GRAPHS WITH F-SYMMETRIC INDEPENDENCE POLYNOMIALS

Vadim E. Levit and Eugen Mandrescu

Abstract. An independent set in a graph is a set of pairwise non-adjacent vertices, and $\alpha(G)$ is the size of a maximum independent set in the graph G.

If s_{k} is the number of independent sets of cardinality k in G, then

$$
I(G ; x)=s_{0}+s_{1} x+s_{2} x^{2}+\ldots+s_{\alpha} x^{\alpha}, \alpha=\alpha(G),
$$

is called the independence polynomial of G (I. Gutman and F. Harary, 1983).
If $s_{\alpha-i}=f(i) \cdot s_{\alpha-j}$ holds for every $i \in\{0,1, \ldots,\lfloor\alpha / 2\rfloor\}$, then $I(G ; x)$ is called f-symmetric. The corona of the graphs G and H is the graph $G \circ H$ obtained by joining each vertex of G to all the vertices of a copy of H.

In this paper we show that for every graph G, the independence polynomial of $G \circ\left(K_{p} \cup K_{q}\right)$ is f-symmetric, where

$$
f(i)=(p q)^{\frac{\alpha}{2}-i}, 0 \leq i \leq\left\lfloor\frac{\alpha}{2}\right\rfloor, \alpha=\alpha\left(G \circ\left(K_{p} \cup K_{q}\right)\right) .
$$

In particular, we deduce a result of Stevanović [20], claiming that $I\left(G \circ 2 K_{1} ; x\right)$ is symmetric, i.e., $s_{\alpha-i}=s_{\alpha-j}$ holds for every $i \in\left\{0,1, \ldots,\left\lfloor\alpha\left(G \circ 2 K_{1}\right) / 2\right\rfloor\right\}$.

Key words: independent set, independence polynomial, symmetric polynomial.

2010 Mathematics Subject Classification: 05C69, 05C76, 05C31.

1. Introduction

Throughout this paper $G=(V, E)$ is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set $V=V(G)$ and edge set $E=E(G)$. If $X \subset V$, then $G[X]$ is the subgraph of G spanned by X.

By $G-W$ we mean the subgraph $G[V-W]$, if $W \subset V(G)$. We also denote by $G-F$ the partial subgraph of G obtained by deleting the edges of F, for $F \subset E(G)$, and we write shortly $G-e$, whenever $F=\{e\}$. The neighborhood of a vertex $v \in V$ is the set $N_{G}(v)=\{w: w \in V$ and $v w \in E\}$, and $N_{G}[v]=N_{G}(v) \cup\{v\}$; if there is no ambiguity on G, we use $N(v)$ and $N[v]$, respectively. K_{n}, P_{n}, C_{n} denote respectively, the complete graph on $n \geq 1$ vertices, the chordless path on $n \geq 1$ vertices, and the chordless cycle on $n \geq 3$ vertices.

The disjoint union of the graphs G_{1}, G_{2} is the graph $G=G_{1} \cup G_{2}$ having as vertex set the disjoint union of $V\left(G_{1}\right), V\left(G_{2}\right)$, and as edge set the disjoint union of $E\left(G_{1}\right), E\left(G_{2}\right)$. In particular, $n G$ denotes the disjoint union of $n>1$ copies of the graph G.

The Zykov sum of the disjoint graphs G_{1}, G_{2} is the graph $G_{1}+G_{2}$ with $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ as a vertex set and

$$
E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{v_{1} v_{2}: v_{1} \in V\left(G_{1}\right), v_{2} \in V\left(G_{2}\right)\right\}
$$

as an edge set [22].
The corona of the graphs G and H is the graph $G \circ H$ obtained from G and $|V(G)|$ copies of H, such that each vertex of G is joined to all vertices of a copy of H [3].

An independent (or a stable) set in G is a set of pairwise non-adjacent vertices. An independent set of maximum size will be referred to as a maximum independent set of G, and the independence number of G, denoted by $\alpha(G)$, is the cardinality of a maximum independent set in G, and $\omega(G)=\alpha(\bar{G})$, where \bar{G} is the complement of G.

Let s_{k} be the number of independent sets of size k in a graph G. The polynomial

$$
I(G ; x)=s_{0}+s_{1} x+s_{2} x^{2}+\ldots+s_{\alpha} x^{\alpha}, \quad \alpha=\alpha(G),
$$

is called the independence polynomial of G [4]. For a survey on independence polynomials of graphs, see [12].

Independence polynomial was defined as a generalization of matching polynomial of a graph, because the matching polynomial of a graph G and the independence polynomial of its line graph are identical. Recall that given a graph G, its line graph $L(G)$ is the graph whose vertex set is the edge set of G, and two vertices are adjacent if they share an end in G.

Figure 1: G_{2} is the line-graph of and G_{1}.

For instance, the graphs G_{1} and G_{2} depicted in Figure 1 satisfy $G_{2}=L\left(G_{1}\right)$ and, hence

$$
I\left(G_{2} ; x\right)=1+6 x+7 x^{2}+x^{3}=M\left(G_{1} ; x\right),
$$

where $M\left(G_{1} ; x\right)$ is the matching polynomial of the graph G_{1}. Some basic procedures to compute the independence polynomial of a graph are recalled in the following result.

Theorem 1 [4] (i) $I\left(G_{1} \cup G_{2} ; x\right)=I\left(G_{1} ; x\right) \cdot I\left(G_{2} ; x\right)$;
(ii) $I\left(G_{1}+G_{2} ; x\right)=I\left(G_{1} ; x\right)+I\left(G_{2} ; x\right)-1$;
(iii) $I(G ; x)=I(G-v ; x)+x \cdot I(G-N[v] ; x)$ holds for every $v \in V(G)$.

A finite sequence of real numbers $\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right)$ is said to be:

- unimodal if there exists an index $k \in\{0,1, \ldots, n\}$, called the mode of the sequence, such that

$$
a_{0} \leq \ldots \leq a_{k-1} \leq a_{k} \geq a_{k+1} \geq \ldots \geq a_{n}
$$

- log-concave if $a_{i}^{2} \geq a_{i-1} \cdot a_{i+1}$ for $i \in\{1,2, \ldots, n-1\}$;
- f-symmetric if $a_{n-i}=f(i) \cdot a_{i}$ for all $i \in\{0, \ldots,\lfloor n / 2\rfloor\}$;
- symmetric (or palindromic) if $a_{i}=a_{n-i}, i=0,1, \ldots,\lfloor n / 2\rfloor$, i.e., $f(i)=1$ for all $i \in\{0, \ldots,\lfloor n / 2\rfloor\}$.

It is known that every log-concave sequence of positive numbers is also unimodal.

A polynomial is called unimodal (log-concave, symmetric, f-symmetric) if the sequence of its coefficients is unimodal (log-concave, symmetric, and f symmetric, respectively).

Alavi, Malde, Schwenk and Erdös [1] proved that for every permutation π of $\{1,2, \ldots, \alpha\}$ there is a graph G with $\alpha(G)=\alpha$ such that

$$
s_{\pi(1)}<s_{\pi(2)}<\ldots<s_{\pi(\alpha)}
$$

For instance, the independence polynomial

- $I\left(K_{42}+3 K_{7} ; x\right)=1+63 x+147 x^{2}+343 x^{3}$ is log-concave;
- $I\left(K_{43}+3 K_{7} ; x\right)=1+64 x+147 x^{2}+\mathbf{3 4 3} x^{3}$ is unimodal, but non-logconcave, because $147 \cdot 147-64 \cdot 343=-343<0$;
- $I\left(K_{127}+3 K_{7} ; x\right)=1+\mathbf{1 4 8} x+147 x^{2}+\mathbf{3 4 3} x^{3}$ is non-unimodal;
- $I\left(K_{18}+3 K_{3}+4 K_{1} ; x\right)=1+31 x+33 x^{2}+31 x^{3}+x^{4}$ is symmetric and unimodal;
- $I\left(K_{52}+3 K_{4}+4 K_{1} ; x\right)=1+68 x+\mathbf{5 4} x^{2}+68 x^{3}+x^{4}$ is symmetric and non-unimodal;
- $I\left(K_{1832}+4 K_{7}+\left(K_{2} \cup K_{539}\right)+5 K_{1} ; x\right)=1+2406 x+\mathbf{1 3 8 2} x^{2}+\mathbf{1 3 8 2} x^{3}+$ $2406 x^{4}+x^{5}$ is palindromic and non-unimodal.
- $I\left(P_{3} \circ\left(K_{2} \cup K_{1}\right) ; x\right)=1+12 x+52 x^{2}+105 x^{3}+104 x^{4}+48 x^{5}+8 x^{6}$ is f-symmetric for $f(i)=2^{3-i}, 0 \leq i \leq 3$.

It is easy to see that:

- if $\alpha(G) \leq 3$ and $I(G ; x)$ is symmetric, then it is also log-concave;
- if $\alpha(G)=4$ and $I(G ; x)$ is symmetric and unimodal, then it is log-concave as well.

For other examples, see [1], [9], [10], [11], [13], [15], [19], and [21].
Theorem $2[6] I(G \circ H ; x)=(I(H ; x))^{n} \bullet I\left(G ; \frac{x}{I(H ; x)}\right)$, where $n=|V(G)|$.
The symmetry of matching polynomial and characteristic polynomial of a graph were examined in [8], while for independence polynomial we quote [7], [20], [14], [16], and [18].

Figure 2: G and $H_{1}=G \circ H$, where $H=2 K_{1}$.

It is worth mentioning that one can produce graphs with symmetric independence polynomials by different ways [2], [5], [20], [18]. For an example, see Figure 2, where $I(G ; x)=1+6 x+9 x^{2}+2 x^{3}$, while

$$
\begin{gathered}
I\left(H_{1} ; x\right)=(1+x)^{6}\left(1+12 x+48 x^{2}+76 x^{3}+48 x^{4}+12 x^{5}+x^{6}\right)= \\
=1+18 x+135 x^{2}+564 x^{3}+1479 x^{4}+2586 x^{5}+3106 x^{6}+ \\
+2586 x^{7}+1479 x^{8}+564 x^{9}+135 x^{10}+18 x^{11}+x^{12}
\end{gathered}
$$

In this paper we show that the independence polynomial of the graph $G \circ$ $\left(K_{p} \cup K_{q}\right)$ is f-symmetric. As a corollary it gives a theorem due to Stevanović claiming that $I\left(G \circ 2 K_{1} ; x\right)$ is symmetric for every graph $G[20]$.

2. Results

It is well-known that a polynomial $P(x)$ is symmetric if and only if the following equality holds

$$
P(x)=x^{\operatorname{deg}(P)} \cdot P\left(\frac{1}{x}\right)
$$

Similarly, we have the following.
Lemma 3 If $P(x)=\sum_{i=0}^{2 n} a_{i} x^{i}$ is a polynomial of degree $2 n$, then

$$
P(x)=c^{n} \cdot x^{2 n} \cdot P\left(\frac{1}{c x}\right) \text { if and only if } a_{2 n-i}=c^{n-i} \cdot a_{i}, 0 \leq i \leq n
$$

Proof. Since
$c^{n} \cdot x^{2 n} \cdot P\left(\frac{1}{c x}\right)=c^{n} \cdot x^{2 n} \cdot \sum_{i=0}^{2 n} \frac{a_{i}}{(c x)^{i}}=\sum_{i=0}^{2 n} c^{n-i} \cdot a_{i} \cdot x^{2 n-i}=\sum_{i=0}^{2 n} c^{i-n} \cdot a_{2 n-i} \cdot x^{i}$,
we infer that

$$
P(x)=c^{n} \cdot x^{2 n} \cdot P\left(\frac{1}{c x}\right) \Leftrightarrow a_{i}=c^{i-n} \cdot a_{2 n-i} \Leftrightarrow a_{2 n-i}=c^{n-i} \cdot a_{i}, 0 \leq i \leq n,
$$

and this completes the proof.
Theorem 4 The polynomial $I\left(G \circ\left(K_{p} \cup K_{q}\right) ; x\right)$ is f-symmetric, with

$$
f(i)=(p q)^{\frac{\alpha}{2}-i}, \quad 0 \leq i \leq \frac{\alpha}{2} \text {, where } \alpha=\alpha\left(G \circ\left(K_{p} \cup K_{q}\right)\right),
$$

i.e., the coefficients $\left(s_{i}\right)$ of $I\left(G \circ\left(K_{p} \cup K_{q}\right) ; x\right)$ satisfy

$$
s_{\alpha-i}=(p q)^{\frac{\alpha}{2}-i} \cdot s_{i}, \quad 0 \leq i \leq \frac{\alpha}{2} .
$$

Proof. Firstly, we have that

$$
I\left(K_{p} \cup K_{q} ; x\right)=1+a x+b x^{2},
$$

where $a=p+q$ and $b=p q$.
Secondly, by Theorem 2, we get that

$$
I\left(G \circ\left(K_{p} \cup K_{q}\right) ; x\right)=\left(1+a x+b x^{2}\right)^{n} \cdot I\left(G ; \frac{x}{1+a x+b x^{2}}\right),
$$

where $n=|V(G)|$.
Since each vertex of G is joined, in $G \circ\left(K_{p} \cup K_{q}\right)$, to all the vertices of a copy of $K_{p} \cup K_{q}$, it is clear that

$$
\operatorname{deg} I\left(G \circ\left(K_{p} \cup K_{q}\right) ; x\right)=\alpha\left(G \circ\left(K_{p} \cup K_{q}\right)\right)=2 n .
$$

To get the result, we use Lemma 3, i.e., we have to show that

$$
\begin{gathered}
\left(1+a x+b x^{2}\right)^{n} \cdot I\left(G ; \frac{x}{1+a x+b x^{2}}\right)= \\
=b^{n} \cdot x^{2 n} \cdot\left(1+a \cdot \frac{1}{b x}+b \cdot\left(\frac{1}{b x}\right)^{2}\right)^{n} \cdot I\left(G ; \frac{\frac{1}{b x}}{1+a \cdot \frac{1}{b x}+b \cdot\left(\frac{1}{b x}\right)^{2}}\right)
\end{gathered}
$$

Using the fact that

$$
\frac{x}{b x^{2}+a x+1}=\frac{\frac{1}{b x}}{1+a \cdot \frac{1}{b x}+b \cdot\left(\frac{1}{b x}\right)^{2}}
$$

we get that

$$
\begin{gathered}
b^{n} \cdot x^{2 n} \cdot\left(1+a \cdot \frac{1}{b x}+b \cdot\left(\frac{1}{b x}\right)^{2}\right)^{n} \cdot I\left(G ; \frac{\frac{1}{b x}}{1+a \cdot \frac{1}{b x}+b \cdot\left(\frac{1}{b x}\right)^{2}}\right)= \\
=b^{n} \cdot x^{2 n} \cdot\left(\frac{b x^{2}+a x+1}{b x^{2}}\right)^{n} \cdot I\left(G ; \frac{x}{b x^{2}+a x+1}\right)= \\
=\left(1+a x+b x^{2}\right)^{n} \cdot I\left(G ; \frac{x}{1+a x+b x^{2}}\right)
\end{gathered}
$$

as claimed.
Corollary 5 [20] $I\left(G \circ 2 K_{1} ; x\right)$ is symmetric, for every graph G.
Proof. Taking $p=q=1$ in Theorem 4, we infer that the coefficients $\left(s_{i}\right)$ of $I\left(G \circ 2 K_{1} ; x\right)$ satisfy

$$
s_{\alpha-i}=(p q)^{\frac{\alpha}{2}-i} \cdot s_{i}=s_{i}, 0 \leq i \leq \frac{\alpha}{2}
$$

where $\alpha=\alpha\left(G \circ 2 K_{1}\right)$. In other words, $I\left(G \circ 2 K_{1} ; x\right)$ is symmetric.
Corollary 6 If the coefficients $\left(s_{i}\right)$ of $I\left(G \circ\left(K_{p} \cup K_{q}\right) ; x\right)$ satisfy

$$
s_{i}^{2} \geq s_{i-1} \cdot s_{i+1}, 1 \leq i<\alpha\left(G \circ\left(K_{p} \cup K_{q}\right)\right) / 2
$$

then $I\left(G \circ\left(K_{p} \cup K_{q}\right) ; x\right)$ is log-concave.
Proof. If n equals the order of G, then $\alpha\left(G \circ\left(K_{p} \cup K_{q}\right)\right)=2 n$. According to Theorem 4, the coefficients of $I\left(G \circ\left(K_{p} \cup K_{q}\right) ; x\right)$ satisfy

$$
s_{2 n-i}=(p q)^{r-i} \cdot s_{i}, 0 \leq i \leq n .
$$

Hence we obtain that

$$
\begin{aligned}
0 \leq s_{i}^{2}-s_{i-1} \cdot s_{i+1} & =\left((p q)^{i-n} \cdot s_{2 n-i}\right)^{2}-(p q)^{i-1-n} \cdot s_{2 n-(i-1)} \cdot(p q)^{i+1-n} \cdot s_{2 n-(i+1)}= \\
& =\left((p q)^{i-n}\right)^{2} \cdot\left(s_{2 n-i}^{2}-s_{2 n-(i-1)} \cdot s_{2 n-(i+1)}\right)
\end{aligned}
$$

which implies that $I\left(G \circ\left(K_{p} \cup K_{q}\right) ; x\right)$ is log-concave.

3. Conclusions

In this paper we have shown that $I\left(G \circ\left(K_{p} \cup K_{q}\right) ; x\right)$ enjoys some kind of symmetry property, which we called f-symmetry. It seems to be interesting to find other graphs H such that $I(G \circ H ; x)$ satisfy similar properties.

References

[1] Y. Alavi, P. J. Malde, A. J. Schwenk, P. Erdös, The vertex independence sequence of a graph is not constrained, Congressus Numerantium 58 (1987) 15-23.
[2] P. Bahls, N. Salazar, Symmetry and unimodality of independence polynomials of path-like graphs, The Australasian Journal of Combinatorics 47 (2010) 165-176.
[3] R. Frucht, F. Harary, On the corona of two graphs, Aequationes Mathematicae 4 (1970) 322325.
[4] I. Gutman, F. Harary, Generalizations of the matching polynomial, Utilitas Mathematica 24 (1983) 97-106.
[5] I. Gutman, Independence vertex palindromic graphs, Graph Theory Notes of New York Academy of Sciences XXIII (1992) 21-24.
[6] I. Gutman, Independence vertex sets in some compound graphs, Publications de l'Institut Mathématique 52 (1992) 5-9.
[7] I. Gutman, A contribution to the study of palindromic graphs, Graph Theory Notes of New York Academy of Sciences XXIV (1993) 51-56.
[8] J. W. Kennedy, Palindromic graphs, Graph Theory Notes of New York Academy of Sciences XXII (1992) 27-32.
[9] V. E. Levit, E. Mandrescu, On unimodality of independence polynomials of some well-covered trees, DMTCS 2003 (C. S. Calude et al. eds.), LNCS 2731, Springer-Verlag (2003) 237-256.
[10] V. E. Levit, E. Mandrescu, A family of well-covered graphs with unimodal independence polynomials, Congressus Numerantium 165 (2003) 195-207.
[11] V. E. Levit, E. Mandrescu, Very well-covered graphs with log-concave independence polynomials, Carpathian Journal of Mathematics 20 (2004) 73-80.
[12] V. E. Levit, E. Mandrescu, The independence polynomial of a graph a survey, Proceedings of the $1^{\text {st }}$ International Conference on Algebraic Informatics, Aristotle University of Thessaloniki, Greece, (2005) 233-254. http://web.auth.gr/cai05/papers/20.pdf
[13] V. E. Levit, E. Mandrescu, Independence polynomials of well-covered graphs: Generic counterexamples for the unimodality conjecture, European Journal of Combinatorics 27 (2006) 931-939.
[14] V. E. Levit, E. Mandrescu, A family of graphs whose independence polynomials are both palindromic and unimodal, Carpathian Journal of Mathematics 23 (2007) 108-116.
[15] V.E. Levit, E. Mandrescu, Independence polynomials and the unimodality conjecture for very well-covered, quasi-regularizable, and perfect graphs, Graph Theory in Paris, Trends Math., Birkhäuser, Basel (2007) 243-254.
[16] V. E. Levit, E. Mandrescu, Graph operations and partial unimodality of independence polynomials, Congressus numerantium 190 (2008) 21-31.
[17] V. E. Levit, E. Mandrescu, On the independence polynomial of an antiregular graph, arXiv:1007.0880 [cs.DM] (2010) 11 pp.
[18] V. E. Levit, E. Mandrescu, On symmetry of independence polynomials, arXiv:1105.2202 [cs.DM] (2011) 16 pp .
[19] E. Mandrescu, Building graphs whose independence polynomials have only real roots, Graphs and Combinatorics 25(2009), 545-556.
[20] D. Stevanović, Graphs with palindromic independence polynomial, Graph Theory Notes of New York Academy of Sciences XXXIV (1998) 31-36.
[21] Y. Wang, B. X. Zhu, On the unimodality of independence polynomials of some graphs, European Journal of Combinatorics 32 (2011) 10-20.
[22] A. A. Zykov, Fundamentals of graph theory, BCS Associates, Moscow, ID, 1990.

Vadim E. Levit
Department of Mathematics and Computer Science
Ariel University Center of Samaria
Ariel 40700, Israel
email:levitv@ariel.ac.il
Eugen Mandrescu
Department of Computer Science
Holon Institute of Technology
52 Golomb Str., Holon 58102, Israel
email:eugen_m@hit.ac.il

