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THE LUBRICATION MODEL FOR THE FLOWS OF A THIN
FILMS WITH SMALL REYNOLDS NUMBER

Emilia Rodica Borşa and Adriana Cătaş

Abstract. In this paper we consider the flows of a thin films for which
the Reynolds number is small. This is true in many practical situations. We
deduced the lubrication model for slider bearings (a slider bearing consists of
a thin layer of viscous fluid confined between nearly parallel walls that are in
relative tangential motion). Another application of the lubrication model is
the flow of a thin film with a free boundary, with zero surface tension and
respectively flow driven by surface tension gradient (Marangoni flow).
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1.Introduction

We consider the flows for which the Reynolds number Re is small. This is
true in many practical situations (a pebble thrown in a pond, a bubble rising
in a glass of champagne, pouring golden syrup, the formation of a tear drop, a
layer of freshly applied paint, oil in an oil well, rock convecting in the earth’s
mantle) and we therefore consider when Re << 1.

The scaling used for the pressure in

d−→u
dt

= −∇p +
1

Re
∇2−→u , ∇ · −→u = 0; (1)

where −→u is the velocity and p is the pressure; which was chosen to make the
pressure and inertia terms balance, is not now appropriate and that we need
to rescale the dimensionless pressure with 1

Re
so that it balances the dominant

viscous terms. Replacing p by 1
Re

p the equations (1) become

Re

(
∂−→u
∂t

+ (−→u · ∇)−→u
)

= −∇p +∇2−→u , ∇ · −→u = 0. (2)
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2.Lubrication models for the flows of a thin films

We consider relatively low Reynolds number flow of a thin film. Such a film
may exist between two rigid walls, as in a bearing, or in a droplet spreading
under gravity on a rigid surface.

A sheet of paper can slide across a smooth floor shows that a thin layer
of fluid can support a relatively large normal load while offering very little
resistance to tangential motion.

More important mechanical examples occur in the lubrication of machinery
and this motivates the study of slider bearings. A slider bearing consists of
a thin layer of viscous fluid confined between nearly parallel walls that are in
relative tangential motion.

A two-dimensional bearing is shown in figure 1, in which the plane y = 0
moves with constant velocity u in the x-direction and the top of the bearing
is fixed [5].

Figure 1.

The variables are nondimensionalised with respect to u and the length L
of the bearing so that the position of the slider is given in the dimensionless
variables used in (2) by y = δH(x), where δL is typical gap-width of the
bearing. The basic assumption of lubrication theory is that δ << 1 so that
we can use the ideas of boundary layer theory to simplify the Navier-Stokes
equations. Starting from the steady form of (2) we rescale y, v by writing
y = δy′, v = δv′ to get

Re

(
u
∂u

∂x
+ v′

∂u

∂y′

)
= −∂p

∂x
+

∂2u

∂x2
+

1

δ2
· ∂2u

∂y′2
; (3)
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δ · Re

(
u
∂v′

∂x
+ v′

∂v′

∂y′

)
= −1

δ

∂p

∂y′
+ δ

∂2v′

∂x2
+

1

δ
· ∂2v′

∂y′2
; (4)

∂u

∂x
+

∂v′

∂y′
= 0 (5)

with boundary conditions

u = 1 v′ = 0, on y′ = 0

u = 0, v′ = 0, on y′ = H(x). (6)

The only way that (3) will not reduce to a triviality as δ → 0 is if the
pressure is rescaled with 1

δ2 . Thus we write p = 1
δ2 p

′ and, to lowest order the
equations are (on dropping dashes) [1].

0 = −∂p

∂x
+

∂2u

∂y2
; (7)

0 =
∂p

∂y
; (8)

∂u

∂x
+

∂v

∂y
= 0. (9)

These equations are the lubrication model and are based on the two as-
sumptions that δ << 1 and Re δ2 << 1. That it is not necessary for the
Reynolds number based on L to be small but only that the reduced Reynolds
number Reδ2 = uLδ2

ν
be small.

The stress Ti, exerted on the upper surface is σij · nj where the normal −→n
is given by (δH ′,−1)/(1 + δ2H ′2)1/2 and so, to lowest order in δ [6]

T =
µu

L

[
1

δ

(
−H ′p− ∂u

∂y

)
,

1

δ2
p

]
.

The normal stress exerted on the upper surface is therefore an order mag-
nitude grater than the tangential stress.

Another interesting application of the lubrication model is to the flow of a
thin film with a free boundary. Such a film might more under gravity as, for
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example, the spread of molten lava in a volcanic eruption or the motion of a
raindrop down a windowpane.

We begin by considering gravity-driven flow on a horizontal surface, as in
figure 2.

Figure 2.

Equation (8) with a gravity term added is

0 = −∂p

∂y
− δ3gL2

uν
. (10)

Since gravity is the driving force we define u as δ3gL2

ν
, where δ, L are the

initial depth and length of the film.
At the free surface we now have the kinematic boundary condition [6]

v =
∂H

∂t
+ u

δH

δx
, on y = H(x, t) (11)

and we need two more conditions since the position of this boundary is un-
known. These conditions come from the fact that if surface tension is neglected,
there is no stress applied on the free surface. This condition leads to

p = 0, on y = H(x, t); (12)

∂u

∂y
= 0, on y = H(x, t) (13)

and

u = 0, v = 0 on y = 0. (14)
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Now, solving (10) we get

p = −δ3gL2

uν
y + f1(x, t),

and using (12)

f1(x, t) =
δ3gL2

uν
H

and then

p = −y + H. (15)

Then, integrating (7) and using the stress-free boundary condition (13)
gives

∂u

∂y
=

∂p

∂x
· y + f2(x, t)

f2(x, t) = −∂p

∂x
·H

u =
∂p

∂x
· y2

2
− ∂p

∂x
·H · y + f3(x, t)

f3(x, t) = 0

and

u = −1

2
· ∂H

∂x
· y(2H − y). (16)

Finally, using (9) and the kinematic boundary condition (12) leads to

∂v

∂y
=

1

2
· ∂

∂x

(
∂H

∂x

)
· y(2H − y),

v =
1

2
· ∂

∂x

(
∂H

∂x

)
·
(

Hy2 − y3

3

)
+ f4(x, t)

but f4(x, t) = 0 and

v =
1

2
· ∂

∂x

(
∂H

∂x

)
·
(

Hy2 − y3

3

)
, (17)

and we obtain the equation
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∂H

∂t
=

∂

∂x

(
1

3
·H3 · ∂H

∂x

)
, (18)

This a parabolic nonlinear equation for H(x, t). It is possible to find solu-
tions of (18) which have ”compact support” (H ≡ 0 for all sufficiently large
values of | x |).

A solution of (18) which satisfies the condition (see [5])

H(x, 0) =


(
1− 9

10
x2

)1/3
, if | x |<

√
10
9

0, if | x |>
√

10
9

is

H(x, t) =

 (1 + t)−
1
5

(
1− 9

10
x2

(1+t)2/5

)1/3

, if | x |<
√

10
9
(1 + t)1/5

0, if | x |>
√

10
9
(1 + t)1/5

.

Sketch H as a function of x for several values of t and discuss the cir-
cumstances under which this type of solution might model the evolution of a
volcano.

A similar analysis is possible when the film lies on an inclined [3] or even
a vertical surface [4].

Another model is the flow driven by surface tension [2]. Surface tension
is a very important mechanism for small scale flows such a paint films, the
motion of a contact lens on the eyeball or various wetting or coating flows. In
two dimensions, the free boundary condition is [1]

σns = 0

σnn = T/R

where s and n are tangential and normal coordinates respectively, T is the
surface tension and R the radius of curvature of the surface of the film which
is approximately L/(δ · ∂2H

∂x2 ). Thus, with a suitable scaling for the pressure,
(12) is replaced by

p = −∂2H

∂x2
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and hence the thickness of a film on a flat base that is flowing under the influ-
ence of surface tension and viscosity satisfy a fourth-order evolution equation
(Landau-Levich equation) [see 6]

∂H

∂t
= − ∂

∂x

(
1

3
·H3 · ∂3H

∂x3

)
. (19)

This equation forms the bases of models for several of the situations men-
tioned above. For example, in modelling the tear film in the vicinity of a
circular contact lens moving in the x-direction on a flat eyeball, we could use
the two-dimensional form of (15) with the addition of a convective term ∂H

∂x
.

However, to model paint films or foams, it may be important to take sur-
face tension gradients into account, giving rise to a different extra term in
equation (15). Such gradients rise to what are called Marangoni flows [2] and
they have unexpectedly been found to dominate many zero-gravity fluid dy-
namics experiments carried out in space, in particular those concerned with
crystal growth. The ability of the surface tension to vary spatially in a crucial
ingredient for the fluid to be able to form a foam (pure water has for too high
a surface tension for foams to have any chance of surviving). It is also believed
to be the mechanism responsible for the ripples that are often observed on
solvent-based paint films.

3.Conclusions

We deduced the lubrication approximation because this model are used
for investigate the flow of a thin layer. The starting point for the modeling
flow of thin films are the Navier-Stokes equations. The lubrication or reduced
Reynolds number approximation to the Navier-Stokes equations has been used
to describe a multitude of situations: a slider bearing, a thin film flow with a
free boundary, a thin film flow driven by gravity on a horizontal or inclined
solid plane.
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