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Abstract. In this paper we analyse three well known logics (proposi-
tional, first order predicate and propositional linear temporal logics) using a
unified methodology. For each logic, we start by defining the syntax by con-
structively building a language L, followed by the semantics based on the
notion of structure S : L → B, where B is the support set for a boolean alge-
bra B = 〈B, •, +,̄ 〉. Next, the resolution method is enunciated by introducing
the required normal form for each logic, the definition of step resolution and
correctness results. Finally, we take the first steps towards a unified theorem
of soundness and completeness that can be introduced and point out that our
methodology, and especially the S-notation of semantics, could be useful in
building its proof.
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1. Introduction

The purpose of the paper is to define the notion of structure for several well
known 2-valued logics and making the first steps towards a unified soundness
and completeness theorem for resolution within these logics.

Throughout the paper, we shall use the term SAT for denoting the satis-
fiability problem for any logic. When thinking about testing the satisfiability
of a formulae in a logic, it is well known that syntactic approaches have to
be preferred. Resolution is a syntactic method of proof for the decidability or
semi-decidability of SAT. However, resolution can only be applied after prov-
ing a soundness and completeness theorem: everything provable by resolution
is true, and conversely.
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Proving such a theorem is significantly different for each logic. For the
beginning, we study a unified proof for PL, PL1 and LTL. One of the sources
of difference between proofs resides from the completely different semantics.
For these reasons we believe that a uniform presentation of a logic language
using a constructive syntax and structure based semantics can be useful for
the development of a generic soundness and completeness proof, and maybe
for other syntactic methods of SAT solving.

We start by presenting the syntax and semantics of classical logics: the
propositional logic (PL) and the predicate logic (PL1). We will be using the
classical definitions for the studied logics, but with variations that will ease
the definition of semantics later on. Then we extend the proposed methodol-
ogy to a temporal 2-valued logic: linear temporal logic (LTL). The first step
is to introduce a constructive syntax and introduce semantics through a uni-
form S-notation for each of the different 2-valued logics. Secondly, we analyse
the resolution theorem in each of the mentioned logics and, afterwards, an
associated soundness and completeness theorem (lemma) is needed.

The rest of the paper is organized as follows. In sections 2, 3 and 4 the
syntax, semantics and resolution lemma and theorem are introduced for PL,
PL1 and LTL respectively. Section 5 extrapolates on the previous sections
and introduces the first steps towards a unified soundness and completeness
theorem for resolution.

2.Propositional Logic

Syntax
The syntax of a Propositional Logic is based upon an alphabet Alf =

C ∪ At ∪ P where:

• C = {e,∨,∧} - a set of logical connectives

• At = {p1, p2, p3, ...} - a nonvoid, at most denumerable set. We call its
elements atoms.

• Pa = {(, )} - a set of parentheses.

Some specific words [3] over the alphabet above are called PLAlf formulae.
The PLAlf syntax is constructively defined as follows (alternatively, we may
use a context-free grammar).

We chose the following descriptive manner of the set of formulae because
it will help us define the semantics uniformly later on.
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Definition 1 (Propositional Logic Syntax) Considering an alphabet Alf
for PL, then the corresponding set of formulae, denoted by PLAlf is:
Base. (elementary formulae):

• At ⊆ PLAlf (the atoms are formulae).

Constructive Step (new formulae from existing ones):

• If F ∈ PLAlf then (eF ) ∈ PLAlf

• If F1 ∈ PLAlf and F2 ∈ PLAlf then (F1 ∨ F2) ∈ PLAlf

• If F1 ∈ PLAlf and F2 ∈ PLAlf then (F1 ∧ F2) ∈ PLAlf

• If F ∈ PLAlf then (F ) ∈ PLAlf

• Nothing else belongs to PLAlf

Since the alphabet Alf does not fundamentally impact the syntax or the
semantics of propositional logic, from now on we will only use the notation
PL instead of PLAlf . We shall not introduce true and false as special atoms
as part of the language. We consider this an unnecessary intervention of the
semantics into the syntax of PL.

Semantics
The PL semantics is built as an extension of an assignation function that

associates a Boolean value (0 or 1) to any elementary formula. This is done
again constructively, according to the definition of the syntax. The Boolean
value for any new formula is based on the way this formula is made and on
the values of the old formulae.

Definition 2 (Boolean algebra) A Boolean algebra is a structure B =
〈B, •, +,̄ 〉 where B is a nonvoid set, •, + : B × B → B are two binary
functions and ¯ : B → B is a unary function. The functions obey the laws:
commutativity, associativity, distributivity, absorption, contradiction/tautology
[1].

Remind that in a Boolean algebra B, the following laws are also true:

1. x1 + x2 + x3 + ... + xn = 1 if and only if there exists i ∈ N; 0 < i ≤ n so
that xi = 1
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2. x1 • x2 • x3 • ... • xn = 1 if and only if for all i ∈ N; 0 < i ≤ n we have
that xi = 1

Definition 3 (Assignation Function) As : At → B is defined by:

As(p) =

{
0, if p is false
1, if p is true

Theorem 1 (8) For every assignation As there is a unique extension function
S : PL → B called structure which satisfies:

• S(A) = As(A) for every A ∈ At

• S(eF ) = S(F ), for every F ∈ PL

• S((F1 ∨ F2)) = S(F1) + S(F2), for every F1, F2 ∈ PL

• S((F1 ∧ F2)) = S(F1) • S(F2), for every F1, F2 ∈ PL

Definition 4 (Strong and Weak Equivalence) Let F1 and F1 be PL for-
mulae. F1 is strongly equivalent with F2, denoted F1 ≡ F2, if for all structures
S, we have S(F1) = S(F2). F1 is weakly equivalent with F2, denoted F1 ≡w F2,
if every time there is a structure S1 such as S1(F1) = 1 (F1 is satisfiable) then
a structure S2 exists such as S2(F2) = 1 (F2 is satisfiable) and conversely.

We will use the notation ⊥ for the empty clause, which is not satisfiable in
any structure: S(⊥) = 0, for every S.

Resolution
The SAT problem can be solved in O(2n) using brute-force algorithms (that

assign all combinations of true-false to each formula). The time complexity
can be reduced to linear (deterministic) time for certain types of formulae (e.g.,
Horn formulae) [8].

The known algorithms use as input a formula into Conjunctive Normal
Form (CNF). The transformation of any formula in an equivalent CNF could
require more complex algorithms [5].

Theorem 2 (8) For every formula F from PL there is a CNF formula from
PL that is strongly equivalent with F .
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Definition 5 (Resolvent) Let C1, C2 and R be clauses of PL and L a literal.
R is a resolvent of C1 and C2 if and only if L ∈ C1, L ∈ C2 and R =
(C1 \ {L}) ∪ (C2 \ {L}) = ResL(C1, C2).

The propositional resolution can be applied for two clauses C1 and C2

if one of them contains a literal (L ∈ C1) and the other one contains its
complementary literal (L ∈ C2). Both L and L will be eliminated and the result
(called a resolvent and denoted as R) will be a disjunction of the remaining
literals contained in both C1 and C2 [5].

Definition 6 (Resolvent set) Let F ∈ LP be a formula (a set of clauses).
Then the resolvent set of F is:

Res(F ) = F ∪ {Res(C1, C2)|C1, C2 ∈ F}

We introduce the following notations:

Res0(F ) = F

Res1(F ) = Res(F )

Resn(F ) = Res(Resn−1(F )), for n > 1

Res∗(F ) =
⋃
n≥0

Resn(F )

Lemma 1 Let F ∈ PL a formula in CNF, C1, C2 ∈ F clauses. If R =
Res(C1, C2) is a resolvent for C1 and C2, then F is strongly equivalent with
F ∪ {R} (for any structure S, S(F ) = S(F ∪ {R})).

Theorem 3 (8) (Resolution theorem; soundness and completeness)
Let F be a set of clauses from PL. F is unsatisfiable if and only if ⊥ ∈ Res∗(F )
(the empty clause belongs to the set of resolvents of F ).

3. Predicate Logic

Syntax
The Predicate Logic (PL1) may be viewed as a generalization of PL. The

concepts of constant, variable, functional symbol, predicate symbol, term and
quantors are introduced. To syntactically represent them, a new alphabet is
needed.
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Definition 7 The syntax of the predicate logic (PL1) is based upon an alpha-
bet Alf = X ∪ (

⋃∞
i=0Pi) ∪ (

⋃∞
i=0Fi) ∪ C1 ∪ C2 ∪ Pa, where:

• X = {x1, x2, ...} - the set of variables (at most denumerable)

• P = {P0,P1, ...} - the set of classes of predicates (at most denumerable);
each Pi is in its turn an at most denumerable set of predicate symbols of
arity i, (i ∈ N)

• F = {F0,F1, ...} - the set of classes of functions (at most denumerable);
same as above, each Fi is in its turn an at most denumerable set of
functional symbols of arity i, (i ∈ N)

• C1 = {e,∨,∧} - the set of logical connectives

• C2 = {(∀x)|x ∈ X} ∪ {(∃x)|x ∈ X} - the set of universal and existential
quantors (or quantifiers)

• Pa = {(, )} - the set of parentheses

Definition 8 (terms). The set of terms is denoted by T and it is construc-
tively defined as:
Base

• X ⊆ T and F0 ⊆ T (variables and constants are terms).

Constructive Step

• If n ∈ N∗, f ∈ Fn and t1, t2, ..., tn ∈ T , then f(t1, t2, ..., tn) ∈ T

• Nothing else is a term

Semantics

Definition 9 (Assignation) An assignation is a pair As = 〈U , I〉 in which
U is a non-empty set called universe, and I is a function (also called interpre-
tation)

I : X ∪ P ∪ F → U ∪ [U∗ → B] ∪ [U∗ → U ]

which satisfies the conditions:
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• If x ∈ X , then I(x) ∈ U

• If P ∈ Pn, then I(P ) ∈ [Un → B]

• If F ∈ Fn, then I(F ) ∈ [Un → U ]

In the previous definition, the notation [A → B] denotes the set of total
functions having the domain A and the codomain B and [A∗ → B] is the
set of functions from A to B having any number of arguments, including 0 -
meaning an element of B. Thus the semantic interpretation of a variable in the
assignationAs is an element from the universe, the interpretation of a predicate
having n arguments is a function from USn to {0, 1} and the semantics of a
functional symbol having n arguments is a function from USn to US . If there
are no confusions, I will be also denoted by S.

Theorem 4 For every assignation As = 〈U , I〉 there is a unique extension
function

S : X ∪P ∪F ∪T ∪PL1 → U ∪ [U∗ → B]∪ [U∗ → U ]∪B called structure
and defined as follows:

S(a) = I(a) - for every a ∈ X ∪ P ∪ F .
Choosing t ∈ T means that either t is a constant or variable, or for every

n ∈ N∗ and any t1, t2, ..., tn ∈ T and any functional symbol f ∈ Fn, we have
t = f(t1, t2, ..., tn). In this case S(t) = S(f)(S(t1),S(t2), ...,S(tn)) ∈ US . We
have now finished the process of defining S ′ over X ∪ P ∪ F ∪ T .

We continue by defining S over PL1. This will be done, as usual, in a
constructive way.
Base Let A ∈ At. In this situation we have either A = P ∈ P0 or A =
P (t1, t2, ..., tn), n ∈ N∗, t1, t2, ..., tn ∈ T . In the first case S ′ is already defined
(S ′(P ) = S(P ) ∈ B). Otherwise we put:

S ′(P ) = S(P )(S ′(t1),S ′(t2), ...,S ′(tn)) ∈ B
Constructive step. The following cases have to be considered

• F = (eF1). Then S ′(F ) = S ′(F1)

• F = (F1 ∨ F2). Then S ′(F ) = S ′(F1) + S ′(F2)

• F = (F1 ∧ F2). Then S ′(F ) = S ′(F1) • S ′(F2)

• F = (∀x)(F1). Then S ′(F ) = 1 if and only if for each u ∈ Us we have
S ′[x/u](F1) = 1 where S ′[x/u] is an interpretation which differs from S ′,
regarding the fact that S(x) = u
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• F = (∃x)(F1). Then S ′(F ) = 1 if and only if there is at least one element
u ∈ Us such that S ′[x/u](F1) = 1

The truth of a formula in PL1 depends essentially on the way the universe
is chosen. Thus the semantics is also built as a function S : PL1 → B, based
on the syntax of the formula and on the operators of the underlying Boolean
Algebra. To check if a formula can be satisfied or not means to test it against
the Herbrand Universe [8].

Resolution
For this class of formulae the decidability problem (SAT) cannot be solved,

so, we cannot decide ”for sure” if the formula can be satisfied or not. More
precisely the SAT problem is undecidable for e.g. predicate logic with equality
but semidecidable for ”pure” PL1. That is, there exists an algorithm that hav-
ing as input a SNF formula F , stops with the answer ”YES” if F is satisfiable.
If F is unsatisfiable, it may run forever.

In the following paragraphs we introduce a couple of definitions and theo-
rems that will allow us to describe the application of the resolution principle
for PL1.

Definition 10 (Skolem Normal Form) A formula F ∈ PL1 is in Skolem
normal form if it is in prenex normal form with only universal quantifiers.
F is of form (∀x1)...(∀xn)F ∗, where F ∗ is the matrix of the formula F and
{x1, x2, ...xn} the set of free variables appearing in F ∗

If F is a formula in Skolem normal form and F ∗ is in CNF, then the
formula is said to be in Clausal Skolem Normal Form (CSNF).

Theorem 5 For every PL1 formula there exists an weakly equivalent formula
in CSNF.

Definition 11 (Unifiable set) A finite set of literals L = {L1, L2, ...Lk} is
unifiable if a substitution sub exists such that |Lsub| = 1.

If such a substitution exists it is called a unifier of the set of literals L. A
unifier sub is called a most general unifier if for every unifier sub′ there is a
substitution s such that sub′ = sub · s.

Theorem 6 (Unification [7]) Every unifiable set of literals has a most gen-
eral unifier.
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Definition 12 (Resolvent) Let C1, C2, R ∈ PL1 be clauses. Then R is a
resolvent of C1 and C2 if:

• there exists two variable renaming substitutions s1 and s2 such that C1s1

and C2s2 have no common variables

• there is a set of literals L1, L2, ..., Lm ∈ C1s1 and L′1, L
′
2, ..., L

′
n ∈ C2s2,

m, n ∈ N∗, such that the set L = {L1, L2, ..., Lm, L′1, L
′
2, ..., L

′
n} is unifi-

able with sub a most general unifier.

• R = ((C1s1 \ {L1, L2, ..., Lm}) ∪ (C1s1 \ {L′1, L′2, ..., L′n}))sub

Lemma 2 Let F ∈ PL1 a formula in CSNF, C1, C2 ∈ F clauses. If R =
Res(C1, C2) is a resolvent for C1 and C2, then F is strongly equivalent with
F ∪ {R} (for any structure S, S(F ) = S(F ∪ {R})).

Theorem 7 (Resolution theorem; soundness and completeness). Let
F ∈ LP1 be a set of clauses (a formula in CSNF). F is unsatisfiable if and
only if ⊥ ∈ Res∗(F ) (the empty clause belongs to the resolvent set of F ).

4. Linear Temporal Logic

Linear Temporal Logic (LTL) is a modal logic in which modalities refer to
time. In LTL the future is seen as a sequence of states that defines a path [9].

Generally, temporal logics are used in system verification, properties of
the system being expressed as formulae that can be true or false in different
moments of the system’s life. Different properties of the system such as safety
(something ”bad” will never happen) or liveness (something ”good” will always
happen - even if we do not know when) are such kind of system characteristics
that can be verified using LTL. As usual, because semantic algorithms are
rather difficult to implement on such issues, we have to redirect our attention
on the syntactic approach, following the scheme already suggested.

The syntax for LTL will be defined in the same way as that for PL or
PL1.

Syntax
The alphabet of LTL is Alf = A ∪A ∪ Pa ∪ C1 ∪ C2, where:

• A = {p1, p2, p3, p4, ...} and A = {ep1, ep2, ep3, ..., } - the sets of proposi-
tions/atoms (positive and negative)
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• Pa = {(, )} - the set of parentheses

• C1 = {e,∨,∧} - the set of logical connectives

• C2 = {◦, �, ♦ , U, Ũ} - the set of temporal operators/connectives for future

We put SP = {{p1, ep1}, {p2, ep2}, {p3, ep3}, ..., {pn, epn}...} - a set of sets,
each of them containing a positive and a negative proposition, each positive
proposition being ”the contrary” of the negative one in the same set.

In a set that is formed by a proposition and the negative form of the same
proposition, it is not important if the proposition in the positive form is true
or not. The idea is that every element in the SP set contains for sure a true
proposition and a false one.

Definition 13 The set of atoms is then defined as: At = {true, false}∪BA,
where BA =

⋃
i∈N{xi|xi ∈ {pi, epi}}.

In this set it is impossible to have at the same time a proposition p ∈ A
and the same proposition in its negative form (or vice versa).

Definition 14 (LTL syntax )
Base

• If p ∈ At then p ∈ LTL

Constructive step

• If F1 ∈ LTL and F2 ∈ LTL, then (F1 ∨ F2) ∈ LTL

• If F1 ∈ LTL and F2 ∈ LTL, then (F1 ∧ F2) ∈ LTL

• If F ∈ LTL, then (◦F ) ∈ LTL

• If F ∈ LTL, then (�F ) ∈ LTL

• If F ∈ LTL, then (♦F ) ∈ LTL

• If F1, F2 ∈ LTL, then (F1UF2) ∈ LTL

• If F1, F2 ∈ LTL, then (F1ŨF2) ∈ LTL

• If F ∈ LTL, then (F ) ∈ LTL
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• Nothing else belongs to LTL

At a semantic level, some of the temporal connectives can be written with
the help of the others. That is why the language can be reduced by eliminating
the U and the Ũ operators. U and Ũ can be written using the � and ♦
connectors, but this is not a simple task (it implies recursion and fixed points).
Many authors use U and Ũ because � F and ♦ F can be expressed directly
with the help of the others. Namely:

• ♦F = (true UF )

• �F = (false ŨF )

• ♦F = e(�(eF ))

• F1UF2 = ♦F2 ∧ ((F1UF2) ∨�F1)

• F1ŨF2 = (F2U(F1 ∧ F2) ∨ (�F2)

• F1ŨF2 =e(eF1UeF2)

Semantics Based on Paths
The classical semantics for LTL formulae is based on paths (a path is an

ordered set of states, also known as a run). Every state of the path contains
a set of atoms that are true in that state. We can consider a function π :
N → 2At that, applied to an integer value i returns the set of atoms that
are true in the ith state of the path. Thus, we may consider, πi : N → 2At,
πi(j) = π(i + j),∀j ∈ N. In particular we have π1(j) = π(1 + j),∀j ∈ N .

Definition 15 (The classical semantics of LTL) Base

• π � true and π 2 false

• π � p if and only if p ∈ π(0), and π �ep if and only if p /∈ π(0) (for
every p ∈ A)

Constructive step

• π � (F1 ∧ F2) if and only if π � F1 and π � F2
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• π � (F1 ∨ F2) if and only if π � F1 or π � F2

• π � (◦F ) if and only if π1 � F

• π � (♦F1) if and only if there is j > 0 such that πj � F1

• π � (�F1) if and only if for every j > 0 we have πj � F1

• π � (F ) if and only if π � F

• π � (F1UF2) if and only if there exists j ∈ N such that πj � F2 and for
each i ∈ N, i < j we have that πi � F1

• π � (F1ŨF2) if and only if there exists j ∈ N such that πj �eF2 and for
that j, there exists i ∈ N, i < j such that πi � F1

Each of the above laws has to be considered for any path π.

It can be concluded that this operational semantics is not defined in the
same manner as the one for PL or PL1. In the previous case we have spoken
about a function from the set of formulae into B, also named a structure. Let
us call it the S - notation.

Semantics Using the S - notation
We start again by an initial Boolean interpretation of atoms.

Definition 16 (Assignation) An assignation is a pair As = 〈π, I〉, where
π : N → 2At and I : N × At → B defined by I(i, p) = 1 if p ∈ π(i) and 0
otherwise.

For an assignation As = 〈π, I〉, we will use the notation Ask to denote
a new assignation starting at state k in the path π: Ask =

〈
πk, I ′

〉
, where

I ′(i, p) = I(i + k, p).
Below,

∑
and

∏
refer to the Boolean sum and the Boolean product, re-

spectively.

Theorem 8 For each assignation As = 〈π, I〉 there exists a unique extension
function S : LTL → B called structure and defined as follows:

Base

• If F ∈ At then S(F ) = I(0, F )
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In the following we will use the notation Sk as the extension of the assig-
nation Ask.

Constructive step

• If F = (F1 ∨ F2) then S(F ) = S(F1 ∨ F2) = S(F1) + S(F2)

• If F = (F1 ∧ F2) then S(F ) = S(F1 ∧ F2) = S(F1) • S(F2)

• If F = (◦F1) then S(F ) = S1(F1)

• If F = (♦F1) then

S(F ) =
∑
k∈N

Sk(F1)

• If F = (�F1) then

S(F ) =
∏
k∈N

Sk(F1)

• If F = (F1UF2) then S(F ) = S(F1UF2) = 1 if and only if there exists
u ∈ N such that Su(F2) • Su−1(F1) • Su−2(F1) • ... • S1(F1) = 1

• If F = (F1ŨF2) then S(F ) = S(F1ŨF2) = 1 if and only if there exists
u ∈ N such that we have (Su(F2)) = 1 and for that u, there is a k ∈
N, k < u and Sk(F1) = 1

We have to prove:

• If F = (F1 ∨ F2) then S(F ) = S(F1 ∨ F2) = S(F1) + S(F2).
S(F ) = S(F1 ∨ F2) means that F1 ∨ F2 ∈ π and that means that either
F1 or F2 belongs to π: F1 ∈ π or F2 ∈ π. We will consider two cases:
If F1 ∈ π means that S(F1) = 1 = S(F1) + a, ∀a ∈ B; Considering
a = S(F2) (that belongs to B) the result is obvious.
The second case F2 ∈ π can be treated in the same manner resulting that
S(F2) = 1 = S(F1) + S(F2).

• If F = (F1 ∧ F2) then S(F ) = S(F1 ∧ F2) = S(F1) • S(F2) is somehow
similar with the first case.
S(F ) = S(F1 ∧ F2) means that F1 ∧ F2 ∈ π and that means that both
F1 and F2 belong to π: F1 ∈ π and F2 ∈ π. S(F1) = 1 and S(F2) = 1
meaning that S(F1) • S(F2) = 1 • 1 = 1.
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• If F = (◦F1) then S(F ) = S1(F1) F ∈ π ⇔ (◦F1) ∈ π and according to
π, the formula ◦F1 is true in the state π iff F1 is true in the next state:
π(i + 1) which is also denoted by π1 ( F1 ∈ π1). We can write that as:
S(F ) = S(◦F1) = S1(F1).

• If F = ♦F1 then

S(F ) =
∑
k∈N

Sk(F1)

If F = (♦F1) then S(F ) = 1 if and only if there is at least one state j
and F1 ∈ πj. If F1 ∈ πj that means that Sj(F1) = 1 and because S(F ) is
defined as a sum of all next states, also it includes the state πj in which
Sj(F1) = 1. The sum of any number of boolean variables is 1 if there is
at least one variable with the value 1. That means that S(F ) = 1 if and
only if ∑

k∈N

Sk(F1) = 1

• If F = �F1 then

S(F ) =
∏
k∈N

Sk(F1)

If F = (�F1) then S(F ) = 0 if and only if there is at least one state j
and F1 /∈ πj. If F1 /∈ πj that means that Sj(F1) = 0 and because S(F )
is defined as a product of all next states, it also includes the state πj in
which Sj(F1) = 0. The product of any number of boolean variables is 0 if
there is at least one variable with the value 0. That means that S(F ) = 0
if and only if ∑

k∈N

Sk(F1) = 0

Otherwise, if the sum is 0, it means that there is no j state (where j is
bigger than 0) that satisfies the formula F1 (@j, j > 0 so Sj(F1) = 1), which
means that (♦F ) /∈ π ⇔ π 2 F .

We have got again a set of formulae (LTL) and a semantic definition of
truth, based on structures.

To prove the uniqueness of S, suppose that there exists another homomor-
phic extension of S, denoted by S ′. Knowing that all the objects implied, S,
S ′, are functions in the mathematical sense, the fact that S = S ′ is immediate
proved by constructive induction.
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Resolution
Temporal resolution is fairly complex compared to the PL and PL1 equiva-

lent methods. From the existing approaches [2, 4, 6] we chose to follow Fisher’s
description of clausal temporal resolution [2].

In order to introduce the normal form necessary for the temporal resolution,
we need to introduce a special symbol start, which has the special property
that it holds only at the beginning of time, in any structure: S(start) = 1 and
Sk(start) = 0, for every k ∈ N∗.

Definition 17 (Separated Normal Form) A formula F ∈ LTL is in sep-
arated normal form (SNF) if it is of the form

F = �
∧
i

Ci

where each Ci is a LTL clause of one of the following forms:

start ⇒
∨
a

La

∧
b

Lb ⇒ ◦
∨
c

Lc∧
d

Ld ⇒ ♦L

and La, Lb, Lc, Ld and L are literals.

Definition 18 (Resolvent) Let C1, C2, R ∈ LTL be clauses. Then R =
Res(C1, C2) is a resolvent of C1 and C2 if it can be derived using any of the
resolution rules (step resolution, temporal resolution or augmentation).

For a full description of the resolution rules mentioned in the definition of
a resolvent the reader is advised to consult [2].

Lemma 3 Let F ∈ LTL a formula in SNF, C1, C2 ∈ F clauses. If R =
Res(C1, C2) is a resolvent for C1 and C2, then F is strongly equivalent with
F ∪ {R} (for any structure S, S(F ) = S(F ∪ {R})).

Theorem 9 (Resolution theorem; soundness and completeness). Let
F ∈ LTL be a set of clauses (a formula in SNF). F is unsatisfiable if and
only if ⊥ ∈ Res∗(F ) (the empty clause belongs to the resolvent set of F ).

259



C. Masalagiu, V. Alaiba - Towards a Unified Theorem of Soundness and...

5. Towards a Unified Soundness and Completeness Theorem for
Resolution

Up to this point we analysed three logics, PL, PL1 and LTL, using the same
methodology. For each logic, we introduced a constructive syntax, thus for-
mally describing the notion of formula. Following the syntax, a definition of
semantics based on the concept of structure, or S-notation, is defined. The
semantics are not fundamentally different from the classic definitions, as the
purpose of the paper is to introduce a unified methodology for a set of logics,
rather than adding specific results for a single logic. The notion of resolution
is examined in all logics as a means of deriving new clauses from existing ones.

We can now draw from the previous sections and point toward a set of
generic results. For the following paragraphs, let L be a logic defined using
our methodology (for now one of PL, PL1 and LTL).

Lemma 4 Let F ∈ L a formula in clausal normal form, C1, C2 ∈ F clauses.
If R = Res(C1, C2) is a resolvent for C1 and C2, then F is strongly equivalent
with F ∪ {R} (for any structure S, S(F ) = S(F ∪ {R})).

By the phrase clausal normal form we understand the corresponding normal
form in each of the languages.

Theorem 10 (Resolution theorem; soundness and completeness).
Let F ∈ L be a set of clauses (a formula in clausal normal form). F is unsat-
isfiable if and only if ⊥ ∈ Res∗(F ) (the empty clause belongs to the resolvent
set of F ).

The proof of the theorem in different logics is based upon a lemma similar
to the one enunciated above and some proofs depend on others, like for example
in PL1 proving the resolution theorem requires results regarding the Herbrand
extension.

6. Conclusions and Future Research

Although there are still a few steps to make to achieve a unified soundness
and completeness theorem for resolution that can be applied in many different
kinds of 2-valued logics, we believe that the work done so far is interesting
from at least two points of view. First, it provides a well defined methodol-
ogy for analysis of a 2-valued logic, based on constructive definitions and the
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S-notation. Second, it shows that although there are significant differences
between logics, some results can be enunciated in a similar manner.

Our main idea is to suggest a uniform framework for treating the syntax,
semantics, and satisfiability of logical languages. The main step is to have a
constructive definition for semantics, starting from a corresponding definition
of the syntax, i.e. a structure S : L → B. Then, knowing that S is recursive
(or, at least, recursively denumerable), the idea is to derive a syntactic method
to compute it and a soundness and completeness theorem related to a notion
of truth, materialized as a boolean algebra.

We plan to apply the same methodology for other logics like computation
tree logic, temporal logic of actions and some logics of belief. The notion of
structure could be applied to other methods requiring a connection between
syntax and semantics. A first step is considering the field of automated theorem
proving in general, not limited to resolution. It would be interesting to study
in the same uniform framework other types of semantics for 2-valued logics -
for instance algebraic. In the future, we might create a universal checker for
testing satisfiability of a formula in a certain logic, starting from a syntax and
a semantics as described in this paper.
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