ESTIMATION OF THE NUMBER OF CRITICAL POINTS OF CIRCLE - VALUED MAPPINGS

Dana Mangra

Abstract. Circle - valued Morse functions deals with functions of the form $f: M \rightarrow S^{1}$ having only nondegenerate critical points [5], [8]. The Novikov complex is a generalization to the circle - valued case of the Morse complex [5], [7].

The classical Morse theory associates with each Morse function $f: M \rightarrow \mathbb{R}$ and a transverse f-gradient the Morse complex. The Novikov theory associates with each circle - valued map $f: M \rightarrow S^{1}$ and a transverse f - gradient the Novikov complex.

In this paper we get new bounds to the number of critical points of circle valued mappings using Morse - Novikov inequalities for circle - valued functions [6]. We use the $\varphi_{\mathcal{F}}$ - category associated to the family of circle - valued Morse functions defined on a closed manifold M. It is called the Morse-Smale characteristic of manifold M for circle-valued Morse functions and it is denoted by $\gamma_{s^{1}}(M)[1],[2]$. The author's results involving Morse -Smale characteristic for circle - valued functions can be found in papers [3] and [4].

2000 Mathematics Subject Classification: 58E05, 57R70, 58K05.

1. Introduction

Recall that in the classical Morse theory, for a compact m-dimensional manifold M and a Morse function $f: M \rightarrow \mathbb{R}$ the Morse inequalities are:

$$
c_{i}(f) \geq b_{i}(M)+q_{i}(M)+q_{i-1}(M)
$$

where $b_{i}(M)$ are the Betti numbers of M, that is $b_{i}(M)=\operatorname{dim}_{\mathbb{Z}}\left(H_{i}(M) / T_{i}(M)\right)$ and $q_{i}(M)$ is the minimum number of generators of $T_{i}(M)$, the torsion part of the homology group $H_{i}(M), i=0,1, \cdots, m$.

Now we will present these relations in the case of circle-valued Morse functions.

2. Morse - Novikov inequalities for circle - valued mappings

The Novikov homology $\left.H_{*}^{N o v}(M, f, \widehat{\mathbb{Z}} \widehat{\Pi}]\right)$ is defined for a space M with a map $f: M \rightarrow S^{1}$ and a factorization of $f_{*}: \pi_{1}(M) \rightarrow \pi_{1}\left(S^{1}\right)$ through a group Π.

Given a group π and an automorphism $\lambda: \pi \rightarrow \pi$, let $\pi \times_{\lambda} \mathbb{Z}$ be the group with elements $g z^{i}, g \in \pi$ and $j \in \mathbb{Z}$, and multiplication by $g z=\lambda(g) z$, such that we have the relation:

$$
\mathbb{Z}\left[\pi \times_{\lambda} \mathbb{Z}\right]=\mathbb{Z}[\pi]_{\lambda}\left[z, z^{-1}\right] .
$$

Remark 1. Consider M to be connected, and let $f: M \rightarrow S^{1}$ be a circlevalued function. The infinite cyclic covering $\bar{M}=f^{*}(\mathbb{R})$ is connected if and only if $f_{*}: \pi_{1}(M) \rightarrow \pi_{1}\left(S^{1}\right)=\mathbb{Z}$ is onto, in which case we have:

$$
\pi_{1}(M)=\pi_{1}(\bar{M}) \times_{\lambda_{M}} \mathbb{Z}
$$

where $\lambda_{M}: \pi_{1}(\bar{M}) \rightarrow \pi_{1}(\bar{M})$ is the automorphism induced by $z: \bar{M} \rightarrow \bar{M}$.
If M is connected, with a cohomology class $f \in\left[M, S^{1}\right]=H^{1}(M)$ such that $\bar{M}=f^{*}(\mathbb{R})$ is connected, given a factorization of the surjection $f_{*}: \pi_{1}(M) \rightarrow$ $\pi_{1}\left(S^{1}\right)$

$$
f_{*}: \pi_{1}(M)=\pi_{1}(\bar{M}) \times_{\lambda_{M}} \mathbb{Z} \rightarrow \Pi \rightarrow \mathbb{Z}
$$

let $\pi=\operatorname{ker}(\Pi \rightarrow \mathbb{Z})$ and let $z \in \Pi$ be the image of $z=(0,1) \in \pi_{1}(M)$, so that $\Pi=\pi \times_{\lambda} \mathbb{Z}$, with $\lambda: \pi \rightarrow \pi$ and $g \rightarrow z^{-1} g z$.

The $\widehat{\mathbb{Z}[\Pi]}$ - coefficient Novikov homology of (M, f) is

$$
H_{*}^{N o v}(M, f, \widehat{\mathbb{Z}[\Pi]})=H_{*}(M, \widehat{\mathbb{Z}[\Pi]})
$$

with $\widehat{\mathbb{Z}[\Pi]}=\mathbb{Z}\left[\pi_{\lambda}((z))\right]$.
In the original case

$$
\tilde{M}=\bar{M}, \pi=\{1\}, \Pi=\mathbb{Z}, \widehat{\mathbb{Z}}[\Pi]=\mathbb{Z}((z))
$$

and $H_{*}^{\text {Nov }}(M, f, \widehat{\mathbb{Z}[\Pi]})$ may be written as $H_{*}^{\text {Nov }}(M, f)$ or just $H_{*}^{N o v}(M)$.
Let $\mathbb{Z}((z))$ be the Novikov ring (a principal domain) and $H_{*}^{\text {Nov }}(M, f)$ the homology of a free $\mathbb{Z}((z))$ - module chain complex.

Definition 1. The Novikov numbers of any $C W$-complex M and $f \in H^{1}(M)$ are $b_{i}^{\text {Nov }}(M, f)$ and $q_{i}^{\text {Nov }}(M, f)$, where

$$
b_{i}^{N o v}(M, f)=\operatorname{dim}_{\mathbb{Z}((z))}\left(H_{i}^{N o v}(M, f) / T_{i}^{N o v}(M, f)\right)
$$

are the Betti numbers of Novikov homology and $q_{i}^{\text {Nov }}(M, f)$ is the minimum numbers of generators of $T_{i}^{\text {Nov }}(M, f)$, where

$$
T_{i}^{N o v}(M, f)=\left\{x \in H_{i}^{N o v}(M, f): a x=0, a \neq 0 \in \mathbb{Z}((z))\right\}
$$

is the torsion $\mathbb{Z}((z))$ - submodule of $H_{i}^{\text {Nov }}(M, f)$.
Proposition 1. The Novikov complex $C^{\text {Nov }}(M, f, v)$ is $\left.\widehat{\mathbb{Z}[\Pi]}\right]$-module equivalent to $C(M ; \widehat{\mathbb{Z}[\Pi]})$, with isomorphisms

$$
H_{*}\left(C^{N o v}(M, f, v)\right) \cong H_{*}^{N o v}(M, f ; \widehat{\mathbb{Z}[\Pi]})
$$

The following important relations are called the Morse - Novikov inequalities:

Theorem 1. For a compact m-dimensional manifold M and a circlevalued Morse function $f: M \rightarrow S^{1}$ the Morse - Novikov inequalities are:

$$
c_{i}(f) \geq b_{i}^{N o v}(M, f)+q_{i}^{N o v}(M, f)+q_{i-1}^{N o v}(M, f)
$$

$i=0,1, \cdots, m$.
These inequalities are immediate consequence of the isomorphism $H_{*}\left(C^{N o v}(M, f, v)\right) \cong$ $H_{*}^{N o v}(M, f)$ since for any free chain complex C over a principal domain R we have

$$
\operatorname{dim}_{R}\left(C_{i}\right) \geq b_{i}(C)+q_{i}(C)+q_{i-1}(C)
$$

where $b_{i}(C)=\operatorname{dim}_{R}\left(H_{i}(C) / T_{i}(C)\right), q_{i}(C)$ is the minimal number of R-module generators of $T_{i}(C)$ and

$$
T_{i}(C)=\left\{x \in H_{i}(C): r x=0, r \neq 0 \in R\right\}
$$

is the R-torsion submodule of $H_{i}(C)$. The Novikov numbers of M depends only on the cohomology class $\xi=f^{*}(1) \in H^{1}(M)$, and so may be denoted by $b_{i}(M ; \mathbb{Z}((z)))=b_{i}(\xi)$ and $q_{i}(M ; \mathbb{Z}((z)))=q_{i}(\xi)$.

Theorem 2. (see [5]) For $\pi_{1}(M)=\mathbb{Z}$ and $m \geq 6$, let $f: M \rightarrow S^{1}$ be a Morse function, $1 \in\left[M, S^{1}\right]=H^{1}(M)$ with the minimum numbers of critical points. Then for all $i=0,1, \cdots, m$ the following relations hold:

$$
c_{i}(f)=b_{i}^{N o v}(M, f)+q_{i}^{N o v}(M, f)+q_{i-1}^{N o v}(M, f)
$$

3.NEW BOUNDS TO THE NUMBER OF CRITICAL POINTS OF CIRCLE VALUED MAPPINGS

Consider M^{m}, N^{n} two smooth manifolds without boundary. For a mapping $f \in C^{\infty}(M, N)$ denote by $\mu(f)=|C(f)|$, the cardinal number of critical set $C(f)$ of f.

Let $\mathcal{F} \subseteq C^{\infty}(M, N)$ be a family of smooth mappings $M \rightarrow N$.
The $\varphi_{\mathcal{F}}$ - category of the pair (M, N) is defined by

$$
\varphi_{\mathcal{F}}(M, N)=\min \{\mu(f): f \in \mathcal{F}\} .
$$

This notion was introduced by D. Andrica in the paper [2]. It is clear that $0 \leq \varphi_{\mathcal{F}}(M, N) \leq+\infty$ and $\varphi_{\mathcal{F}}(M, N)=0$ if and only if the family \mathcal{F} contains immersions, submersions or local diffeomorphisms according to the cases $m<$ $n, m>n$, or $m=n$, respectively. Under some hypotheses $\varphi_{\mathcal{F}}(M, N)$ is a differential invariant of pair (M, N).(see [1] and [2]).

Using these notations, in the papers [3] and [4] we have considered $N=S^{1}$ and the family $\mathfrak{F} \subseteq C^{\infty}\left(M, S^{1}\right)$, given by the set of all circle-valued Morse functions defined on M.

In this case we obtain $\varphi_{\mathcal{F}}\left(M, S^{1}\right)=\gamma_{S^{1}}(M)$, the Morse-Smale characteristic of manifold M for circle-valued Morse functions $f: M \rightarrow S^{1}$. So, we have

$$
\gamma_{S^{1}}(M)=\min \left\{\mu(f): f \in \mathcal{F}\left(M, S^{1}\right)\right\} .
$$

In what follows we will use the Morse-Novikov inequalities to get a lower bound to $\gamma_{S^{1}}(M)$.

Let $f: M \rightarrow S^{1}$ be a circle-valued Morse function, and let $f^{*}: H^{1}\left(S^{1}\right) \rightarrow$ $H^{1}(M)$ be the induced homomorphism in cohomology. Denote

$$
F^{1}(M)=\left\{f^{*}(1): f \in \mathcal{F}\left(M, S^{1}\right)\right\} \subseteq H^{1}(M) .
$$

Theorem 3. The following inequality holds:

$$
\gamma_{S^{1}}(M) \geq \min \left\{b^{N o v}(\xi)+q_{m}^{N o v}(\xi)+2 \sum_{i=0}^{m-1} q_{i}^{N o v}(\xi): \xi \in F^{1}(M)\right\}
$$

where $b^{N o v}(\xi)=\sum_{i=0}^{m} b_{i}^{N o v}(\xi)$ is the total Betti number of manifold M with respect to the cohomology class $\xi \in H^{1}(M)$.

Proof. Let $f: M \rightarrow S^{1}$ be a circle-valued Morse function.
Applying the Morse - Novikov inequalities we get:

$$
c_{i}(f) \geq b_{i}^{N o v}(\xi)+q_{i}^{N o v}(\xi)+q_{i-1}^{N o v}(\xi)
$$

$i=0,1, \cdots, m$, hence

$$
\begin{gathered}
\mu(f)=\sum_{i=0}^{m} c_{i}(f) \geq \sum_{i=0}^{m}\left(b_{i}^{N o v}(\xi)+q_{i}^{N o v}(\xi)+q_{i-1}^{N o v}(\xi)\right) \\
=b^{N o v}(\xi)+q_{m}^{N o v}(\xi)+2 \sum_{i=0}^{m-1} q_{i}^{N o v}(\xi) \\
\geq \min \left\{b^{N o v}(\xi)+q_{m}^{N o v}(\xi)+2 \sum_{i=0}^{m-1} q_{i}^{N o v}(\xi): \xi \in F^{1}(M)\right\} .
\end{gathered}
$$

Taking into account that $f: M \rightarrow S^{1}$ is an arbitrary circle-valued Morse function, it follows that $\min \left\{\mu_{S^{1}}(f)=\left|C_{S^{1}}(f)\right|: f \in \mathcal{F}\left(M, S^{1}\right)\right\} \geq \min \left\{b^{\text {Nov }}(\xi)+\right.$ $\left.q_{m}^{N o v}(\xi)+2 \sum_{i=0}^{m-1} q_{i}^{N o v}(\xi): \xi \in F^{1}(M)\right\}$, and we are done.

Theorem 4. For $\pi_{1}(M)=\mathbb{Z}$ and $m \geq 6$, the following relation holds:

$$
\gamma_{S^{1}}(M)=\min \left\{b^{N o v}(\xi)+q_{m}^{N o v}(\xi)+2 \sum_{i=0}^{m-1} q_{i}^{N o v}(\xi): \xi \in F^{1}(M)\right\}
$$

Proof. Let $f: M \rightarrow S^{1}$ be a circle-valued Morse function with minimal number of critical points. From Theorem 2 it follows that

$$
c_{i}(f)=b_{i}^{N o v}(\xi)+q_{i}^{N o v}(\xi)+q_{i-1}^{N o v}(\xi),
$$

$i=0,1, \cdots, m$, hence $\gamma_{S^{1}}(M) \leq \mu(f)=\sum_{m=0}^{m} c_{i}(f)=\sum_{i=0}^{m}\left(b_{i}^{N o v}(\xi)+\right.$ $\left.q_{i}^{N o v}(\xi)+q_{i-1}^{N o v}(\xi)\right)=b(\xi)+q_{m}^{N o v}(\xi)+2 \sum_{i=0}^{m-1} q_{i}^{N o v}(\xi)$, that is $\gamma_{S^{1}}(M) \leq$ $\min \left\{b^{N o v}(\xi)+q_{m}^{N o v}(\xi)+2 \sum_{i=0}^{m-1} q_{i}^{N o v}(\xi): \xi \in F^{1}(M)\right\}$. Taking into the inequality in Theorem 3 the desired result follows.

References

[1] Andrica, D., Critical Point Theory and Some Applications, Cluj University Press, 2005.
[2] Andrica, D., Functions with minimal critical set: new results and open problems, Mathematical Analysis and Applications, Th.M.Rassias ed., Hadronic Press, 1999, 1-10.
[3] Andrica, D., Mangra, D., Morse - Smale characteristic in circle - valued Morse Theory, Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics, ICTAMI 2009, Alba Iulia, Acta Universitatis Apulensis, volume 22, (2010), 215-220.
[4] Andrica, D., Mangra, D., Some remarks on circle - valued Morse functions, Abstract booklet Mathematics and Computer Science Section International Conference on Sciences November 12th-14th Oradea, Analele Universitatii din Oradea, Fascicula de Matematica, Tom XVII, Issue No. 1, (2010),23 - 27.
[5] Farber, M., Topology of Closed One-Forms, Mathematical Surveys and Monographs, Volume 108, American Mathematical Society, 2003.
[6] Mangra, D., Morse inequalities for circle - valued functions, Automation Computers Applied Mathematics, vol. 19, no. 1, ISSN 1221-437X, (2010), pp. 149-157.
[7] Novikov, S. P., Multivalued functions and functionals. An analogue to Morse theory, Soviet. Math. Dokl. 24, 222-226, 1981.
[8] Pajitnov, A., Circle-valued Morse Theory, Walter de Gruyter, Berlin, New York, 2006.

Faculty of Mathematics and Computer Science
Babes-Bolyai University
Str. Kogalniceanu,1
400084 Cluj-Napoca, Romania
email:mdm_dana@yahoo.com

