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ANALYZING COMPLEX NETWORKS
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Abstract. Our paper analyzes some new lines to advance on quickly
evolving concepts, as the so-called Symmetry and Entropy, on graphs and
networks in general. So, it will be very necessary to analyze the mutual rela-
tionship between some fuzzy measures, with their interesting applications; in
particular, when we works on Complex Networks and Systems.
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1.Introduction

We need to analyze here some very interrelated concepts about a graph
[7, 15], as may be the case of Symmetry / Asymmetry degrees [14], their
Entropies, Clustering Coefficient, etc. It may be applied when we study the
different types of Systems, and in particular, on Complex Networks [3, 5, 16,
17].

A system can be easily defined as a set of components functioning together
as a whole [4]. A systemic point of view allows us to isolate a part of the world,
and so, we can focus on those aspect that interact more closely than others.

The Network Science is a new scientific field that analyze the interconnec-
tion among diverse networks, as for instance, on Physics, Semantics, and so
on [1-5]. Among its developers, we may remember Duncan Watts, with the
Small-World Network, or Albert-László Barabasi and Réka Albert, who devel-
oped the Scale-Free Network. In his work, both authors have found that the
websites that constitutes the network of the WWW have very interesting
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mathematical properties. So, Network Theory is a very quickly expanding
area of Computer Sciences, and may be considered as a part of Graph Theory.

Complex Networks are everywhere. Many different phenomena in Nature
can be modeled as a network [3], such as

- Brain structures. The brain as a network of neurons (their nodes), con-
nected by synapses (their edges).

- Social interactions, or the World Wide Web (WWW).
All such systems can be represented in terms of nodes and edges.
- On the Internet, the nodes represent routers and the edges are represented

by wires, or physical connections between them.
- In transport networks, the nodes can represent the cities and the edges

the roads that connect them. These edges can have weights. Such networks
are not random.

2.Graph Theory

The topology of very different networks are very close [7, 15]. They are
rooted in the Power Law, with a scale free structure. How can very different
complex systems have the same underlying topological features? Searching
the hidden laws of these networks [11, 12, 16-18], modeling and characteriz-
ing them are the current lines of research. It has emerged as a primary tool
for detecting numerous hidden structures in different information networks,
including Internet graphs, social and biological networks, or any graph repre-
senting relations in massive data sets. The analysis of these structures is very
useful for introducing concepts such as Graph Entropy and Graph Symme-
try. We consider a functional on a graph, G = (V, E), with P a probability
distribution on its node set, V. The mathematical construct called as Graph
Entropy will be denoted by GE. Such a function is convex. It tends to plus
infinite on the boundary of the non-negative orthant on the Euclidean n-space.
And monotonically to minus infinite along rays departing from the origin. So,
such minimum is always achieved and it will be finite.

The entropy of a system ( denoted by H ) represents the amount of uncer-
tainty one observer has about the state of the system [6, 14].

The simplest example of a system may be a random variable and will be
shown by a node into the graph, which then gives us the representation of the
mutual relationship between them by the corresponding edges.

Information measures the amount of correlation between two systems, and
it will be reduced to a difference in entropies [5, 14, 16]. So, the Entropy of
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a Graph is a measure of graph structure, or lack of it. Therefore, it may be
interpreted as the amount of information, or the degree of surprise communi-
cated by a message. And, since the basic unit of Information is the bit, the
Entropy may also be viewed as the number of bits of ”randomness“ in the
graph validating that the higher the entropy, the more random the graph is.

Symmetry, in a system, means invariance of its elements under conditions
(group) of transformations. When we take Network Structures, it means in-
variance of adjacency of nodes under permutations of the node set [7, 14].
The graph isomorphism is an equivalence, or equality, as relation on the set
of graphs. Therefore, it partitions the class of all the graphs into equivalence
classes.

The underlying idea of isomorphism is that some objects have the same
structure, if we omit the individual character of their components. A set of
graphs isomorphic to each other is denominated as an isomorphism class of
graphs. The automorphism of a graph, G = (V, E), will be an isomorphism
from G onto itself.

The family of all automorphisms of a Graph, G, is a permutation group
on V(G). The inner operation of such a group will be the composition of
permutations. Its name is very well-known, the Automorphism Group of G,
and abridgedly, it will be denoted by Aut (G). Conversely, all the groups may
be represented as the automorphism group of a connected graph.

The automorphism group is an algebraic invariant of a graph [7, 15]. So,
we can say that the automorphism of a graph is a form of symmetry in which
the graph is mapped onto itself while preserving the edge-node connectivity.
Such an automorphic tool may be applied both on Directed Graphs (DGs),
and on Undirected Graphs (UGs).

We will say either graph invariant, or graph property, when it depends only
on the abstract structure, not on graph representations, such as particular
labelings, or drawings of the graph. So, we may define a graph property as
every property that is preserved under all the possible isomorphisms of the
graph.

Therefore, it will be a property of the graph itself, not depending on the
corresponding representation. The semantic difference also consists in its char-
acter: qualitative or quantitative one. When we say ”the graph does not pos-
sess directed edges”, this will be a property, because it result a qualitative
statement. Whereas when we say ”the number of nodes of degree two in such
graph”, this would be an invariant, because it is a quantitative statement.
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From a strictly mathematical viewpoint, a graph property can be interpreted
as a class of graphs.

Being composed by the graphs that have in common the accomplishment
of some conditions. Hence a graph property can also be defined as a function
whose domain would be the set of graphs, and its range will be the bi-valued
set composed by two usual logical options, True and False, according to which
a determinate condition is either verified or violated for the graph [7].

A graph property is called hereditary, if it is inherited by their induced
subgraphs. And it is additive, if it is closed under disjoint union. So, for
instance, the property of a graph to be planar is both additive and hereditary.
Instead of this, the property of being connected is neither [14].

The computation of certain graph invariants may be very useful indeed,
with the objective of discriminate when two graphs are isomorphic, or rather
non-isomorphic. The support of these criteria will be that for any invariant
at all, two graphs with different values cannot be isomorphic between them.
But nevertheless, two graphs with the same invariants may or may not be
isomorphic between them. So, we get to the notion of completeness [16-18].

A digraph contains no cycle if and only if all eigenvalues of its adjacency
matrix are equal to zero.

It is provable that every group is the automorphism group of a graph. If
the group is finite, the graph may be taken to be finite. And György Pólya
observed that not every group is the automorphism group of a tree.

The structural information content will be the entropy of the underlying
graph topology [7, 14]. A network is said to be asymmetric, if its automor-
phism group reduces to the identity group. I.e. it only contains the identity
permutation. Otherwise, the network is called symmetric. I.e. when the au-
tomorphism group has elements different from the identity.

3.Complex networks

As a previous concept [4, 5, 11-13], we need to introduce the Clustering Co-
efficient, in both versions, Global and Local. The Characteristic Path Length
defines the distance from every node to every other node. It will be calculated
by the median of the shortest path from every node to every other node. And
the Diameter defines the maximum possible distance between all the pair of
reachable nodes.

The Global Clustering Coefficient ( denoted by C ) is based on triplets of
nodes, and can be obtained through the number of closed triplets over the
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total number of triplets, both closed and open. It would be also defined as the
mean of the clustering indices of all the nodes in the graph. Being computable
through the neighbors of the node, by searching the number of links (edges)
amongst them. Because the ratio of the number of existing links to the number
of possible links gives the clustering index of the node. Whereas the Local
Clustering Coefficient will be related to a particular node, i. It measures the
closeness that their neighbors are to being a clique, i.e. a complete graph. The
more usual notation is C i .

This measure was introduced by Watts and Strogatz, in 1998, to determine
whether a graph is a Small-World network. The degree of a node i into a graph
may be defined as the number of nodes comprised in its neighborhood. It is the
total degree of the corresponding node, i, i.e. it may be calculated by adding
in-degree of i and out-degree of i. And finally, the Local Clustering Coefficient
for the whole system is the average of the clustering coefficient for each node.
So, it is a property of a node into the network, either of the total network. It
tells about the connectedness between the neighbors of the nodes. When the
neighborhood is fully connected, the value of the clustering coefficient will be
equal to one. And it will be a value next to zero, if there are sparse connections
in the neighborhood. And with these, all the scale of intermediate cases, [7,
15].

4.Structural Models

We may distinguish now four of such structural models [9-12]. Thus,
- Regular Networks
- Random Networks
- Small - World Networks
- Scale - free Networks

In the Regular Network, each node is connected to all other nodes [6, 7].
I.e. they are fully connected. Because of such a type of structure, they have
the lowest path length (L), and the lowest diameter (D), being L = D = 1.
Also, they have the highest clustering coefficient. So, it holds C = 1.

As related to Random Graphs (RGs), we can say that each pair of nodes is
connected with probability p. They have a low average path length. Moreover,
they possess a low clustering coefficient, when the graph is sparse, given that
the probability of each pair of neighboring nodes to be connected is precisely
equal to p. The Small-World effect is observed on a network when it has a low
average path length. Recall that the now famous ”six degrees of separation”
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is also known as the small-world phenomenon [8]. This initially surprising
hypothesis was firstly formulated by the writer Frygies Karinthy in 1929. Then,
it was tested by Stanley Milgram in 1967. The subjacent idea [1, 2, 8] is
that two arbitrarily selected people may be connected by only six degrees of
separation (in average, and it is not much larger than this value). Therefore,
the diameter of the graph is not much larger than six. For instance, on social
connections.

In the case of the Watts-Strogatz (in acronym, WS) small-world model, it
represents a hybrid case between a Random Graph and a Regular Lattice. So,
Small-World models share with Random Graphs some common features, such
as

- Poisson or Binomial degree distribution, near to the Uniform distribution.
- Network Size: it does not grow.
- Each node has approximately the same number of edges, i.e. it shows a

homogeneous nature.
Such models show the low average path length typical of Random Graphs,

L will be equivalent to ln n, for n greater than 1. And also such models gives
the usual high clustering coefficient of Regular Lattices, giving C equivalent
to .75, for k greater than 1. Therefore, the WS-models have a small-world
structure, being well clustered. The Random Graphs coincides on the small-
world structure, but they are poorly clustered. This model (Watts-Strogatz)
has a peak degree distribution of Poisson type. With reference to the above
last model (Scale-Free Network), this appears [2] when the degree distribution
follows a Power-Law. In such a case, there exists a small number of highly
connected nodes, called , Hubs, which are the tail of the distribution.

On the other hand, the greatest majority of the sets of nodes have very
few connections, representing the head of such distribution. Such a model
was introduced by Albert-Lászlo Barabási and simultaneously by Réka Albert
(1999). But there exist certain historical precedents, as George Udny Yule
(1925), Herbert Simon (1955) and Derek de Solla Price (1976), among others.

Some of their principal features may be these:
- Non-homogeneous nature, in the sense that some (few) nodes have many

edges from them, and the remaining nodes only have very few edges, or links.
- As related to the network size, it continuously grows.
- And regarding to the connectivity distribution, it obeys a Power-Law

distribution.
A very notable example of Scale-Free Network may be the World Wide Web
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(WWW). It will be described [2, 3, 8, 9, 10] by a collection of sub-networks. In
such case, the nodes correspond to their pages, whereas the edges correspond
to their hyperlinks. Also related to the Web graph characteristics, we may
notice the Scale Invariance, as a very important feature of such very notable
complex network.

Community structure (also called Modularity) is a very frequent character-
istic in many real networks. Therefore, it has become a key problem in the
study of networked systems. Giving out its deterministic definition will be a
nontrivial problem for the complexity of networks. A concept of modularity Q
can be used as a valid measure for community structure.

Some current models have proposed to capture the basic topological evo-
lution of complex networks by the hypothesis that highly connected nodes in-
crease their connectivity faster than their less connected peers, a phenomenon
denoted as PA (preferential attachment). So, we will found a class of models
that view networks as evolving dynamical systems, rather than static graphs
[9, 10, 13].

Most evolving network models are based on two essential hypotheses: growth
and preferential attachment. The growth suggests that networks continuously
expand through the addition of new nodes and links between the nodes. While
the preferential attachment states that the rate with which a node with k links
acquires new links is a monotonically increasing function of k. An important
case in community detection is that some nodes may not belong to a single
community, and then placing them into more than one group is more reason-
able. Such nodes can provide a “fuzzy” categorization, and hence, they may
take a special role, such as signal transduction in biological networks [14].

So, I hope to be reached our principal objective, which was simply to pro-
vide a very comprehensive perspective on the essential aspects of Graphs and
Complex Networks, with some new and interesting results, but ever departing
from a Mathematical Analysis point of view.
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