration shown aside: a not per-
fect juxtaposition of the necessary
“1”, so that some correction must be
done – (i, j, h) is bad.

Wp (1 1 1 0 0 0 0 0 0 0)
Wq (0 0 0 1 1 1 0 0 0 0)
Wr (1 0 0 0 0 0 0 1 1 0)
Ws (1 1 1 1 1 1 1 1 1 1)

To describe the situation, consider the complete graph Gn = Kn+1 =
(V (Gn), E(Gn)), where V (Gn) is the set of vertices, E(Gn) the set of edges,
and in which every vertex corresponds to a variable. The triples (i, j, h) cor-
responds to simple circuits of cardinality 3 (sc, for brevity). To obtain the
three correctly juxtaposable groups (1 1 1), it is necessary that the single “1”
to be removed from the groups (1 1 1 1) are properly subtracted. This can be
modeled by orienting the edges of Gn. If (i, j, h) is a good sc in Gn, then no
correction will be necessary (first triangle in figure 2), otherwise one addition
will: the successive subtractions of a configuration (1 1 1 1) on one side and

21

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

two (1 1 1) on the other two sides should be corrected by the addition of a
single (1) in the vertex which was subtracted two times (second triangle in
figure 2, where vertex i is doubly subtracted).

Bad
side

iii

j h j h j h

Figure 2: Triangles: good orientations, bad orientations, general solution

The solution consisting in an edges orientation maximizing the number of
good triangles is not the best one. Infact, if such a solution is choosed e.g. by
defining

Orientation : i→ j iff (i 6≡ j mod 2) Good triangle : (i ≡ h 6≡ j mod 2)

it is easily proved that the (maximal) number GT (n) of good triangles is

GT (n) =

n(n2 − 4)

24
if n ≡ 0 mod 2

n(n2 − 1)

24
if n ≡ 1 mod 2

so that the number of necessary corrections is

(
n
3

)
− GT (n) = O(n3). A

better solution is to use a not optimal inversion sequence for unidimensional
Toom-2.5. The idea is to manage three types of configurations: (1 1 1 1) and
(1 1 1 0) – or (0 1 1 1) – which are always available at no extra cost, and
(0 1 1 0). This means that we need an extra operation on each side, not on
each triangle. In particular, the configuration (0 1 1 0) on side (i, j) can be
used for all triangles (i, j, h) with h > j, so that a correction on one single side
works for many triangles. The procedure is (third triangle in figure 2):
– Subtract from the “higher” side (j, h) of all triangles the configuration (1 1 1 1)
– Subtract from all sides (i, j) the vertex j, obtaining the configuration κ = (1 1 1 0)
– Subtract from the “middle” side (i, h) of all triangles the just obtained configuration κ

22

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

– Subtract from all sides (i, j) the vertex i, obtaining the configuration κ′ = (0 1 1 0)
– Subtract from the “lower” side (i, j) of all triangles the just obtained configuration κ′

Actually it’s not difficult to have also a single good triangle, which should be

treated apart, so that the number of needed corrections lowers to

(
n− 1

2

)
−1 =

O(n2). We have

Z) Toom-2.5 (n) A S 1 2

Evaluation 3

(
n
3

)
+ 5

(
n
2

) (
dn/2e

2

)
+

(
bn/2c

2

)

Interpolation 3

(
n
3

)
+ 4

(
n
2

)
+

(
n− 1

2

)
− 1

(
n
2

)

An implementation in gp code is reported in appendix A. � The general case
in characteristic 2 and 3

In characteristic 2, 1 and −1 coincide, therefore another value must be
chosen, and it can well be xi, for a fixed i. In [1], Bodrato described the
univariate approach. We have

Z2) Toom-2.5 (n) A S D

Evaluation 3

(
n
3

)
+ 6

(
n
2

) (
n
2

)
+ 2(n− 1)

Interpolation 3

(
n
3

)
+ 6

(
n
2

)
2

(
n
2

) (
n
2

)

An implementation in gp code is reported in appendix B. In characteristic
3 we can use again 1 and −1, as they are different. Considering that 2 ≡
−1 (mod 3), it is possible to avoid all shifts by slightly modifying Toom-2.5 for
integers: the general case is obtained as in section 4.2, adapting the inversion
sequence for sides.

5. Multivariate Toom-3

We first treat some particular cases, representing the building blocks for
which it is possible to reach full optimality in interpolation phase. For the
general case, some extra operation is instead needed. We report, either in the

23

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

following sections or in appendices C and D, effective gp code implementing
the presented algorithms.

5.1 The bidimensional case
Bidimensional Toom-3 can be used in two different cases, for balanced or

non-balanced polynomials, respectively. Setting d(p) = deg1(p) we have

(1) a(y0, y1, y2) = a5y
2
1+a4y1y2+a3y

2
2+a2y1y0+a1y2y0+a0y

2
0

d(a) = d(b) = 2 b(y0, y1, y2) = b5y
2
1 + b4y1y2 + b3y

2
2 + b2y1y0 + b1y2y0 + b0y

2
0

(2) a(y0, y1, y2) = a9y
3
1 + a8y

2
1y2 + a7y1y

2
2 + a6y

3
2 + a5y

2
1y0

d(a) = 3 + a4y1y2y0 + a3y
2
2y0 + a2y1y

2
0 + a1y2y

2
0 + a0y

3
0

d(b) = 1 b(y0, y1, y2) = b1y1 + b2y2 + b0y0

We need 15 points to determine c. Ordering s(c) similarly as before (y4
0, y

3
0y1,

y2
0y

2
1, y0y

3
1, y

4
1, y

3
1y2, y

2
1y

2
2, y1y

3
2, y

4
2, y

3
2y0, y

2
2y

2
0, y

3
2y0, y

2
0y1y2, y0y

2
1y2, y0y1y

2
2), we ob-

tain the situation presented in figure 3. Note that it is quite easy to partially
describe the shape of the generic bidimensional Toom-k matrix A3,k in terms
of the optimal classical Toom-k matrix Ak = A2,k, for whatever k. Ordering
s(c) such that the initial terms are the ones met traveling on the “perimeter”
of c

s(c) = (y2k−1
0 , y2k−2

0 y1, . . . , y0y
2k−2
1 , y2k−1

1 , y2k−2
1 y2, . . . , y1y

2k−2
2 ,

y2k−1
2 , y2k−2

2 y0, . . . , y2y
k−2
0 , . . .)

and choosing values for y0, y1, y2 similarly as we did above, corresponding to
the optimal classical Toom-k method, we have that A3,k will have the below
shape.

24

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

y0 y1 y2 Evaluation (case 1) Matrix line
1 1 0 0 a0b0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 0 (4a0 + 2a2 + a5)(4b0 + 2b2 + b5) 16 8 4 2 1 0 0 0 0 0 0 0 0 0 0
3 1 1 0 (a5 + a2 + a0)(b5 + b2 + b0) 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
4 -1 1 0 (a5 − a2 + a0)(b5 − b2 + b0) 1 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0
5 0 1 0 a5b5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
6 0 2 1 (4a5 + 2a4 + a3)(4b5 + 2b4 + b3) 0 0 0 0 16 8 4 2 1 0 0 0 0 0 0
7 0 1 1 (a5 + a4 + a3)(b5 + b4 + b3) 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
8 0 -1 1 (a5 − a4 + a3)(b5 − b4 + b3) 0 0 0 0 1 -1 1 -1 1 0 0 0 0 0 0
9 0 0 1 a3b3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
10 1 0 2 (4a3 + 2a1 + a0)(4b3 + 2b1 + b0) 1 0 0 0 0 0 0 0 16 8 4 2 0 0 0
11 1 0 1 (a3 + a1 + a0)(b3 + b1 + b0) 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0
12 -1 0 1 (a3 − a1 + a0)(b3 − b1 + b0) 1 0 0 0 0 0 0 0 1 -1 1 -1 0 0 0
13 1 1 1 (a5 + · · ·+ a0)(b5 + · · ·+ b0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 -1 1 1 (a5+a4+a3−a2−a1+a0)(〈idem for b〉) 1 -1 1 -1 1 1 1 1 1 -1 1 -1 1 -1 -1
15 1 -1 1 (a5−a4+a3−a2+a1+a0)(〈idem for b〉) 1 -1 1 -1 1 -1 1 -1 1 1 1 1 -1 1 -1

Evaluation (case 2)
1 1 0 0 a0b0
2 2 1 0 (8a0 + 4a2 + 2a5 + a9)(b1 + 2b0)
3 1 1 0 (a9 + a5 + a2 + a0)(b1 + b0)
4 -1 1 0 (a9 − a5 + a2 − a0)(b1 − b0)
5 0 1 0 a9b1
6 0 2 1 (8a9 + 4a8 + 2a7 + a6)(2b1 + b2)
7 0 1 1 (a9 + a8 + a7 + a6)(b2 + b1)
8 0 -1 1 (a9 − a8 + a7 − a6)(b2 − b1)
9 0 0 1 a6b2
10 1 0 2 (8a6 + 4a3 + 2a1 + a0)(2b2 + b0)
11 1 0 1 (a6 + a3 + a1 + a0)(b2 + b0)
12 -1 0 1 (a6 − a3 + a1 − a0)(b2 − b0)
13 1 1 1 (a9 + · · ·+ a0)(b2 + b1 + b0)
14 -1 1 1 (a9 + a8 + a7 + a6 − a5 − a4 − a3 + a2 + a1 − a0)(b1 − b0 + b2)
15 1 -1 1 (a9 − a8 + a7 − a6 − a5 + a4 − a3 + a2 − a1 − a0)(b1 − b0 − b2)

Figure 3: Bidimensional Toom-3: evaluation phase.

A3,k =

1

Ak

1 0
0 Ak

1

Ak
· ·· ·

The last lines concern the inner terms
Tj of the triangle-shaped support, with
yi |Tj ∀ i, j. The optimal sequence of
basic operations needed to invert A3,k

(we call it inversion sequence, or IS for
short) cannot be straightforwardly de-
duced from the corresponding IS of Ak,
because of the last lines to be treated,
but can of course benefit a lot from it.

25

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

We report gp code for the two evaluations and for the (common) interpo-
lation.

Balanced Toom-3 Unbalanced Toom-3

A = a0*y0^2 + a2*y0*y1 + a5*y1^2\ A = a0*y0^3 +a2*y0^2*y1 +a5*y0*y1^2+a9*y1^3\

+ a1*y0*y2 + a4*y1*y2 \ + a1*y0^2*y2+a4*y0*y1*y2+a8*y1^2*y2 \

+ a3*y2^2; + a3*y0*y2^2+a7*y1*y2^2 \

B = b0*y0^2 + b2*y0*y1 + b5*y1^2\ + a6*y2^3;

+ b1*y0*y2 + b4*y1*y2 \ B = b0*y0 + b1*y1 \

+ b3*y2^2; + b2*y2;

W0 = a0 + a5; W4 = b0 + b5; W4 = a2 + a9; W3 = a0 + a5;

W1 = W0 - a2; W2 = W4 - b2; W0 = W4 + W3; W1 = W4 - W3;

W0 = W0 + a2; W4 = W4 + b2;

W6 = b1 - b0; W3 = W1*W6; \\ C(1,-1,0)

\\ Last 3 rows (internal points).

W10 = W1 + a3; \\ Last 3 lines (I)

W14 = a1 - a4; W7 = a7 + a4; W10 = a3 + a1;

W13 = W10 + W14; W8 = W0 + W7; W8 = W8 + W10;

W12 = W10 - W14; W9 = W1 + W7; W9 = W9 - W10;

W10 = W2 + b3; W10 = W1 + a7 - a4 - a3 + a1;

W14 = b1 - b4;

W11 = W10 + W14; \\ Continue evaluation of W1, W2, W3

W10 = W10 - W14;

W5 = b1 + b0; W2 = W0*W5; \\ C(1,1,0)

W14 = W13*W11; \\ C(1,-1,1)

W13 = W12*W10; \\ C(-1,1,1) W4 = 2*a0; W4 += a2; W4 = 2*W4;

W4 += a5; W4 = 2*W4; W4 += a9;

W10 = W0 + a1 + a4 + a3;

W11 = W4 + b1 + b4 + b3; W0 = W5 + b0; W1 = W0*W4; \\ C(2,1,0)

W7 = a6 + a8;

W12 = W10*W11; \\ C(1,1,1)

\\ Last 3 lines (II)

\\ End first Toom-3 submatrix. W0 = W8 + W7;

W3 = W1*W2; \\ C(1,-1,0) W5 = W5 + b2; W12 = W0*W5; \\ C(1,1,1)

W2 = W0*W4; \\ C(1, 1,0)

W0 = W10 + W7;

W0 = W0 + a0; W0 = 2*W0 - a5; W5 = W6 + b2; W13 = W0*W5; \\ C(-1,1,1)

W4 = W4 + b0; W4 = 2*W4 - b5;

W0 = W9 - W7;

W1 = W0*W4; \\ C(2,1,0) W5 = W6 - b2; W14 = W0*W5; \\ C(1,-1,1)

\\ Inner rows of second Toom submatrix. \\ Evaluate W5, W6, W7.

W4 = a5 + a3; W8 = b5 + b3; W4 = a7 + a9; W0 = W7 + W4; W5 = W7 - W4;

W5 = W4 - a4; W6 = W8 - b4;

W4 = W4 + a4; W8 = W8 + b4; W6 = b2 - b1; W7 = W5*W6; \\ C(0,1,-1)

W7 = W5*W6; \\ C(0,1,-1) W5 = b2 + b1; W6 = W0*W5; \\ C(0,1,1)

W6 = W4*W8; \\ C(0,1, 1)

W4 = 2*a9; W4 += a8; W4 = 2*W4;

W4 = W4 + a5; W4 = 2*W4 - a3; W4 += a7; W4 = 2*W4; W4 += a6;

W8 = W8 + b5; W8 = 2*W8 - b3;

W0 = W5 + b1; W5 = W0*W4; \\ C(0,2,1)

26

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

W5 = W4*W8; \\ C(0,2,1)

\\ Evaluate W9, W10, W11.

\\ Inner rows of second Toom submatrix. W4 = a3 + a0;

W8 = a0 + a3; W0 = b0 + b3; W11 = a6 + a1;

W9 = W8 - a1; W10 = W0 - b1; W9 = W4 - W11;

W8 = W8 + a1; W0 = W0 + b1; W10 = b0 - b2;

W11 = W9*W10; \\ C(-1,0,1) W0 = W4 + W11;W11 = W9*W10; \\ C(1,0,-1)

W10 = W8*W0; \\ C(1,0,1) W9 = b2 + b0; W10 = W0*W9; \\ C(1,0,1)

W8 = W8 + a3; W8 = 2*W8 - a0; W4 = 2*a6; W4 += a3; W4 = 2*W4;

W0 = W0 + b3; W0 = 2*W0 - b0; W4 += a1; W4 = 2*W4; W4 += a0;

W9 = W8*W0; \\ C(1,0,2)

W0 = W9 + b2; W9 = W0*W4; \\ C(2,0,1)

W0 = a0*b0; W4 = a5*b5; W8 = a3*b3; W0 = a0*b0; W4 = a9*b1; W8 = a6*b2;

\\ Interpolation: partial Toom-3 submatrices invertion

W1 = (W1 - W3)/3 ; W5 = (W5 - W7)/3 ; W9 = (W9 - W11)/3;

W3 = (W2 - W3)/2 ; W7 = (W6 - W7)/2 ; W11 = (W10 - W11)/2;

W2 = W2 - W4 ; W6 = W6 - W8 ; W10 = W10 - W0 ;

W1 = (W1 - W2)/2 ; W5 = (W5 - W6)/2 ; W9 = (W9 - W10)/2 ;

W1 = W1 - 2*W0 ; W5 = W5 - 2*W4 ; W9 = W9 - 2*W8 ;

\\ Last three rows (partial)

W14 = (W12 - W14)/2 ; W13 = (W12 - W13)/2;

W14 = W14 - W7 ; W12 = W12 - W6 ;

W13 = W13 - W11 ; W12 = W12 - W10 ;

\\ Continue Toom-3 submatrices and last 3 lines invertion.

W2 = W2 - W3 ; W6 = W6 - W7 ; W10 = W10 - W11;

W12 = W12 - W13;

W12 = W12 - W2 ;

W14 = W14 - W12;

W13 = W13 - W14;

W14 = W14 - W3 ;

\\ End of Toom-3 submatrices invertion

W2 = W2 - W0 ; W6 = W6 - W4 ; W10 = W10 - W8;

W3 = W3 - W1 ; W7 = W7 - W5 ; W11 = W11 - W9;

\\ Product reconstruction

C = W0 *y0^4 + W1 *y0^3 *y1 + W2 *y0^2*y1^2 + W3*y0*y1^3 + W4*y1^4 \

+ W11*y0^3*y2 + W12*y0^2*y2*y1 + W13*y0*y2*y1^2 + W5*y2*y1^3 \

+ W10*y0^2*y2^2 + W14*y0*y2^2*y1 + W6 *y2^2*y1^2 \

+ W9 *y0 *y2^3 + W7 *y2^3*y1 \

+ W8 *y2^4;

We underline that the above IS is optimal in the model described in [2].
Note that after the two operations

W14 = (W12 - W14)/2; W13 = (W12 - W13)/2;

the last three lines will contain a submatrix with the following configuration,
which, inspired by its shape, we name Π.

27

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

Π =

 1 1 1
1 0 1
1 0 1

By choosing which variable set to the value -1 in the in-
terpolating points, it is possible to associate Π to what-
ever side of the triangle we prefer. This freedom will be
crucial for the treatment of the general case.

5.2 The tridimensional case in characteristic different from 2 and 3
While Toom-2.5 already reaches its full generality when dimension is 2,

Toom-3 attains it from 3, with the geometric setting being a tridimensional
tetrahedron (pyramid). The 4 vertices are associated to basic multiplications
aibi, the 6 sides to unidimensional Toom-3, and the 4 faces to bidimensional
Toom-3. To represent the pyramid on a plane we “open” it, identifying some
sides and vertices of the “open” faces with equal symbols – see figure 4(a).
There is a single inner point, which is not represented.

Each face has 3 internal points: the associated 35×35 matrix A4,3 generated
by

P4,3 = {(1, 0, 0, 0), (2, 1, 0, 0), (1, 1, 0, 0), (1,−1, 0, 0), (0, 1, 0, 0), (0, 2, 1, 0),
(0, 1, 1, 0), (0, 1,−1, 0), (0, 0, 1, 0), (1, 0, 2, 0), (1, 0, 1, 0), (−1, 0, 1, 0),
(0, 0, 0, 1), (1, 0, 0, 2), (1, 0, 0, 1), (1, 0, 0,−1), (0, 1, 0, 2), (0, 1, 0, 1),
(0, 1, 0,−1), (0, 0, 1, 2), (0, 0, 1, 1), (0, 0, 1,−1), (1, 1, 1, 0), (1, 1,−1, 0),
(1,−1, 1, 0), (1, 1, 0, 1), (1,−1, 0, 1), (−1, 1, 0, 1), (1, 0, 1, 1), (−1, 0, 1, 1),
(1, 0, 1,−1), (0, 1, 1, 1), (0, 1, 1,−1), (0, 1,−1, 1), (1, 1, 1, 1)}

with columns indexed by

s(c) = {y4
0, y1y

3
0, y

2
1y

2
0, y

3
1y0, y

4
1, y2y

3
1, y

2
2y

2
1, y

3
2y1, y

4
2, y

3
2y0, y

2
2y

2
0, y2y

3
0, y

4
3, y

3
3y0,

y2
3y

2
0, y3y

3
0, y

3
3y1, y

2
3y

2
1, y3y

3
1, y

3
3y2, y

2
3y

2
2, y3y

3
2, y

2
2y1y0, y2y

2
1y0, y2y1y

2
0,

y3y
2
1y0, y3y1y

2
0, y

2
3y1y0, y3y2y

2
0, y

2
3y2y0, y3y

2
2y0, y

2
3y2y1, y3y

2
2y1, y3y2y

2
1,

y3y2y1y0}

is the following, where zero entries are not indicated (the last line corresponds
to the inner point, subblocks to vertices, faces and sides – dihedrons of smaller
dimension).

28

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

A4,3 =

1
16 8 4 2 1
1 1 1 1 1
1 -1 1 -1 1

1
16 8 4 2 1
1 1 1 1 1
1 -1 1 -1 1

1
1 16 8 4 2
1 1 1 1 1
1 1 -1 1 -1

1
1 16 8 4 2
1 1 1 1 1
1 1 -1 1 -1

1 1 8 4 2
1 1 1 1 1
1 1 -1 1 -1

1 16 8 4 2
1 1 1 1 1
1 1 -1 1 -1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 -1
1 -1 1 -1 1 -1 1 -1 1 1 1 1 -1 1 -1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 1 1 1 1 -1 1 -1 1 -1 -1
1 -1 1 -1 1 1 -1 1 -1 1 1 1 -1 1 -1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 -1 1 -1 1 -1 1 -1 1 1 1 1 -1 -1
1 1 1 1 1 1 -1 1 -1 -1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 -1 1 -1 -1 1 -1 1 -1 -1
1 -1 1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1

1 1

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

���
���
���

���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

A

B C

D
A A

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

(b)(a)

Figure 4: Tridimensional Toom-3 (a) Pyramidal view (b) Inner point isolation:
optimal grouping

At least 4 operations are needed to make the last line a singleton one (that
is, to isolate the single inner point), corresponding to removing the four groups
of three white circles in figure 4. The IS we propose is derived by the optimal

29

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

IS of unidimensional and bidimensional Toom-3 methods, and with exactly 4
operations the last line is correctly treated. As with bidimensional Toom-2.5
method, no correction (extra operation) is needed. Due to the code length, we
present only the interpolation phase. The matrix line indexes range from 0 to

34, with Wi corresponding to the (i + 1)th line. The situation just before the
execution of the instruction W34 -= (W22 + W25 + W28 + W31) is pictorially
described in figure 4(b). Each of the four subtrahends contains the three inner
points of the corresponding face and, in decreasing cardinality order, other
(8,7,4,3) points on the sides. This way we obtain the (3 + 8) + (3 + 7) + (3 +
4)+ (3+3) = 34 ones to be subtracted. The (8, 7, 4, 3) is not the only optimal
decomposition one can obtain: other ones are e.g.

(12, 4, 3, 3) , (8, 8, 3, 3) , (7, 7, 5, 3) , (7, 7, 4, 4)

It is interesting to note that it was possible to obtain the proposed (8,7,4,3)
configuration because the four Π which appear during the inversion have not
the same column indexes. This means that no two faces sharing a side s have
their Π associated to s. This was possible, because there are 6 sides and only
4 faces, so that there is even a certain degree of freedom in choosing where to
let Π appear.

\\ Tridimensional Toom-3 interpolation

W23 = (W22 - W23)/2; W24 = (W22 - W24)/2;

W26 = (W25 - W26)/2; W27 = (W25 - W27)/2;

W29 = (W28 - W29)/2; W30 = (W28 - W30)/2;

W32 = (W31 - W32)/2; W33 = (W31 - W33)/2;

W31 -= W6; W25 -= W17; W28 -= W10;

W1 = (W1 - W3)/3 ; W5 = (W5 - W7)/3 ; W9 = (W9 - W11)/3;

W3 = (W2 - W3)/2 ; W7 = (W6 - W7)/2 ; W11 = (W10 - W11)/2;

W2 -= W4 ; W6 -= W8 ; W10 -= W0;

W1 = (W1 - W2)/2 ; W5 = (W5 - W6)/2 ; W9 = (W9 - W10)/2;

W1 -= 2*W0 ; W5 -= 2*W4 ; W9 -= 2*W8;

W13 = (W13 - W15)/3; W16 = (W16 - W18)/3; W19 = (W19 - W21)/3;

W15 = (W14 - W15)/2; W18 = (W17 - W18)/2; W21 = (W20 - W21)/2;

W14 -= W0 ; W17 -= W4 ; W20 -= W8;

W13 = (W13 - W14)/2; W16 = (W16 - W17)/2; W19 = (W19 - W20)/2;

W13 -= 2*W12 ; W16 -= 2*W12 ; W19 -= 2*W12;

W22 -= W2 ; W24 -= W3;

W14 -= W12;

W25 -= W14; W26 -= W18; W27 -= W15;

W29 -= W11; W28 -= W20; W30 -= W21;

W34 -= (W22 + W25 + W28 + W31); \\ Inner point: 4 operations

30

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

W22 -= W10; W23 -= W11;

W31 -= W17; W32 -= W18; W33 -= W7;

W22 -= W23; W25 -= W26; W28 -= W29; W31 -= W32;

W2 -= W3 ; W6 -= W7 ; W10 -= W11;

W14 -= W15; W17 -= W18; W20 -= W21;

W17 -= W12; W20 -= W12

W22 -= W6; W25 -= W2; W28 -= W14; W31 -= W20;

W24 -= W22; W27 -= W25; W30 -= W28; W33 -= W31;

W23 -= W24; W26 -= W27; W29 -= W30; W32 -= W33;

W24 -= W7 ; W27 -= W3 ; W30 -= W15; W33 -= W21;

W2 -= W0 ; W3 -= W1 ; W6 -= W4 ;

W7 -= W5 ; W10 -= W8 ; W11 -= W9 ;

W15 -= W13; W18 -= W16; W21 -= W19;

5.3 Quadridimensional case in characteristic different from 2 and 3

In this case we have a four-dimensional tetrahedron, with

(
5
1

)
= 5 vertices,(

5
2

)
= 10 sides,

(
5
3

)
=

(
5
2

)
= 10 faces and

(
5
4

)
= 5 pyramids. Due to the

equal number of faces and sides, as in the tridimensional case it is still possible
to associate the Π submatrices to the sides such in a way that no two faces
sharing a side s both associate their Π to s.

Tag vertices with {0, 1, 2, 3, 4} and consider them as numbers modulo 5.
There are only two possible types of triangles (i, j, h):

(A) j = i + 1, h = j + 1 ; (B) j = i + 1, h = j + 2

We specify below Π associations and edges orientation (figure 5). As config-
urations (1 1 1 1) are used on sides, we must indicate which vertex the lacking 1
corresponds to (this affects also the evaluation phase, telling to which variable
the value 2 is assigned).

Π Sides orientation
(A) (i, h) j → i , h→ j , h→ i
(B) (i, j) j → i , h→ j , i→ h

31

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

Figure 5: Sides orientation and Π association for quadridimensional Toom-3

After such a careful setting, the 70 × 70 resulting matrix A4,4 can be in-
verted with an optimal number of operations. An implementation in gp code
is reported in appendix C.

5.4 The general balanced case in characteristic different from 2 and 3
Formulae for quadratic factors get a bit more complicated than Toom-2.5

case, but still manageable. If

a(X) =
∑

i

aix
2
i +

∑
i<j

aijxixj ; b(X) =
∑

i

bix
2
i +

∑
i<j

bijxixj

then the product

c(X) =
∑

i

(aibi) x4
i +

∑
i<j

(aibij + aijbi) x3
i xj +

∑
i<j

(aibj + aijbij + ajbi) x2
i x

2
j

+
∑
i<j

(ajbij + aijbj) xix
3
j +

∑
i<j<h

(aibjh + aijbih + aihbij + ajhbi) x2
i xjxh

+
∑

i<j<h

(ajbih + aijbjh + ajhbij + aihbj) xix
2
jxh

+
∑

i<j<h

(ahbij + aihbjh + ajhbih + aijbh) xixjx
2
h

+
∑

i<j<h<k

(aijbhk + aihbjk + aikbjh + ajhbik + ajkbih + ahkbij) xixjxhxk

can be computed by precalculating, for all admissible values of p, q, r, s, the

32

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

quantities

Wp = apbp ; W+
pq = (ap + aq + apq)(bp + bq + bpq)

W (2)
pq = (ap+4aq+2apq)(bp+4bq+2bpq) ; W−

pq = (ap + aq − apq)(bp + bq − bpq)

W (1)
pqr = (ap + aq + ar + apq + apr + aqr)(bp + bq + br + bpq + bpr + bqr)

W (2)
pqr = (ap + aq + ar − apq + apr − aqr)(bp + bq + br − bpq + bpr − bqr)

W (3)
pqr = (ap + aq + ar + apq − apr − aqr)(bp + bq + br + bpq − bpr − bqr)

W rs
pq = (ap + aq + ar + as + apq + apr + aps + aqr + aqs + ars)×

(bp + bq + br + bs + bpq + bpr + bps + bqr + bqs + brs)

The result is

c(X) =
∑

i

Wi x
4
i +

∑
i<j

(
W+

ij + 2Wj −
1

6

(
2W−

ij + 3Wi + W
(2)
ij

))
x3

i xj

+
∑
i<j

(
W+

ij + W−
ij

2
−Wi −Wj

)
x2

i x
2
j +
∑
i<j

W
(2)
ij −W−

ij − 3(W+
ij −Wi)

6
− 2Wj

xix
2
j

+
∑

i<j<h

W+
ij +W−

ij +W+
ih+W−

ih−W
(2)
ijh−W

(3)
ijh

2
+ W−

jh −Wi −Wj −Wh

x2
i xjxh

−
∑

i<j<h

Wij+W−
ij +Wjh+W−

jh−W
(1)
ijh−W

(2)
ijh

2
−W+

ih + Wi + Wj + Wh

xix
2
jxh

−
∑

i<j<h

Wih+W−
ih+Wjh+W−

jh−W
(1)
ijh−W

(3)
ijh

2
−W+

ij + Wi + Wj + Wh

xixjx
2
h

+
∑

i<j<h<k

(
W hk

ij + W+
ij + W+

jh + W+
ih + W+

ik + W+
jk + W+

hk+

− (W
(1)
ijh + W

(1)
ijk + W

(1)
ihk + W

(1)
jhk + Wi + Wj + Wh + Wk)

)
xixjxhxk

� Evaluation

The general evaluation procedure in

(
n + 3

4

)
carefully chosen points re-

quires not less effort than interpolation. We propose two different evaluations
procedures: EV1 and EV2. The former is better in a model for which the ma
operation described in section is not available, while the latter, taking benefit
of the reduced number of memory accesses, is preferable when it is.

The general idea for both versions is to build the necessary evaluation
values by recycling as much as possible already computed intermediate ones.
We’ll use V3 = {0, 1,−1, 2} as set of values to instantiate variables with: and

33

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

in particular {1} for pyramids, {0, 1,−1} for faces, the whole V3 for sides
and {0, 1} for vertices. We’ll once again use a geometrical setting in order to
describe evaluation. The ai and aij coefficients (and similarly for b) will be
seen as vertices and internal points of sides of discrete faces and pyramids,
representing interpolation points. To evaluate c in these discrete geometrical
structures we then multiply two copies of each of them, one corresponding to
a, the other one to b.

EV1 : In order to build the three faces configuration (one consisting of all
1 and two with some -1 in different positions) and the single type of pyramid
(made by all 1), we use some temporary values that do not appear in the
optimal sequence for sides found by Bodrato [1] when ma is not available,
but permit to reduce to O(n) the number of needed extra values. We use the
following evaluation sequence on sides, whose cost is (5A + 1 2) + S, slightly
suboptimal with respect to Bodrato’s (5A + 1 2).

1) v3 = (1 0 0) + (0 1 0); [(1 1 0) ' ai + aij]
2) v1 = v3 + (0 0 1); [(1 1 1) ' ai + aij + aj]
3) v3 = v3 + (0 1 0); [(1 2 0) ' ai + 2aij]
4) v2 = (0 0 1)� 2; [(0 0 4) ' 4aj]
5) v3 = v3 + v2; [(1 2 4) ' ai + 2aij + 4aj]
6) v2 = sa((0 1 0), v1,−1); [(1 -1 1) ' ai − aij + aj]

This sequence has the advantage to include the configuration psij ' (1 1 0),
which will be used to build also faces and pyramids. The tricky point is that
the extra operation (step 4) is a shift on a vertex. This means that, if we
compute the corresponding value and put it apart, we have the chance to
recycle this value for all sides having it as second vertex, considering thus
only a linear number of extra operations. Note that steps 4) and 5) could
be fused into a single step 4-5) v3 = sa((0 0 1), v3, 2), with a sequence cost of
(5A + 1 2) + 1 2. To take benefit of both possibilities, we must consider
the relationship between the execution time taken by a 1 2 and by a shift,
depending on the implementation. The threshold t = bS/(1 2)c indicates
when it is convenient to do some (a certain number ≤ t) 1 2 operations instead
of a single shift. Depending of t, we choose the value of i such that for all sides
whose second vertex has index ≤ i we use the 4-5) step, while for all other
ones we use steps 4) and 5), recycling the (0 0 4) vertex configuration. When
sa is not available, we then have to minimize the total number of operations,

34

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

and this is achieved considering t = 2.
For faces, we obtain the three following configurations by building them as

below subdivisions indicate:

i 1 1 1
1 1

1

j

©1 h

T
T
T
TT

�
�

�
��

�
�

�

i 1 -1 1
1 -1

1

j

©2 h

T
T
T
TT

�
�

�
��

T
T

�
�

�

i 1 1 1
-1 -1

1

j

©3 h

T
T
T
TT

�
�

�
��

�
�

�

©1 : (1 1 1) on side (j, h) + psij + inner point of side (i, h)
©2 : (1 -1 1) on side (j, h) + psih − inner point of side (i, j)
©3 : (1 -1 1) on side (j, h) + psij − inner point of side (i, h)

They are obtained by analyzing sides starting from the “higher” ones (with
bigger vertex indexes), so that just 2 · 3 = 6 additions/subtractions per factor
are needed for faces.

For pyramids the idea is very similar: we use the (supposed
already computed) face (j, h, k) configuration ©1 , the in-
ternal point on side (i, h) and the aside shown boxed pfijk

partial (i, j, k) configuration, which is intermediately needed
and obtained while computing faces.

i 1 1 0 j
1 0
0

k

T
T
T

�
�

�

Working this way, we build pyramids with just 2 additions per factor. The
total complexity is then

A S 1 2

2

[
2

(
n
4

)
+ 6

(
n
3

)
+ 5

(
n
2

)]
2(n− t) 2

[(
n
2

)
+

(
t
2

)]

EV2 : We consider the following evaluation sequence for sides, with a
total cost of (4A + 1 2 + 1 3), more efficient when sa, ma are
both available:

1) v3 = (0 1 0) + (0 0 1); [(0 1 1) ' aij + aj]
2) v1 = v3 + (1 0 0); [(1 1 1) ' ai + aij + aj]
3) v2 = sa((0 1 0), v1,−1); [(1 -1 1) ' ai − aij + aj]
4) v3 = ma(v3, v2); [(1 2 4) ' ai + 2aij + 4aj]

35

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

By using this basic evaluation sequence, it is possible to set up the general
one without any extra operation. Infact, for what concern faces we obtain
configurations ©1 and ©2 by means of (supposed already available) proper
value of (i, j) side, of ps′ih = (0 1 1) configuration and of the internal point on
side (j, h). For ©3 we consider instead the complete side (i, h) together with
ps′ij and the remaining middle-point on side (j, h).

This leads to a someway tricky order for values computations, different
from the one used for EV1. For example, almost all pf+

ijh (all but the ones
with h = j + 1) configurations must be precomputed in advance, and one
must be very shrewd in using the result space in order to keep all intermediate
needed values. Our implementation, to keep code sufficiently compact, uses
only 6 extra temporaries, independently from n. The total complexity is

A 1 2 1 3

2

[
2

(
n
4

)
+ 6

(
n
3

)
+ 4

(
n
2

)]
2

(
n
2

)
2

(
n
2

)

� Interpolation

Similarly to what happens for general Toom-2.5 method, apart from the
particular cases of the precedent sections, it is not possible to have optimal

inversion sequences for all pyramids. Infact, when n > 5, we have that

(
n
2

)
<(

n
3

)
, and this means that there is at least one side to which we should associate

at least two Π.
The general case should then use another inversion sequence on some faces,

still permitting to have 4 operations to obtain inner points for pyramids, that
costs one addition more. As for Toom-2.5, it is still possible to have a single
quadridimensional tetrahedron on which the optimal inversion sequence can
be maintained.

Moreover, the threshold t makes a difference here, too. The optimal in-
version sequence for one side (classical Toom-3) by Bodrato and Zanoni [2]
includes the following operation

(2 1 0 0 0)− 2(1 0 0 0 0)

Note that the subtrahend configuration is vertex-depending. We’re facing
exactly the same situation as in evaluation phase: to use some 1 2 or to

36

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

compute a single shift and recycle it for all the sides it can be used with ?
Once again, the threshold t enters its game, and both possibilities are used
according to its value. We then have

A S D 1 2

4

(
n
4

)
+ 11

(
n
3

)
+

(
n− 1

3

)
+ 8

(
n
2

)
2

(
n
3

)
+ 2

(
n
2

)
+ (n− t)

(
n
2

) (
t
2

)

Appendix D contains gp code of two functions performing evaluation and inter-
polation: multivariateToom3 uses EV1, while multivariateToom3 bis uses
EV2 evaluation. In order to avoid complications due to indexes treatment,
both functions do not include the optimization obtainable considering a sin-
gle quadridimensional tetrahedron configured as explained in section 5.3. The
gain would be very small, and by not considering it we obtain a much cleaner
code.

5.5 The general unbalanced case in characteristic different from 2, 3
For unbalanced operands, formulae and evaluation procedure change, while

interpolation phase does not. We have

a(X) =
∑

i

aix
3
i +

∑
i6=j

aijx
2
i xj +

∑
i<j<h

aijhxixjxh ; b(X) =
∑

i

bixi

then the product

c(X) =
∑

i

(aibi) x4
i +

∑
i<j

(aibj + aijbi) x3
i xj +

∑
i<j

(aijbj + ajibi) x2
i x

2
j

+
∑
i<j

(ajbi + ajibj) xix
3
j +

∑
i<j<h

(aijbh + aihbj + aijhbi) x2
i xjxh

+
∑

i<j<h

(ajibh + ajhbi + aijhbj) xix
2
jxh +

∑
i<j<h

(ahibj + ahjbi + aijhbh)xixjx
2
h

+
∑

i<j<h<k

(aijhbk + aijkbh + aihkbj + ajhkbi) xixjxhxk

can be computed by precalculating, for all admissible values of p, q, r, s, the
quantities

Wp = apbp ; W+
pq = (ap + aq + apq + aqp)(bp + bq)

W (2)
pq = (ap+8aq+4apq+2aqp)(bp+4bq) ; W−

pq = (ap − aq − apq + aqp)(bp − bq)

37

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

W (1)
pqr = (ap + aq + ar + apq + aqp + apr + arp + aqr + arq + apqr)(bp + bq + br)

W (2)
pqr = (ap − aq + ar − apq + aqp + apr + arp + aqr − arq − apqr)(bp − bq + br)

W (3)
pqr = (ap + aq − ar + apq + aqp − apr + arp − aqr + arq − apqr)(bp + bq − br)

W rs
pq = (ap + aq + ar + as + apq + aqp + apr + arp + aps + asp + aqr + arq +

aqs + asq + ars + asr + apqr + apqs + aprs + aqrs)(bp + bq + br + bs)

and express c(X) as in section 5.4.

The idea for evaluation is very close to the one for the balanced case, and is
similarly treated by looking at the longest factor, a, from a geometrical point
of view. First of all, notice that, depending on ma availability, there are two
different optimal evaluation sequences for it. If only sa if available we have a
cost of 7A + 3 (1 2).

1) v2 = (1 0 0 0) + (0 0 1 0); [(1 0 1 0) ' ai + aji]
2) v3 = (0 1 0 0) + (0 0 0 1); [(0 1 0 1) ' aj + aij]
3) v1 = v2 + v3; [(1 1 1 1) ' ai + aij + aji + aj]
4) v2 = v2 − v3; [(1 -1 1 -1) ' aj − aji + aji − aj]
5) v3 = sa((0 0 0 1), (0 0 1 0), 1); [(0 0 1 2) ' aji + 2aj]
6) v3 = sa(v3, (0 1 0 0), 1); [(0 1 2 4) ' aij + 2aji + 4aj]
7) v3 = sa(v3, (1 0 0 0), 1); [(1 2 4 8) ' ai + 2aij + 4aji + 8aj]

If ma is also available, we may also obtain 7A + 1 2 + 1 3 with

1) · · · 4) as above
5) t = sa((0 0 0 1), (0 0 1 0), 1); [(0 0 1 2) ' aji + 2aj]
6) v3 = v3 + v1; [(1 2 1 2) ' ai + 2aij + aji + 2aj]
7) v3 = ma(t, v3); [(1 2 4 8) ' ai + 2aij + 4aji + 8aj]

and one must check if 1 3 ≤ 2 (1 2) to determine which is the optimal se-
quence.

In order to optimally treat faces and pyramids, a different evaluation se-
quence for sides must be considered, whose cost is, luckyly, not much greater:
7A + 2 (1 2) + 1 3.

38

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

1) v3 = (0 1 0 0) + (0 0 1 0); [(0 1 1 0) ' aij + aji]
2) v1 = v1 + (1 0 0 0); [(1 1 1 0) ' ai + aij + aji]
3) v2 = sa((0 1 0 0), v1,−1); [(1 -1 1 0) ' ai − aij + aji]
4) v1 = v1 + (0 0 0 1); [(1 1 1 1) ' aj + aij + aji + aj]
5) v3 = ma(v3, v2); [(1 2 4 0) ' ai + 2aij + 4aji]
6) v2 = v2 − (0 0 0 1); [(1 -1 1 -1) ' ai − aij + aji − aj]
7) v3 = sa((0 0 0 1), v3, 3); [(1 2 4 8) ' ai + 2aij + 4aji + 8aj]

As in EV1, operation 7 can be split into a shift on the (0 0 0 1) vertex-
depending configuration and an addition, with threshold t playing here an
important role, too.

Let ps∗ij = (0 1 1 0), ps+
ij = (1 1 1 0) and ps−ij = (1 -1 1 0) the three useful

intermediate partial side configurations. Faces have now an inner point pijh,
and are build as follows, with 3 algebraic sums:

i 1 1 1 1
1 1 1

1 1
1

j

©1 h

T
T
T
T
TT

�
�

�
�

��

T
T
TT

�
�

�
��

i 1 -1 1 -1
1 -1 1
1 -1

1

j

©2 h

T
T
T
T
TT

�
�

�
�

��

T
T

�
�

�
��

i 1 1 1 1
-1 -1 -1

1 1
-1

j

©3 h

T
T
T
T
TT

�
�

�
�

��

T
T
TT

�
�

�
��

©1 : ps∗ij + (1 1 1 1) on side (j, h) + ps+
ih + pijh

©2 : ps∗ih − (1 -1 1 -1) on side (j, h) + ps−ij − pijh

©3 : ps∗ij + (1 -1 1 -1) on side (j, h) + ps−ih − pijh

The intermediate shown aside addends pf ∗ijh = psij + pijh

(a partial face triangle) and pf∆
ijh = pf ∗ijh + ps+

ih (a face
minus the “higher” side) are recycled for the pyramids,
which have no inner point and are built summing the ©1
(j, h, k) face configuration, pf∆

ihk, pf ∗ijh and the face inner
point pijk.

i 1 1 1 0 j
1 1 0
1 0
0
h

T
T
T
T

�
�

�
�

T
T
T

The more elaborated evaluation of a and easier of b gives a total complexity of

A S 1 2 1 3

2

[
2

(
n
4

)
+ 6

(
n
3

)
+ 5

(
n
2

)]
(n− t)

[(
n
2

)
+

(
t
2

)] (
n
2

)

An implementation in gp code is reported in appendix E.

39

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

6. Issues on higher Toom methods

In order to consider Toom-k methods with k > 3, it is important to give a
closer look to the discrete geometrical structure. The setting for the n-variate
case (not counting the homogenizing variable) is the discrete n-dimensional
hyper-tetrahedron HT = {α ∈ INn | |α| ≤ 2k − 2} standing for the triangular
representation. We define the following quantities in terms of n and k:

T =

(
n + 2k − 2

n

)
; I =

(
2k − 3

n

)
; F =

(
n + 2k − 3

n− 1

)

They represent, the number of points of HT , the number of its internal points
and the number of points on a face, respectively (with I = 0 if 2k − 3 < n).
In particular, as already observed, n = 1 are the classical Toom-k methods,
which geometrically correspond to “segments”. For n = 2 we have triangles,
which are analyzed - as we have seen - first considering sides (unidimensional
segments) and then internal points. Similarly, the general case is treated con-
sidering first the n (hyper-)faces of dimension n − 1 forming the border, and
then the internal points.

Suppose to order all possible Y -terms forming HT in a vector as follows

Ln,k = (T1, . . . , Tq, Tq+1, . . . , Tt) so that

{
∃ j : yj 6 | Ti 1 ≤ i ≤ q
∀ j : yj | Ti, i > q

and that we already solved all Toom-k up to the (n − 1)-dimensional one.
Then one can obtain a n-dimensional interpolation matrix An,k with a shape
schematically shown here, where A′

n−1,k is recursively obtained by setting n
lines as “singletons”, with a single 1 and 0 elsewhere (corresponding to ver-
tices), and then, taking care of the ordering given by terms indexing columns,

An,k =

(
A′

n−1,k 0

.

) by

(
n
i

)(
2k − 3

i

)
lines for every 1 ≤ i < n, corre-

sponding to inner points on lower dimensional dihe-
drons.

To define the last I lines of the interpolation matrix it is sufficient to
evaluate Ln,k in I interpolation points with no zero coordinate such that the
square submatrix MI formed by the last I columns of the resulting T × I
matrix is invertible.

Let V k
n−1 = {v0, . . . , vl} be the set of integers appearing as coordinates in

the (n−1)-dimensional points used for faces in a multivariate Toom-k method.

40

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

In order to make matrix inversion easier, the most natural idea for values to
use as coordinates of interpolation points is to consider vi ∈ V k

n−1 \ {0} - those
already considered for faces. But can we find I points such that V k

n = V k
n−1

and MI is invertible ? It is not obvious neither if it is always possible nor, if
it is, how to determine them. And if it is not possible, when will V k

n−1 ⊂ V k
n

happen ?
No zero coordinate means that yi = 0 never happens for any i (this would

mean we’re working on a face, and we’ve already considered all matrix lines
given by faces). Moreover, all terms having the same degree, the two points
P1 = (vi, . . . , vi) and P2 = (vj, . . . , vj) give two linearly dependent lines, so
that just one of them may be chosen.

If we need I values, a necessary condition to have V k
n−1 = V k

n is the following
one: (

2k − 3
n− 1

)
≤ ln − l + 1

6.1 Considerations on higher Toom methods
Because of the binomial “nature” of the above quantities, the involved

interpolation matrix dimensions grow very fast as n and k grow. For example,
for the bidimensional Toom-4 case (triangle) we have 28 points, of which 10 are
inner ones. In this case (differently from the case for bidimensional Toom-3) we
must use the value 2 to obtain a sufficient number of valid inner interpolation
points, and this complicates the inversion procedure very much. Already in
this case, the number of needed operations to invert the matrix is very likely
to hide the benefit of performing less multiplications. Even if asymptotically
convenient in theory, we remind that Toom methods are the fastest ones only
in a limited range, and when the overhead given by the extra operations is too
much, then Kronecker+FFT or some other asymptotically better algorithm is
preferred to enter the game. With bigger values of n and k, the situation gets
even worse, and we fear that multivariate Karatsuba, Toom-2.5 and Toom-3
are the only generalizations that can really prove to be effective in practical
applications.

7. Complexity analysis

Let T
(2)
k (d) be the number of multiplications of the bidimensional Toom-k

method for a triangle with side length d, and S
(2)
k (d) for a square. We want to

obtain the explicit formula expressing T
(2)
k (d).

41

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

One could benefit of the graphical approach: draw k − 1 vertical and hor-
izontal lines dividing the legs in k equal parts each. The factor triangles are
then divided into k small triangles and k(k−1)/2 small squares, and the result-
ing (big) product triangle into 2k− 1 small triangles and (2k− 1)(2k− 2)/2 =
(2k − 1)(k − 1) small squares (see figure 6 for the case k = 5).

@
@

@
@
@

k ·
@

@
@

@
@

k =⇒
@

@
@

@
@

@
@

@
@
@ 2k − 1

Figure 6: Recursive subdivision process (k = 5)

Similar considerations for squares tell that two square factors splitted ac-
cording to k make a big square made of (2k−1)2 small squares. We set n = 2,
α = 2k − 1, β = k − 1 and γ = α2 = (2k − 1)2. For simplicity, suppose d = kr

for a certain 1 < r ∈ IN. We have that the recursive formulae become
T

(n)
k (d) = α T

(
d

k

)
+ αβS

(
d

k

)
= α

[
T

(
d

k

)
+ βS

(
d

k

)]

S
(n)
k (d) = γS

(
d

k

)

Expanding recursively the right sides we obtain

T
(n)
k (d) = α

[
T

(n)
k

(
d

k

)
+ βS

(n)
k

(
d

k

)]

= α

[
α

[
T

(n)
k

(
d

k2

)
+ βS

(n)
k

(
d

k2

)]
+ βγS

(n)
k

(
d

k2

)]

= α

[
α T

(n)
k

(
d

k2

)
+ β(α + γ)S

(n)
k

(
d

k2

)]

= α2

[
T

(n)
k

(
d

k2

)
+ β

(
1 +

γ

α

)
S

(n)
k

(
d

k2

)]

= α2

[
α

[
T

(n)
k

(
d

k3

)
+ βS

(n)
k

(
d

k3

)]
+ β

(
1 +

γ

α

)
γS

(n)
k

(
d

k3

)]

42

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

= α3

[
T

(n)
k

(
d

k3

)
+ β

(2∑
i=0

(
γ

α

)i)
S

(n)
k

(
d

k3

)]
...

= αe

T (n)
k

(
d

ke

)
+ β

(
γ
α

)e
− 1(

γ
α

)
− 1

S
(n)
k

(
d

ke

)
When e = r we have d/ke = 1, and, considering T

(n)
k (1) = S

(n)
k (1) = 1,

T
(n)
k (d) = αr

1 + β

(
γ
α

)r
− 1(

γ
α

)
− 1

 = αr +
αβ

γ − α
(γr − αr)

Note that γ/α = α and αr = klogk αr
= kr logk α = (kr)logk α = d logk α. Substi-

tuting the original values for α, β we have

T
(n)
k (d) = αr

[
1 + β

αr − 1

α− 1

]
= αr

[
1 + (k − 1)

αr − 1

(2k − 1)− 1

]

= αr

[
1 + (k − 1)

αr − 1

2(k − 1)

]
= αr

[
1 +

αr− 1

2

]
= αr

[
αr+ 1

2

]

=
(d2)logk(2k−1)+ d logk(2k−1)

2
=O((d2)logk(2k−1))

Remembering that #p = O(d2), we found again Toom complexity in terms
of input data cardinality. This happens because (see figure 6) the number
of squares grows quadratically at each recursion step, while the number of
triangles only linearly, and the potential benefit is soon lost. Anyway, we
point out the presence of the constant 1

2
.

7.1 The general case
The above considerations generalize to the n-dimensional case, with mul-

tivariate polynomials p ∈ R[X]. The geometric idea is similar: consider di-
hedrons and hypercubes and define a recursive formula. For p dense, #p =(
n + d

n

)
or #p = (d + 1)n considering total and max degree, respectively,

equal to d. In any case #p = O(dn).
The constants α and δ = αβ are in general determined by combinatorial

expressions, representing the number of small triangles (“on the hypotenuse”)

43

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

and of small squares (the inner part) of the product triangle. We have δ =(
n + 2k − 3

n

)
, so that

α =

(
n + 2k − 3

n− 1

)
, β =

δ

α
=

2(k − 1)

n
, γ = (2k − 1)n

The complexity analysis is exactly the same, with these new α, β, γ values. As
polynomials in k we have that α has (total) degree n − 1, while γ has degree
n. This means that

m =
αβ

γ − α
= O(1) =⇒ T

(n)
k (d) = O

(
αr+

αβ

γ − α
(γr − αr)

)
= O(αr + γr − αr) = O(γr)

Being

γr = klogk((2k−1)n)r

= kr logk(2k−1)n

= (kr)n logk(2k−1) = (dn)logk(2k−1)

we find again the complexity of Toom-k method T
(n)
k (d) = O((dn)logk(2k−1)).

Summing all up, by using “schoolbook” multivariate multiplication method
(that we can consider to be Toom-1), every monomial of a(X) must be multi-
plied with every monomial of b(X). The number of needed multiplications is
then (

n + d
d

)2

=

(
d + n

n

)2

=

(
dn + · · ·

n!

)2

' d2n

(n!)2
= O((dn)2)

and mn,1 = (n!)−2 is the value of the multiplicative constant. Using Toom-k
method, we instead have that

mn,k =
β

γ
α
− 1

=
2(k − 1)

n
[

(2k−1)n

α
− 1

]
=

2

n

(2k + (n− 3))(2k + (n− 4)) · · · 2k(k − 1)

(n− 1)!(2k − 1)n−1 − (2k + (n− 3))(2k + (n− 4)) · · · 2k
Note that the denominator vanishes for k = 1, so that the factor (k−1) can

be simplified. Some particular expression for small values of n are reported
below. It is straightforward to prove that lim

k→∞
mn,k = 1/n!

n 2 3 4 5

mn,k
1

2

2k

3(4k − 1)

k(2k + 1)

2(24k2 − 14k + 3)

4k(k + 1)(2k + 1)

5(96k3 − 98k2 + 43k − 6)

44

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

8. Conclusions

We proposed a generalization of Karatsuba and some of Toom-Cook meth-
ods to multivariate polynomials having dense representation with respect to
usual degree definition. We presented in full details algorithms computing eval-
uation and interpolation for Toom-2.5 and Toom-3. They should fit between
usual (for not too small degrees) and asymptotically better (for not too big
ones) multiplication methods, with a better behavior given by the optimization
of the complexity constant, when factor degrees lie inside some interval depend-
ing on implementation. We think that higher Toom-Cook methods have small
chance to be efficient in practise, because of computational overhead fastly
growing as the number of variables and subdivisions grows.

Appendix A. Multivariate Toom-2.5 in characteristic different
from 2

\\ (C) 2011 Marco Bodrato <http://marco.bodrato.it/>

\\ This code is released under GPL 3.0 licence.

Toom25(n=10)={

n++;

U = sum(i=1,n, sum(j=i,n , eval(Str("U",i,"_",j,"*x",i,"*x",j))));

V = sum(i=1,n , eval(Str("V",i,"*x",i)));

\\ P(xi,xj,xk): P0=(1,0,0); P1=(1,0,1); P2=(1,0,-1); P3=(1,1,1)

\\ Evaluation:

sums = 0;shifts = 0;muls = 0;

Wext = matrix(n, n);

Wint = vector(n,k,if(k>2,matrix(k,k+1),0));

for(i=1, n-2,

forstep(j=i+2, n, 2,

Wext[i,i]=eval(Str("U",j,"_",j,"+U",i,"_",j));sums++;

for(k=1,n,

if(k>j,Wint[k][i,j]=Wext[i,i]+eval(Str("U",j,"_",k));sums++;,

if((k+i)%2==1,sums++;

if(k>i,Wint[j][i,k]=Wext[i,i]+eval(Str("U",k,"_",j)),

Wint[j][k,i]=Wext[i,i]+eval(Str("U",k,"_",j))))));

Wext[i,i]+=eval(Str("U",i,"_",i));sums++;

Wext[j,j] =eval(Str("V",j,"+V",i));sums++;

for(k=i+1,j-2,k++;

Wext[k,k] =Wint[j][i,k]+Wext[i,i];sums++;

Wext[i,j] =Wext[j,j]+eval(Str("V",k));sums++;

Wint[j][i,k]=Wext[k,k]*Wext[i,j];muls++;);

Wext[i,j] =Wext[j,j]*Wext[i,i];muls++;

Wext[i,i]-=2*eval(Str("U",i,"_",j));sums++;shifts++;

Wext[j,j] =if(j==n&i==n-2,eval(Str("V",i,"-V",j)),eval(Str("V",j,"-V",i)));sums++;

Wext[j,i] =Wext[j,j]*Wext[i,i];muls++;

));

45

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

for(i=1, n,

forstep(j=i+1, n, 2,

Wext[j,i] =eval(Str("U",j,"_",j,"+U",i,"_",i));sums++;

Wext[i,i] =Wext[j,i]+eval(Str("U",i,"_",j));sums++;

Wext[j,j] =eval(Str("V",j,"+V",i));sums++;

forstep(k=i+2,j,2,

Wext[k,k] =Wint[j][i,k]+Wext[i,i];sums++;

Wext[i,j] =Wext[j,j]+eval(Str("V",k));sums++;

Wint[j][i,k]=Wext[k,k]*Wext[i,j];muls++;);

for(k=j+1,n,

Wext[k,k] =Wint[k][i,j]+Wext[i,i];sums++;

Wext[i,j] =Wext[j,j]+eval(Str("V",k));sums++;

Wint[k][i,j]=Wext[k,k]*Wext[i,j];muls++;);

Wext[i,j] =Wext[j,j]*Wext[i,i];muls++;

Wext[i,i] =Wext[j,i]-eval(Str("U",i,"_",j));sums++;

Wext[j,j] =eval(Str("V",j,"-V",i));sums++;

Wext[j,i] =Wext[j,j]*Wext[i,i];muls++;

);

Wext[i,i] =eval(Str("U",i,"_",i,"*V",i));muls++;

);

print("Evaluation required: ",sums," sums, ",shifts," shifts(_1_2),",muls," muls.");

print("Should be: ", binomial(n,2)*5+binomial(n,3)*3, " sums, ",binomial(ceil(n/2),2)

+binomial(floor(n/2),2)," shifts, ",binomial(n+2,3)," muls.");

print("Naive: ", binomial(n,2)*6+binomial(n,3)*7, " sums, ",0," shifts.");

\\ Interpolation: 6 add, 2 shift, 1 div (2n)

sums=0;shifts=0;

for(i=1, n-3, for(j=i+1, n-1, for(k=j+1, n, Wint[k][i,j] -= Wext[j,k];sums++)));

for(i=1, n-1, for(j=i+1, n,

Wext[j,i] =(Wext[j,i] - Wext[i,j])/(-2);sums++;shifts++;

if(j==n & i==n-2, Wext[i,j] = Wext[i,j] - Wext[i,i];sums++;

, \\else

Wext[i,j] = Wext[i,j] - Wext[j,j];sums++;

)));

for(i=1, n-3, for(j=i+1, n-1, for(k=j+1, n, Wint[k][i,j] -= Wext[i,k];sums++)));

if(n-2>0, Wint[n][n-2,n-1] -= Wext[n-2,n-1] + Wext[n-1,n] + Wext[n-2,n];sums+=3;);

for(i=1, n-3, for(j=i+1, n-1, Wext[j,i] = Wext[j,i] - Wext[i,i];sums++;

Wext[i,j] = Wext[i,j] - Wext[i,i];sums++;));

for(i=1, n-3, for(j=i+1, n-1, for(k=j+1, n, Wint[k][i,j] -= Wext[i,j];sums++)));

for(i=1, n-3, for(j=i+1, n-1, Wext[i,j] = Wext[i,j] - Wext[j,i];sums++));

for(i=1, n-1,

Wext[i,n] = Wext[i,n] - Wext[n,i];sums++;

if(i==n-2, Wext[n,i] = Wext[n,i] - Wext[n,n];sums++;

Wext[i,n-1] = Wext[i,n-1] - Wext[n-1,i];sums++;

Wext[n-1,i] = Wext[n-1,i] - Wext[i,i];sums++;

,

Wext[n,i] = Wext[n,i] - Wext[i,i];sums++;

));

print("Interpolation required: ", sums, " sums, ", shifts, " shifts.");

print("Should be: ", binomial(n-1,2)-(n>2)+binomial(n,2)*4+binomial(n,3)*3,

" sums, ", binomial(n,2), " shifts.");

46

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

\\ Recomposition

W = sum(i=1,n, sum(j=i+1,n, sum(k=j+1,n, Wint[k][i,j]*eval(Str("x",i,"*x",j,"*x",k)))));

W+= sum(i=1,n, sum(j= 1,n, if((i==n&j==n-2)||(j==n&i==n-2),

Wext[j,i], Wext[i,j])*eval(Str("x",i,"^2*x",j))));

W == U*V

}

Appendix B. Multivariate Toom-2.5 in characteristic 2

\\ (C) 2011 Marco Bodrato <http://marco.bodrato.it/>

\\ This code is released under GPL 3.0 licence.

Toom25gf2(n=10,t=0)={

n++; if(t<2|t>n,t=n);

U = sum(i=1,n, sum(j=i,n , eval(Str("U",i,"_",j,"*x",i,"*x",j))))*Mod(1,2);

V = sum(i=1,n , eval(Str("V",i,"*x",i))) *Mod(1,2);

\\ P(xi,xj,xk): P0=(1,0,0); P1=(1,0,1); P2=(1,0,x+1); P3=(1,1,1)

\\ Evaluation:

sums = 0;shifts = 0;addlsh = 0;muls = 0;

Wext = matrix(n, n);

Wint = vector(n,k,if(k>2,matrix(k,k+1),0));

for(i=1, n-1, for(j=i+1, n,

Wext[j,i]=eval(Str("U",j,"_",j,"+U",i,"_",j));sums++));

forstep(j=n,1,-1,

if(j>t,

Wext[j,j]=x*eval(Str("V",j));shifts++;

Wext[1,2]=x^2*eval(Str("U",j,"_",j));shifts++;

);

for(i=1,j-1,

Wext[j,i]+=eval(Str("U",i,"_",i));sums++;

Wext[2,2] =eval(Str("V",i,"+V",j));sums++;

for(k=i+1,j-1,

Wext[1,1]=Wext[j,i]+eval(Str("U",k,"_",j))+Wext[k,i];sums+=2;

Wext[i,j]=Wext[2,2]+eval(Str("V",k));sums++;

Wint[j][i,k]=Wext[1,1]*Wext[i,j]*Mod(1,2);muls++;

);

Wext[i,j] =Wext[2,2]*Wext[j,i]*Mod(1,2);muls++;

if(j>t,

Wext[2,2]+=Wext[j,j];

Wext[1,1] =Wext[j,i]+x*eval(Str("U",i,"_",j))+Wext[1,2];

sums+=3;addlsh+=1;

,\\else

Wext[2,2]+=x*eval(Str("V",j));

Wext[1,1] =Wext[j,i]+x*eval(Str("U",i,"_",j,"+x*U",j,"_",j));

sums+=3;addlsh+=3;

);

Wext[j,i] =Wext[2,2]*Wext[1,1]*Mod(1,2);muls++;

);

Wext[j,j] =eval(Str("U",j,"_",j,"*V",j))*Mod(1,2);muls++;

);

47

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

print("Evaluation required: ",sums," sums, (",shifts,"+",addlsh,") shifts, ",

muls, " muls.");

print("Should be: ", binomial(n,2)*6+binomial(n,3)*3, " sums, (",2*(n-t),"+",

binomial(n,2)+2*binomial(t,2), ") shifts, ",binomial(n+2,3)," muls.");

print("Naive: ",binomial(n,2)*9+binomial(n,3)*7, " sums, ", 3*binomial(n,2), " shifts.");

\\ Interpolation: 6 add, 2 shift, 1 div (2n)

sums=0;shifts=0;addlsh=0;muls=0;Sdivs=0;Smuls=0;

for(i=1, n-2, for(j=i+1, n-1, for(k=j+1, n, Wint[k][i,j] -= Wext[i,j];sums++)));

for(i=1, n-1, for(j=i+1, n, Wext[j,i] =(Wext[j,i] - Wext[i,j])/(x);sums++;shifts++;

Wext[i,j] = Wext[i,j] - Wext[i,i];sums++;));

for(i=1, n-2, for(j=i+1, n-1, for(k=j+1, n, Wint[k][i,j] -= Wext[j,k];sums++)));

for(j=2, n, if(j>t,T=Wext[j,j]*(x); shifts++); for(i=1, j-1,

Wext[j,i] =(Wext[j,i] + Wext[i,j])/(x+1);sums++;Sdivs++;

Wext[j,i] = Wext[j,i] - if(j>t,T,addlsh++;Wext[j,j]*(x));sums++;

Wext[i,j] = Wext[i,j] - Wext[j,j];sums++;

));

for(i=1, n-2, for(j=i+1, n-1, for(k=j+1, n, Wint[k][i,j] -= Wext[i,k];sums++)));

for(i=1, n-1, for(j=i+1, n, Wext[i,j] = Wext[i,j] - Wext[j,i];sums++));

print("Interpolation required: ", sums, " sums, (", shifts,"+",addlsh,

") shifts+1_2, ", Sdivs, " Sdivs.");

print("Should be: ", binomial(n,2)*6+binomial(n,3)*3, " sums, (",

binomial(n,2)+n-t,"+",binomial(t,2),") shifts+1_2, ", binomial(n,2), " Sdivs.");

\\ Recomposition

W = sum(i=1,n, sum(j=i+1,n, sum(k=j+1,n , Wint[k][i,j]*eval(Str("x",i,"*x",j,"*x",k)))));

W+= sum(i=1,n, sum(j= 1,n, Wext[i,j]*eval(Str("x",i,"^2*x",j))));

W == U*V

}

Appendix C. Quadridimensional Toom-3 in characteristic
different from 2 and 3

\\ (C) 2011 Marco Bodrato and Alberto Zanoni

\\ This code is released under GPL 3.0 licence.

QuadridimensionalToom3() =

{

local(a,b, V,Sp,Sm,S2, Fp,Fm1,Fm2, T, i,j,h,k, add = 0, shifts = 0, div = 0, add2 = 0);

\\\\\\\\\\\\ Evaluation \\\\\\\\\\\\\

a = matrix(5, 5, i,j, if (i < j, eval(Str("a", i,j)),

if (i==j, eval(Str("a", i)), eval(Str("a", j,i)))));

b = matrix(5, 5, i,j, if (i < j, eval(Str("b", i,j)),

if (i==j, eval(Str("b", i)), eval(Str("b", j,i)))));

V = vector(5,i,a[i,i]*b[i,i]);

Sp = matrix(5, 5, i, j, (a[i,i]+a[j,j]+a[i,j])*(b[i,i]+b[j,j]+b[i,j]));

48

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

Sm = matrix(5, 5, i, j, (a[i,i]+a[j,j]-a[i,j])*(b[i,i]+b[j,j]-b[i,j]));

S2 = matrix(5, 5);

for (i = 1, 5, for (d = 1,2,

j = i+d - if ((i+d) > 5, 5, 0); \\ Sides: distance 1

S2[i,j] = (4*a[i,i]+a[j,j]+2*a[i,j])*(4*b[i,i]+b[j,j]+2*b[i,j]);));

Fp = vector(5, i, matrix(5,5,j,h,(a[i,i]+a[j,j]+a[h,h]+a[i,j]+a[i,h]+a[j,h])*

(b[i,i]+b[j,j]+b[h,h]+b[i,j]+b[i,h]+b[j,h])));

Fm1 = vector(5, i, matrix(5,5));

Fm2 = vector(5, i, matrix(5,5)); T = vector(5);

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0); \\ Distance 1

h = i+2 - if ((i+2) > 5, 5, 0); \\ Distance 2

\\ To put pi on side (+0,+2) the -1 goes in position +0 and +2 for green triangles:

\\ 3 possible cases (index rotation)

Fm1[i][j,h] = (a[i,i]+a[j,j]+a[h,h]-a[i,j]-a[i,h]+a[j,h])*

(b[i,i]+b[j,j]+b[h,h]-b[i,j]-b[i,h]+b[j,h]);

Fm2[i][j,h] = (a[i,i]+a[j,j]+a[h,h]+a[i,j]-a[i,h]-a[j,h])*

(b[i,i]+b[j,j]+b[h,h]+b[i,j]-b[i,h]-b[j,h]);

h = i+3 - if ((i+3) > 5, 5, 0); \\ Distance 3

\\ To put pi on side (+0,+1) the -1 goes in position +0 and +1 for red triangles:

\\ 3 possible cases (index rotation)

Fm1[i][j,h] = (a[i,i]+a[j,j]+a[h,h]-a[i,j]-a[i,h]+a[j,h])*

(b[i,i]+b[j,j]+b[h,h]-b[i,j]-b[i,h]+b[j,h]);

Fm2[i][j,h] = (a[i,i]+a[j,j]+a[h,h]-a[i,j]+a[i,h]-a[j,h])*

(b[i,i]+b[j,j]+b[h,h]-b[i,j]+b[i,h]-b[j,h]);

);

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0); \\ Distance 1

h = i+2 - if ((i+2) > 5, 5, 0); \\ Distance 2

k = i+3 - if ((i+3) > 5, 5, 0); \\ Distance 3

T[i] = (a[i,i]+a[j,j]+a[h,h]+a[k,k]+a[i,j]+a[i,h]+a[i,k]+a[j,h]+a[j,k]+a[h,k])*

(b[i,i]+b[j,j]+b[h,h]+b[k,k]+b[i,j]+b[i,h]+b[i,k]+b[j,h]+b[j,k]+b[h,k]);

);

\\\\\\\\\\\\ Interpolation \\\\\\\\\\\\\

\\ 1. Decoupling on faces.

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0); \\ Sides: distance 1

for (d = 2,3, h = i+d - if ((i+d) > 5, 5, 0); \\ Sides: distance 2 and 3

Fm1[i][j,h] = (Fp[i][j,h] - Fm1[i][j,h])/2; add++; shifts++;

Fm2[i][j,h] = (Fp[i][j,h] - Fm2[i][j,h])/2; add++; shifts++;));

\\ 2. Remove complete sides.

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0); \\ Distance 1

h = i+2 - if ((i+2) > 5, 5, 0); \\ Distance 2

Fp[i][j,h] -= Sp[j,h]; add++;);

\\ 3. Work on sides...

for(i=1,5, for (d = 1,2,

j = i+d - if ((i+d) > 5, 5, 0); \\ Sides: distance 1

S2[i,j] = (S2[i,j] - Sm[i,j])/3; Sm[i,j] = (Sp[i,j] - Sm[i,j])/2;

add++; div++; add++; shifts++;

Sp[i,j] -= V[j]; S2[i,j] = (S2[i,j] - Sp[i,j])/2 - 2*V[i];

add += 3; shifts++; add2++;));

49

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

\\ 4. Inner points of faces.

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0); \\ Distance 1

h = i+2 - if ((i+2) > 5, 5, 0); \\ Distance 2

Fm1[i][j,h] -= Sm[i,j]; Fm2[i][j,h] -= Sm[j,h]; add++; add++;

h = i+3 - if ((i+3) > 5, 5, 0); \\ Distance 3

Fm1[i][j,h] -= Sm[h,i]; Fm2[i][j,h] -= Sm[j,h]; Fp[i][j,h] -= Sp[h,i]; add += 3;);

\\ 5. Work on pyramids.

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0); \\ Distance 1

h = i+2 - if ((i+2) > 5, 5, 0); \\ Distance 2

k = i+3 - if ((i+3) > 5, 5, 0); \\ Distance 3

T[i] -= (Fp[h][k,i] + Fp[j][h,k]); add++; add++;);

\\ 6. Remove part of sides.

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0); \\ Distance 1

h = i+2 - if ((i+2) > 5, 5, 0); \\ Distance 2

Fp[i][j,h] -= Sp[i,j]; add++;

h = i+3 - if ((i+3) > 5, 5, 0); \\ Distance 3

Fp[i][j,h] -= Sp[j,h]; add++;);

\\ 7. End working on pyramids.

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0); \\ Distance 1

h = i+2 - if ((i+2) > 5, 5, 0); \\ Distance 2

k = i+3 - if ((i+3) > 5, 5, 0); \\ Distance 3

T[i] -= (Fp[i][j,h] + Fp[i][j,k]); add++; add++;);

\\ 8. Continue working on sides.

for(i=1,5, for (d = 1,2, j = i+d - if ((i+d) > 5, 5, 0);

Sp[i,j] -= Sm[i,j]; add++;));

\\ 9. Continue working on faces.

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0); \\ Distance 1

h = i+3 - if ((i+3) > 5, 5, 0); \\ Distance 3

Fp[i][j,h] -= Sp[i,j]; add++;);

\\ 10. Continue sides.

for(i=1,5, for (d = 1,2, j = i+d - if ((i+d) > 5, 5, 0);

Sp[i,j] -= V[i]; add++;));

\\ 11. End faces.

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0); \\ Distance 1

h = i+2 - if ((i+2) > 5, 5, 0); \\ Distance 3

Fp[i][j,h] -= Sp[i,h]; add++;);

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0); \\ Sides: distance 1

for (d = 2,3, h = i+d - if ((i+d) > 5, 5, 0); \\ Sides: distance 2 and 3

Fp [i][j,h] -= Fm1[i][j,h];

Fm2[i][j,h] -= Fp [i][j,h];

Fm1[i][j,h] -= Fm2[i][j,h];

Fm2[i][j,h] -= if (d == 2, Sm[i,h], Sm[i,j]); add += 4;));

\\ 12. End sides.

50

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

for(i=1,5, for (d = 1,2, j = i+d - if ((i+d) > 5, 5, 0);

Sm[i,j] -= S2[i,j]; add++;));

print("--------------- Final situation -----------------------------");

print("Vertices = ", V);

for(i=1,5, for (d = 1,2,

j = i+d - if ((i+d) > 5, 5, 0);

print("Side(+)[", i, ",", j, "] = ",Sp[i,j], " Side(-)[", i, ",", j, "] = ",

Sm[i,j]," Side(2)[", i, ",", j, "] = ",S2[i,j])));

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0);

for(d = 2,3, h = i+d - if ((i+d) > 5, 5, 0);

print("F+ [", i, ",", j, ",", h, "] = ",Fp[i][j,h]);));

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0);

for(d = 2,3, h = i+d - if ((i+d) > 5, 5, 0);

print("F-1 [", i, ",", j, ",", h, "] = ",Fm1[i][j,h]);));

for(i=1,5, j = i+1 - if ((i+1) > 5, 5, 0);

for(d = 2,3, h = i+d - if ((i+d) > 5, 5, 0);

print("F-2 [", i, ",", j, ",", h, "] = ",Fm2[i][j,h]);));

for(i=1,5, print("T[",i,"] = ", T[i]));

print("Expected:");

print("add = ", 10*8+10*11+5*4," shifts = ",10*2+10*2," div = ",10, " _1_2 = ",10);

print("add = ", add, " shifts = ",shifts," div = ",div, " _1_2 = ",add2);

}

Appendix D. Multivariate Toom-3 in characteristic different
from 2 and 3

The function multivariateToom3 implements multivariate Toom-3 method
when ma is not available, while multivariateToom3 bis when it is. The
(common) interpolation section is detailed only for the first function.

multivariateToom3(n=5, t=0) =

{

local(a,b, Sp,Sm,S2, Fp,Fm1,Fm2, T, i,j,h,k, Eadd = 0, Eshifts = 0,

Eadd2=0, add = 0, shifts = 0, div = 0, add2 = 0);

if(t<1|t>n,t=n);

\\\\\\\\\\\\ Evaluation \\\\\\\\\\\\\

a = matrix(n, n, i,j, if (i < j, eval(Str("a", i,j)),eval(Str("a", i))));

b = matrix(n, n, i,j, if (i < j, eval(Str("b", i,j)),eval(Str("b", i))));

Sp = matrix(n, n); Fp = vector(n, i, matrix(n,n));

Sm = matrix(n, n); Fm1 = vector(n, i, matrix(n,n));

S2 = matrix(n, n); Fm2 = vector(n, i, matrix(n,n));

T = matrix(n,n,i,j,matrix(n,n));

\\ Evaluate first partial sides.

for(i=1, n-1, for(j = i+1, n,

51

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

Sp[i,j] = a[i,i] + a[i,j]; Sm[i,j] = b[i,i] + b[i,j]; Eadd += 2;

\\ Evaluate then some useful partial results: a[j,j] + a[j,h] + a[j,k]

\\ and similarly for b. Put them in the free slots Fm1, Fm2.

for(h = j+1, n,

Fm2[i][j,h] = Sp[i,j] + a[i,h]; Fm1[i][j,h] = Sm[i,j] + b[i,h]; Eadd += 2;)));

\\ Start evaluation.

forstep(k=n, 2, -1, if (k>t,T1 = a[k,k]<<2; T2 = b[k,k]<<2; Eshifts += 2;);

forstep(h = k-1, 1, -1,

T3 = Sp[h,k] + a[h,k]; T4 = Sm[h,k] + b[h,k]; Eadd += 2;

Fp[1][n,n] = Sp[h,k] + a[k,k]; S2[h,k] = Fp[1][n,n] - a[h,k]<<1; \\ Some sides in 1

Fp[n][n,n] = Sm[h,k] + b[k,k]; Sp[h,k] = Fp[n][n,n] - b[h,k]<<1; \\ and in -1

Eadd += 4; Eadd2 += 2;

forstep(j = h-1, 1, -1, \\ Faces in (+1)

Fm2[j][h,k] += Fp[1][n,n] ; Fm1[j][h,k] += Fp[n][n,n]; Eadd += 2;

forstep(i = j-1, 1, -1, \\ Pyramids.

Sm[h,k] = Fm2[j][h,k] + Fm2[i][j,k] + a[i,h];

Fp[j][h,k] = Fm1[j][h,k] + Fm1[i][j,k] + b[i,h];

T[i,j][h,k] = Sm[h,k]*Fp[j][h,k]; Eadd += 4;);

Fp[j][h,k] = Fm2[j][h,k]*Fm1[j][h,k];

\\ Evaluate faces with -1 in two different positions.

Sm[h,k] = S2[h,k] + Sp[j,h] - a[j,k]; Fm1[j][h,k] = Sp[h,k]+Sm[j,h]-b[j,k];

Fm2[j][h,k] = Sm[h,k]*Fm1[j][h,k];

if (j > 1,

Sm[h,k] = S2[h,k] + Sp[j,k] - a[j,h]; S2[1,2] = Sp[h,k] + Sm[j,k] - b[j,h];

Fm1[j][h,k] = Sm[h,k]*S2[1,2];

, \\ j == 1

Sm[h,k] = S2[h,k]*Sp[h,k]; \\ Sides in -1.

S2[h,k] += Sp[1,k] - a[1,h]; Sp[h,k] += Sm[1,k] - b[1,h];

Fm1[1][h,k] = Sp[h,k]*S2[h,k];); Eadd += 8;

);

if (h == 1, Sm[1,k] = S2[1,k]*Sp[1,k]);

Sp[h,k] = Fp[1][n,n]*Fp[n][n,n]; \\ Sides in 1.

if (k>t,

Fp[1][n,n] = T1 + T3; Fp[n][n,n] = T2 + T4; Eadd += 2;,

Fp[1][n,n] = T3 + a[k,k]<<2; Fp[n][n,n] = T4 + b[k,k]<<2; Eadd2 += 2; Eadd += 2;

);

S2[h,k] = Fp[1][n,n]*Fp[n][n,n]; \\ Sides in 2.

));

for(i=1, n, Fp[i][n,n] = a[i,i]*b[i,i]); \\ Finally, the vertices.

\\\\\\\\\\\\ Interpolation \\\\\\\\\\\\\

\\ 1. Work on pyramids. (remove "12")

for(i=1,n-3, for(j = i+1, n-2, for(h = j+1,n-1, for(k = h+1, n,

T[i,j][h,k] -= Fp[i][j,h]; add++;))));

\\ 2. Decoupling on faces.

for(i=1,n-2, for(j = i+1, n-1, for(h = j+1, n,

Fm1[i][j,h] = (Fp[i][j,h] - Fm1[i][j,h])>>1; add++; shifts++;

Fm2[i][j,h] = (Fp[i][j,h] - Fm2[i][j,h])>>1; add++; shifts++;)));

\\ 3. Remove complete sides.

for(i=1,n-2, for(j = i+1, n-1, for(h = j+1,n, Fp[i][j,h] -= Sp[i,j]; add++;)));

52

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

\\ 4. Work on pyramids. (remove "7")

for(i=1,n-3, for(j = i+1, n-2, for(h = j+1,n-1, for(k = h+1, n,

T[i,j][h,k] -= Fp[i][j,k]; add++;))));

\\ 5. Work on sides...

for(j=2,n, if(j>t, shifts++; T0=Fp[j][n,n]<<1); for(i = 1, j-1,

S2[i,j] = (S2[i,j] - Sm[i,j])/3; Sm[i,j] = (Sp[i,j] - Sm[i,j])>>1;

add++; div++; add++; shifts++;

Sp[i,j] -= Fp[i][n,n];

S2[i,j] = (S2[i,j] - Sp[i,j])>>1 - if(j>t,T0, add2++; Fp[j][n,n]<<1);

add += 3; shifts++;));

\\ 6. Inner points of faces.

for(i=1,n-2, for(j=i+1, n-1, for(h=j+1, n,

Fm1[i][j,h] -= Sm[i,j]; Fm2[i][j,h] -= Sm[i,h];

Fp[i][j,h] -= Sp[i,h]; add += 3;)));

\\ 7. Work on sides (obtain "3")

for(i=1,n, for(j = i+1,n, Sp[i,j] -= Fp[j][n,n]; add++;));

\\ 8. Work on pyramids.

for(i=1,n-3, for(j = i+1, n-2, for(h = j+1,n-1, for(k = h+1, n,

T[i,j][h,k] -= Fp[i][h,k]; add++;))));

\\ 9. Work on faces (obtain "0")

for(i=2,n-2, for(j = i+1, n-1, for(h = j+1, n, Fp[i][j,h] -= Sp[j,h]; add++;)));

\\ 10. End working on pyramids.

for(i=1,n-3, for(j = i+1, n-2, for(h = j+1,n-1, for(k = h+1, n,

T[i,j][h,k] -= Fp[j][h,k]; add++;))));

\\ 11. Continue working on sides.

for(i=1,n-1, for(j = i+1, n, Sp[i,j] -= Sm[i,j]; add++;));

\\ 12. Continue working on faces.

for(j = 2, n-1, for(h = j+1, n, Fp[1][j,h] -= Sp[j,h]; add++;));

\\ 13. End faces. \\ Faces without pi

for(i=2,n-2, for(j = i+1, n-1, for(h = j+1, n,

Fm1[i][j,h] -= Sm[j,h]; Fm2[i][j,h] -= Sm[j,h];

Fp [i][j,h] -= Fm1[i][j,h];

Fm2[i][j,h] -= Fp [i][j,h];

Fm1[i][j,h] -= Fm2[i][j,h]; add += 5;)));

for(j = 2, n-1, for(h = j+1 , n, \\ "Spurious faces" with pi

Fp [1][j,h] -= Fm1[1][j,h];

Fm2[1][j,h] -= Fp [1][j,h];

Fm1[1][j,h] -= Fm2[1][j,h];

Fm2[1][j,h] -= Sm[j,h]; add += 4;));

\\ 14. End sides.

for(i=1,n-1, for(j = i+1, n, Sm[i,j] -= S2[i,j]; add++;));

print("--------------- Final situation --------------------------------------");

\\ \\ Visualise sides

53

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

\\ for(i=1,n-1, for(j = i+1, n,

\\ print("Side(+)[", i, ",", j, "] = ",Sp[i,j], "\tSide(-)[", i, ",", j, "] = ",Sm[i,j],

\\ " Side(2)[", i, ",", j, "] = ",S2[i,j])));

\\ \\ Visualise faces

\\ for(i=1,n-2, for(j = i+1, n, for(h = j+1, n,

\\ print("F+ [", i, ",", j, ",", h, "] = ",Fp[i][j,h]);)));

\\

\\ for(i=1,n-2, for(j = i+1, n, for(h = j+1, n,

\\ print("F-1 [", i, ",", j, ",", h, "] = ",Fm1[i][j,h],

\\ "\t\tF-2 [", i, ",", j, ",", h, "] = ",Fm2[i][j,h]);)));

\\ \\ Visualise tetrahedra

\\ for(i=1,n-3, for(j = i+1, n-2, for(h = j+1,n-1, for(k = h+1, n,

\\ print("T[",i,",",j,",",h,",",k,"] = ", T[i,j][h,k])))));

print("Interpolation:\n add = ", binomial(N,2)*8+binomial(N,3)*11+binomial(N,4)*4

+ binomial(N-1,3),

",\n shifts = ", binomial(N,2)*2+binomial(N,3)*2+N-S,

",\n _1_2 = ", binomial(S,2),

",\n div = ", binomial(N,2),

";\nEvaluation:\n add = ",2*(5*binomial(N,2) + \\ Ev.Sides

6*binomial(N,3) + \\ Ev.Faces

2*binomial(N,4)), \\ Ev.Pyramids

",\n shifts = ", 2*(N-S),

",\n _1_2 = ",2*(binomial(N,2)+binomial(S,2))," with 1 <= S <= N.");

print("Expected: add = ", binomial(n,2)*8+binomial(n,3)*11+binomial(n,4)*4

+ binomial(n-1,3),

", shifts = ", binomial(n,2)*2+binomial(n,3)*2+n-t,

", _1_2 = " , binomial(t,2),

", div = " , binomial(n,2),

"; Eval: add = ",2*(5*binomial(n,2) + \\ Ev.Sides

6*binomial(n,3) + \\ Ev.Faces

2*binomial(n,4)), \\ Ev.Pyramids

", shifts = ", 2*(n-t), ", _1_2 = ",2*(binomial(n,2)+binomial(t,2)));

print("Obtained: add = ", add, ", shifts = ",shifts,", _1_2 = ",add2,", div = ",

div,"; Eval: add = ",Eadd,", shifts = ",Eshifts,", _1_2 = ",Eadd2);

\\\

print("Check ",binomial(n,2), " sides"); str1 = "";str2 = "";str3 = "";

for(i=1,n-1, for(j = i+1, n,

str1 = Strexpand(str1,

if(Sp[i,j]==a[i,i]*b[j,j] + a[i,j]*b[i,j] + a[j,j]*b[i,i]," 1"," 0"));

str2 = Strexpand(str2, if(Sm[i,j]==a[i,i]*b[i,j] + a[i,j]*b[i,i]," 1"," 0"));

str3 = Strexpand(str3, if(S2[i,j]==a[j,j]*b[i,j] + a[i,j]*b[j,j]," 1"," 0"))));

print(str1); print(str2); print(str3);

print("Check ",binomial(n,3), " faces"); str1 = "";str2 = "";str3 = "";

for(i=1,n-2, for(j = i+1, n, for(h = j+1, n,

str1 = Strexpand(str1, if(Fp[i][j,h] == a[j,j]*b[i,h] + a[i,j]*b[j,h]

+ a[j,h]*b[i,j] + a[i,h]*b[j,j]," 1"," 0"));

str2 = Strexpand(str2, if(Fm1[i][j,h]== a[h,h]*b[i,j] + a[i,h]*b[j,h]

+ a[j,h]*b[i,h] + a[i,j]*b[h,h]," 1"," 0"));

str3 = Strexpand(str3, if(Fm2[i][j,h]== a[i,i]*b[j,h] + a[i,j]*b[i,h]

+ a[i,h]*b[i,j] + a[j,h]*b[i,i]," 1"," 0"));)));

print(str1); print(str2); print(str3);

print("Check ",binomial(n,4), " pyramids"); str1 = "";

54

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

for(i=1,n-3, for(j = i+1, n-2, for(h = j+1,n-1, for(k = h+1, n,

str1 = Strexpand(str1, if(T[i,j][h,k] == a[i,j]*b[h,k] + a[i,h]*b[j,k] + a[i,k]*b[j,h]+

a[j,h]*b[i,k] + a[j,k]*b[i,h] + a[h,k]*b[i,j],

" 1"," 0"))))));

print(str1);}

———————————————

\\ (C) 2011 Marco Bodrato and Alberto Zanoni

\\ This code is released under GPL 3.0 licence.

multivariateToom3_bis(n=5, t=0) =

{

local(a,b, Sp,Sm,S2, Fp,Fm1,Fm2, T, i,j,h,k, T1=0, T2=0, T3=0, T4=0, T5=0, T6=0,

Eadd=0, Eshifts=0, Eadd2=0, Eadd3=0, add = 0, shifts = 0, div = 0, add2 = 0);

if(t<1|t>n,t=n);

\\\\\\\\\\\\ Evaluation \\\\\\\\\\\\\

a = matrix(n, n, i,j, if (i < j, eval(Str("a", i,j)),eval(Str("a", i))));

b = matrix(n, n, i,j, if (i < j, eval(Str("b", i,j)),eval(Str("b", i))));

Sp = matrix(n,n); Fp = vector(n, i, matrix(n,n));

Sm = matrix(n,n); Fm1 = vector(n, i, matrix(n,n));

S2 = matrix(n,n); Fm2 = vector(n, i, matrix(n,n)); T = matrix(n,n,i,j,matrix(n,n));

\\ First evaluate partial sides...

for(i=1, n-1, for(j = i+1, n, Eadd += 2;

Sp[i,j] = a[i,j] + a[j,j]; Sm[i,j] = b[i,j] + b[j,j];));

\\ ...then some useful partial results: a[h,h] + a[i,h] + a[j,h], and similarly for b.

for(i=1, n-2, for(j = i+1, n-2, for(h = j+2, n, Eadd += 2;

T[i,j][h-1,h] = Sp[i,h] + a[j,h]; Fm1[i][j,h] = Sm[i,h] + b[j,h];)));

\\ Start the true evaluation.

for(i=1, n-1,

\\ Prepare temporaries for all sides starting from vertex i.

for(j = i+1, n-1, Eadd += 4; Eadd2 += 2;

Fp[i][j,n] = Sp[i,j] + a[i,i]; S2[i,j] = Fp[i][j,n] - a[i,j]<<1; \\ Sides in 1

Fm2[i][j,n] = Sm[i,j] + b[i,i]; Fp[j][n,n] = Fm2[i][j,n] - b[i,j]<<1; \\ Sides in -1

);

Eadd += 4; Eadd2 += 2;\\ j == n

T1 = Sp[i,n] + a[i,i]; S2[i,n] = T1 - a[i,n]<<1; \\ Sides in 1

T2 = Sm[i,n] + b[i,i]; Fp[n][n,n] = T2 - b[i,n]<<1; \\ Sides in -1

\\ End of temporaries preparation.

for(j = i+1, n, Eadd += 2; Eadd3 += 2;

T3 = S2[i,j] + 3*Sp[i,j]; T4 = Fp[j][n,n] + 3*Sm[i,j]; \\ (1 2 4) for a and b

for(h = j+1, n, \\ Faces

if (h == j+1, T5 = if(j<n,Fp[i][j,n],T1) + Sp[i,h] + a[j,h];

T6 = if(j<n,Fm2[i][j,n],T2) + Sm[i,h] + b[j,h]; Eadd += 4;

,

Fp[1][n,n] = T5 + T[i,j][h-1,h] + a[h-1,h];

S2[n-1,n] = T6 + Fm1[i][j,h] + b[h-1,h];

T5 = if(j<n,Fp[i][j,n],T1) + T[i,j][h-1,h];

T[i,j][h-1,h] = Fp[1][n,n]*S2[n-1,n];

55

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

T6 = if(j<n,Fm2[i][j,n],T2) + Fm1[i][j,h]; Eadd += 6;

);

for(k = h+2, n, \\ Pyramids.

Fm2[i][j,h] = T5 + T[i,j][k-1,k] + a[h,k]; Fp[i][j,h] = T6 + Fm1[i][j,k] + b[h,k];

T[i,j][h,k] = Fm2[i][j,h]*Fp[i][j,h]; Eadd += 4;);

\\ Evaluate faces.

Fp[1][n,n] = Sp[i,j] + S2[i,h] - a[j,h];

if (h == n, Sp[i,j] = if(j<n,Fp[i][j,n]*Fm2[i][j,n],T1*T2)); \\ Sides in 1.

Fp[i][j,h] = T5*T6; \\ Faces with all 1

Fm1[i][j,h] = Sm[i,j] + Fp[h][n,n] - b[j,h]; Eadd += 4;

Fm2[i][j,h] = Fp[1][n,n]*Fm1[i][j,h]; \\ Faces with 1 on (i,j)

Fp[1][n,n] = S2[i,j] + Sp[i,h] - a[j,h];

S2[n-1,n] = Fp[j][n,n] + Sm[i,h] - b[j,h]; Eadd += 4;

Fm1[i][j,h] = Fp[1][n,n]*S2[n-1,n]; \\ Faces with 1 on (i,h)

);

if (j == n, Sp[i,n] = T1*T2;); \\ Some sides in 1.

Sm[i,j] = S2[i,j]*Fp[j][n,n]; \\ Sides in -1.

S2[i,j] = T3*T4; \\ Sides in 2.

));

for(i=1, n, Fp[i][n,n] = a[i,i]*b[i,i]); \\ Finally, the vertices.

\\\\\\\\\\\\ Interpolation \\\\\\\\\\\\\

\\ ***** As in the multivariateToom3 function *****

print("--------------- Final situation --------------------------------------");

print("Interpolation:\n add = ", binomial(N,2)*8+binomial(N,3)*11

+ binomial(N,4)*4+binomial(N-1,3),

",\n shifts = ", binomial(N,2)*2+binomial(N,3)*2+N-S,

",\n _1_2 = ", binomial(S,2),

",\n div = ", binomial(N,2),

";\nEvaluation:\n add = ",2*(4*binomial(N,2) + \\ Ev. sides

6*binomial(N,3) + \\ Ev. faces

2*binomial(N,4)), \\ Ev. pyramids

",\n shifts = ", 0, ",\n _1_2 = ",2*(binomial(N,2)),

",\n _1_3 = ",2*(binomial(N,2)));

print("Expected: add = ", binomial(n,2)*8+binomial(n,3)*11+binomial(n,4)*4

+ binomial(n-1,3),

", shifts = ", binomial(n,2)*2+binomial(n,3)*2+n-t,

", _1_2 = " , binomial(t,2),

", div = " , binomial(n,2),

"; Eval: add = ",2*(4*binomial(n,2) + \\ Ev. sides

6*binomial(n,3) + \\ Ev. faces

2*binomial(n,4)), \\ Ev. pyramids

", shifts = ", 0, ", _1_2 = ",2*binomial(n,2),", _1_3 = ",2*binomial(n,2));

print("Obtained: add = ", add, ", shifts = ",shifts,", _1_2 = ",add2,", div = ",div,

"; Eval: add = ",Eadd,", shifts = ",Eshifts,", _1_2 = ",Eadd2, ", _1_3 = ",Eadd3);

\\\

print("Check ",binomial(n,2), " sides"); str1 = "";str2 = "";str3 = "";

for(i=1,n-1, for(j = i+1, n,

str1 = Strexpand(str1,

if(Sp[i,j] == a[i,i]*b[j,j] + a[i,j]*b[i,j] + a[j,j]*b[i,i]," 1"," 0"));

str2 = Strexpand(str2, if(Sm[i,j] == a[i,i]*b[i,j] + a[i,j]*b[i,i]," 1"," 0"));

56

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

str3 = Strexpand(str3, if(S2[i,j] == a[j,j]*b[i,j] + a[i,j]*b[j,j]," 1"," 0"));

));

print(str1); print(str2); print(str3);

print("Check ",binomial(n,3), " faces"); str1 = "";str2 = "";str3 = "";

for(i=1,n-2, for(j = i+1, n, for(h = j+1, n,

str1 = Strexpand(str1, if(Fp[i][j,h] == a[j,j]*b[i,h] + a[i,j]*b[j,h]

+ a[j,h]*b[i,j] + a[i,h]*b[j,j]," 1"," 0"));

str2 = Strexpand(str2, if(Fm1[i][j,h]== a[h,h]*b[i,j] + a[i,h]*b[j,h]

+ a[j,h]*b[i,h] + a[i,j]*b[h,h]," 1"," 0"));

str3 = Strexpand(str3, if(Fm2[i][j,h]== a[i,i]*b[j,h] + a[i,j]*b[i,h]

+ a[i,h]*b[i,j] + a[j,h]*b[i,i]," 1"," 0"));

)));

print(str1); print(str2); print(str3);

print("Check ",binomial(n,4), " pyramids"); str1 = "";

for(i=1,n-3, for(j = i+1, n-2, for(h = j+1,n-1, for(k = h+1, n,

str1 = Strexpand(str1, if(T[i,j][h,k] == a[i,j]*b[h,k] + a[i,h]*b[j,k] + a[i,k]*b[j,h]+

a[j,h]*b[i,k] + a[j,k]*b[i,h] + a[h,k]*b[i,j],

" 1"," 0"))))));

print(str1);

}

Appendix E. Unbalanced multivariate Toom-3 in characteristic
different from 2 and 3

\\ (C) 2011 Marco Bodrato and Alberto Zanoni

\\ This code is released under GPL 3.0 licence.

multivariateToom3_unbalanced(n=5, t=0) =

{

local(a,b, Sp,Sm,S2, Fp,Fm1,Fm2, T, i,j,h,k, Eadd=0, Eshifts=0,

T1=0,T2=0,Eadd2=0, Eadd3=0, add=0, shifts=0, div=0, add2=0);

if(t<1|t>n,t=n);

\\\\\\\\\\\\ Evaluation \\\\\\\\\\\\\

a = matrix(n,n, i,j, if(i == j,eval(Str("a", i)), eval(Str("a", i,j))));

aa = vector(n, i, matrix(n,n,j,h,if(i<j && j<h, eval(Str("a", i,j,h)))));

b = vector(n, i, eval(Str("b", i)));

Sp = matrix(n, n); Fp = vector(n, i, matrix(n,n));

Sm = matrix(n, n); Fm1 = vector(n, i, matrix(n,n));

S2 = matrix(n, n); Fm2 = vector(n, i, matrix(n,n)); T = matrix(n,n,i,j,matrix(n,n));

\\ Evaluate first partial sides.

for(i=1, n-1, for(j = i+1, n, Sp[i,j] = a[i,j] + a[j,i]; Sm[i,j] = Sp[i,j] + a[i,i];

S2[i,j] = Sm[i,j] - a[i,j]<<1; Eadd += 3; Eadd2 += 1));

\\ Evaluate some useful partial results for faces and pyramids

\\ in the free slots Fm1, Fm2.

for(i=1, n-1, for(j = i+1, n, for(h = j+1, n,

Fm1[i][j,h] = Sp[i,j] + aa[i][j,h];

Fm2[i][j,h] = Fm1[i][j,h] + Sm[i,h]; Eadd += 2;)));

\\ Start evaluation.

forstep(k=n, 2, -1, if (k>t,T1 = a[k,k]<<3; Eshifts += 1;);

57

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

forstep(h = k-1, 1, -1,

Fp[1][n,n] = Sm[h,k] + a[k,k]; T2 = S2[h,k] - a[k,k]; Eadd += 2;

S2[h,k] += 3*Sp[h,k]; Eadd += 1; Eadd3 += 1;

Fp[n][n,n] = b[h] + b[k]; Sp[h,k] = b[h] - b[k]; Eadd += 2;

forstep(j = h-1, 1, -1, \\ Faces in (+1)

Fm1[j][h,k] = Fm2[j][h,k] + Fp[1][n,n]; Fp[2][n,n] = Fp[n][n,n] + b[j];

Eadd += 2;

forstep(i = j-1, 1, -1, \\ Pyramids.

Sm[h,k] = Fm1[j][h,k] + Fm1[i][j,h] + Fm2[i][h,k] + aa[i][j,k];

Fp[j][h,k] = Fp[2][n,n] + b[i]; Eadd += 4;

T[i,j][h,k] = Sm[h,k]*Fp[j][h,k];

);

Fp[j][h,k] = Fm1[j][h,k]*Fp[2][n,n]; \\ Faces in 1.

\\ Evaluate faces with -1 in two different positions.

Fp[2][n,n] = T2+S2[j,k]+Sp[j,h]-aa[j][h,k]; Sm[h,k] = b[j] + Sp[h,k];

Fm2[j][h,k] = Fp[2][n,n]*Sm[h,k];

Fp[2][n,n] = Sp[j,k]-T2+S2[j,h]-aa[j][h,k]; Sm[h,k] = b[j] - Sp[h,k];

Fm1[j][h,k] = Fp[2][n,n]*Sm[h,k]; Eadd += 8;

);

Sm[h,k] = T2*Sp[h,k]; \\ Sides in -1.

Sp[h,k] = Fp[1][n,n]*Fp[n][n,n]; \\ Sides in 1.

Fp[n][n,n] += b[k]; Eadd += 1;

if (k>t, Fp[1][n,n] = S2[h,k] + T1;

, Fp[1][n,n] = S2[h,k] + a[k,k]<<3; Eadd2 += 1;); Eadd += 1;

S2[h,k] = Fp[1][n,n]*Fp[n][n,n]; \\ Sides in 2.

));

for(i=1, n, Fp[i][n,n] = a[i,i]*b[i]); \\ Finally, the vertices.

\\\\\\\\\\\\ Interpolation \\\\\\\\\\\\\

\\ ***** As in the multivariateToom3 function *****

print("--------------- Final situation --------------------------------------");

print("Interpolation:\n add = ", binomial(N,2)*8+binomial(N,3)*11+binomial(N,4)*4

+ binomial(N-1,3),

",\n shifts = ", binomial(N,2)*2+binomial(N,3)*2+N-S,

",\n _1_2 = ", binomial(S,2),

",\n div = ", binomial(N,2),

";\nEvaluation:\n add = ",2*(5*binomial(N,2) + \\ Ev.Sides

6*binomial(N,3) + \\ Ev.Faces

2*binomial(N,4)), \\ Ev.Pyramids

",\n shifts = ", (N-S),

",\n _1_2 = ",binomial(N,2)+binomial(S,2)," with 1 <= S <= N.",

",\n _1_3 = ",binomial(N,2));

print("Expected: add = ", binomial(n,2)*8+binomial(n,3)*11+binomial(n,4)*4

+ binomial(n-1,3),

", shifts = ", binomial(n,2)*2+binomial(n,3)*2+n-t,

", _1_2 = " , binomial(t,2),

", div = " , binomial(n,2),

"; Eval: add = ", 2*(5*binomial(n,2) + \\ Ev.Sides

6*binomial(n,3) + \\ Ev.Faces

2*binomial(n,4)), \\ Ev.Pyramids

", shifts = ", (n-t), ", _1_2 = ",binomial(n,2) + binomial(t,2)

", _1_3 = ",binomial(n,2));

58

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

print("Obtained: add = ", add, ", shifts = ",shifts,", _1_2 = ",add2,", div = ",div,

"; Eval: add = ",Eadd,", shifts = ",Eshifts,", _1_2 = ",Eadd2,", _1_3 = ",Eadd3);

\\\

print("Check ",binomial(n,2), " sides"); str1 = "";str2 = "";str3 = "";

for(i=1,n-1, for(j = i+1, n,

str1 = Strexpand(str1,

if(Sp[i,j]==a[i,j]*b[j] + a[j,i]*b[i]," 1",Str(" ",Sp[i,j])));

str2 = Strexpand(str2, if(Sm[i,j]==a[i,i]*b[j] + a[i,j]*b[i]," 1"," 0"));

str3 = Strexpand(str3, if(S2[i,j]==a[j,j]*b[i] + a[j,i]*b[j]," 1"," 0"))));

print(str1); print(str2); print(str3);

print("Check ",binomial(n,3), " faces"); str1 = "";str2 = "";str3 = "";

for(i=1,n-2, for(j = i+1, n, for(h = j+1, n,

str1 = Strexpand(str1, if(Fp[i][j,h] == a[j,i]*b[h] + a[j,h]*b[i]

+ aa[i][j,h]*b[j]," 1"," 0"));

str2 = Strexpand(str2, if(Fm1[i][j,h]== a[h,i]*b[j] + a[h,j]*b[i]

+ aa[i][j,h]*b[h]," 1"," 0"));

str3 = Strexpand(str3, if(Fm2[i][j,h]== a[i,j]*b[h] + a[i,h]*b[j]

+ aa[i][j,h]*b[i]," 1"," 0"));

)));

print(str1); print(str2); print(str3);

print("Check ",binomial(n,4), " pyramids"); str1 = "";

for(i=1,n-3, for(j = i+1, n-2, for(h = j+1,n-1, for(k = h+1, n,

str1 = Strexpand(str1, if(T[i,j][h,k] == aa[i][j,h]*b[k] + aa[i][j,k]*b[h]

+ aa[i][h,k]*b[j] + aa[j][h,k]*b[i],

" 1"," 0"))))));

print(str1);

Acknowledgement: The second author is partially funded by research project ”Robustezza e tolleranza

ai guasti in reti e grafi”, Sapienza University, Rome.

References

[1] Marco Bodrato, Towards optimal Toom-Cook multiplication for uni-
variate and multivariate polynomials in characteristic 2 and 0. In
Claude Carlet and Berk Sunar, editors, WAIFI’07 proceedings, vol-
ume 4547 of LNCS, pages 116–133. Springer, June 2007, URL:
http://bodrato.it/papers/#WAIFI2007.

[2] Marco Bodrato and Alberto Zanoni, Integer and polynomial multiplica-
tion: Towards optimal Toom-Cook matrices, In Christopher W. Brown,
editor, Proceedings of the ISSAC 2007 Conference, pages 17–24. ACM
press, July 2007, URL: http://bodrato.it/papers/#ISSAC2007.

[3] John F. Canny, Erich Kaltofen, and Lakshman Yagati, Solving systems
of nonlinear polynomial equations faster, In Proceedings of the ACM-

59

http://bodrato.it/papers/#WAIFI2007
http://bodrato.it/papers/#ISSAC2007

M. Bodrato, A. Zanoni - Karatsuba and Toom-Cook Methods...

SIGSAM 1989 international symposium on Symbolic and algebraic com-
putation, pages 121–128, New York, NY, USA, 1989. ACM Press.

[4] David G. Cantor and Erich Kaltofen, On fast multiplication of polynomials
over arbitrary algebras, Acta Informatica, 28(7):693–701, 1991.

[5] Stephen A. Cook, On the minimum computation time of functions,
PhD thesis, Harvard University, Cambridge, MA, USA 1966, URL:
http://cr.yp.to/bib/entries.html#1966/cook.

[6] Richard Fateman, Comparing the speed of programs for sparse polynomial
multiplication, SIGSAM Bulletin, 37(1):4–15, 2003.

[7] Richard Fateman, Can you save time in multiplying polynomials by en-
coding them as integers?, 2005. Draft.

[8] Anatolii Alexeevich Karatsuba and Yuri Ofman, Multiplication of multi-
digit numbers on automata, Soviet Physics Doklady, 7(7):595–596, 1963.

[9] Robert T. Moenck, Practical fast polynomial multiplication, In SYMSAC
’76: Proceedings of the third ACM symposium on Symbolic and algebraic
computation, pages 136–148, New York, NY, USA, 1976. ACM Press.

[10] Victor Y. Pan. Simple multivariate polynomial multiplication. Journal of
Symbolic Computation, 18(3):183–186, 1994.

[11] Andrei L. Toom, The complexity of a scheme of functional elements real-
izing the multiplication of integers, Soviet Mathematics Doklady, 3:714–
716, 1963. URL : http://www.de.ufpe.br/∼toom/articles/engmat/
MULT-E.PDF.

[12] André Weimerskirch and Christof Paar, Generalizations of the karat-
suba algorithm for polynomial multiplication, Technical report, Ruhr-
Universität-Bochum, 2003.

Marco Bodrato
mambaSoft, Via S. Marino 118 – 10137 Torino, Italy
email: bodrato@mail.dm.unipi.it
Alberto Zanoni
Dipartimento di Scienze Statistiche - Università “La Sapienza”
P.le Aldo Moro 5 – 00185 Roma, Italy
email: zanoni@volterra.uniroma2.it

60

