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Abstract. For Hamilton-Poisson differential equation in R3, stochastic
perturbations are defined using three-dimensional Wiener process. A Lya-
punov function is built for each steady state and it is proved that steady states
are stable in probability. Numerical simulations are performed to confirm the
new theory presented in this article.
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1. The Hamilton-Poisson differential equation in R3

The dynamics of some mechanical systems from technical domain is de-
scribed by the dynamics of the rigid body with fixed point, or the mathe-
matical pendulum, or oscillators. These mechanical systems are part of the
geometric mechanics and belong to a class of differential equations in R3, with
the right side part polynomial functions of degree greater or equal to two.

Classical Hamilton-Poisson differential equations in R3 are described by the
system:

ẋ1(t) = α1x2(t)x3(t),

ẋ2(t) = α2x1(t)x3(t), (1)

ẋ3(t) = α3x1(t)x2(t).
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For α1 = 1, α2 = −1, α3 = 1, the system (1) is a system Rabinovich [3].
For α1 = 1, α2 = −1, α3 = −k2, k ∈ (0, 1) the system (1) is a Titeica-

Liouville system [5].
For α1 = 1

I3
− 1

I2
, α2 = 1

I1
− 1

I3
, α3 = 1

I2
− 1

I1
, with I1 > I2 > I3 the system

(1) is the system of rigid body on SO(3) ([7], [8], [9]).

For α1 = −
(

1
I2

+ 1
I3

)
, α2 = 1

I1
+ 1

I3
, α3 = 1

I1
− 1

I2
, with I1 > I2 > I3 the

system (1) is the system of rigid body on SO(2,1) [2].
The system (1) has the steady states e0 = (0, 0, 0)T , e1 = (m, 0, 0)T , e2 =

(0, m, 0)T , e3 = (0, 0, m)T , with m ∈ R
Steady state analysis was presented in details in [2], [4], [7], [8], [9].
In reality, stochastic effects can be very important. Recent advances in

stochastic differential equations enable us to introduce stochasticity into mod-
els describing physical phenomena, as a random noise in the system of differ-
ential equation or as environmental fluctuations in parameters.

Let {Ω,Ft, P} be the probability space with usual notion ([1], [6]), and
(B1(t), B2(t), B3(t))

T = B(t) a three-dimensional Winer process. We consider
the effect of the environmental fluctuation on the model system (1) and the
stochastic stability of the co-existing steady-state associated with the model
system. It is assumed that stochastic perturbations of the state variables
around their steady-state values in R3 are Gaussian noise, proportional with
the distances between x = (x1, x2, x2)

T and the steady-state ei, i = 1, 2, 3.
For this propose it is considered the system (1) with perturbations which are
directly proportional to x1 − x10, x2 − x20, respectively x3 − x30, with xi0 are
the coordinates of ei, i = 1, 2, 3.

The stochastic perturbation of (1) for e0 is

dx1(t) = (α1x2(t)x3(t) + ax1(t))dt + σ1x1(t)dB1(t),

dx2(t) = (α2x1(t)x3(t) + bx2(t))dt + σ2x2(t)dB2(t), (2)

dx3(t) = (α3x1(t)x2(t) + cx3(t))dt + σ3x3(t)dB3(t),

where a, b, c ∈ R and αi, σi ∈ R, i = 1, 2, 3.
The stochastic perturbation of (1) for e1 is

dx1(t) = (α1x2(t)x3(t) + a(x1(t)−m))dt + σ1(x1(t)−m)dB1(t),

dx2(t) = (α2x1(t)x3(t) + bx2(t))dt + σ2x2(t)dB2(t), (3)

dx3(t) = (α3x1(t)x2(t) + cx3(t))dt + σ3x3(t)dB3(t),
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where a, b, c ∈ R and αi, σi ∈ R, i = 1, 2, 3.
The stochastic perturbation of (1) for e2 is

dx1(t) = (α1x2(t)x3(t) + ax1(t))dt + σ1x1(t)dB1(t),

dx2(t) = (α2x1(t)x3(t) + b(x2(t)−m))dt + σ2(x2(t)−m)dB2(t), (4)

dx3(t) = (α3x1(t)x2(t) + cx3(t))dt + σ3x3(t)dB3(t),

where a, b, c ∈ R and αi, σi ∈ R, i = 1, 2, 3.
The stochastic perturbation of (1) for e3 is

dx1(t) = (α1x2(t)x3(t) + ax1(t))dt + σ1x1(t)dB1(t),

dx2(t) = (α2x1(t)x3(t) + bx2(t))dt + σ2x2(t)dB2(t), (5)

dx3(t) = (α3x1(t)x2(t) + c(x3(t)−m))dt + σ3(x3(t)−m)dB3(t),

where a, b, c ∈ R and αi, σi ∈ R, i = 1, 2, 3.
In [1] a stochastic perturbation of a Hamilton-Poisson system is defined as

follows. Let ({·, ·}, h, R3) be a Hamilton-Poisson system of differential equa-
tions, given as

ẋi(t) = {xi(t), h(x(t))}, i = 1, 2, 3, (6)

and da : R3 → R, a = 1, 2, 3 are functions of class C∞. The stochastic
perturbation of (6) in the direction da, a = 1, 2, 3 is the stochastic system

dxi = ({xi(t), h(x(t))}+
3∑

a=1

{{xi, da}, da}dt +
3∑

a=1

{xi, da}dBa(t), i = 1, 2, 3.

(7)
Let E be the mean value of the probability space. The stationary solution

e0 of (2) is said to be mean square stable if for any ε > 0 there exists a
number δ > 0 such that E(|x(t)|2) < ε, for any t ≥ 0. The solution e0 of
(2) is said asymptotically mean square stable if it is mean square stable and
limt→∞E(|x(t)|2) = 0. The stationary solution e0 of (2) is said to be stable
in probability (stochastic) if for any ε1, ε2 > 0, there exists a number δ > 0
such that the solution x(t) satisfies: P{|x(t)| > ε1} < ε2, where P denotes the
probability of an even.
Theorem 1.[1] Let open set D ⊂ R3, e0 ∈ D. If there exists a function
V : D → R such that

k1‖x(t)‖2 ≤ V (x(t)) ≤ k2‖x(t)‖2,

LV (x(t)) < −k3‖x(t)‖2, (8)
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where k1, k2, k3 ∈ R+, and

LV (x) = α1x2x3
∂V

∂x1

+ α2x1x3
∂V

∂x2

+ α3x1x2
∂V

∂x3

+

+
1

2
σ2

1x
2
1

∂2V

∂x2
1

+
1

2
σ2

2x
2
2

∂2V

∂x2
2

+
1

2
σ2

3x
2
3

∂2V

∂x2
3

(9)

then the stationary solution e0 is stable in probability.
The function V with the conditions (8), (9) is called the Lyapunov function

for e0.
In Section 2 it is analyzed the stochastic stability for the system (1) ac-

cording to the αi, i = 1, 2, 3 in steady state e0. In Section 3 it is analyzed the
stochastic stability for the system (1) according to the αi, i = 1, 2, 3 in steady
state ei, i = 1, 2, 3. In Section 4, numerical simulation is done and in section
5conclusions and future research directions are presented.

2.The Lyapunov function for e0

The steady-state analysis is done by building a function on an open set D,
V : D → R, e0 ∈ D that satisfies the conditions (8) and (9).
Proposition 2. If there exist ωi, ωi ∈ R+, i = 1, 2, 3, such that

α1ω1 + α2ω2 + α3ω3 = 0 (10)

and a < 0, b < 0, c < 0, |σ1| <
√

2|a|, |σ2| <
√

2|b|, |σ3| <
√

2|c|, then

V (x) = ω1x
2
1 + ω2x

2
2 + ω3x

2
3, (11)

satisfies the relations

min
i=1,2,3

{ωi}‖x‖2 ≤ V (x) ≤ max
i=1,2,3

{ωi}‖x‖2,

LV (x) < −max{−2a− σ2
1, −2b− σ2

2, −2c− σ2
3}‖x‖2, (12)

where ‖x‖2 = x2
1 + x2

2 + x2
3. It results that the stationary solution e0 is stable

in probability.
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Proof. For V (x) given by (11) and (9) results that

LV (x) = 2ω1x1(α1x2x3 + ax1) + 2ω2x2(α2x1x3 + bx2)

+ 2ω3x3(α3x1x2 + cx3)

+
1

2
(2σ2

1x
2
1ω1 + 2σ2

2x
2
2ω2 + 2σ2

3x
2
3ω3)

= 2(α1ω1 + α2ω2 + α3ω3)x1x2x3

+ ω1(2a + σ2
1)x

2
1 + ω2(2b + σ2

2)x
2
2 + ω3(2c + σ2

3)x
2
3.

If α1ω1+α2ω2+α3ω3 = 0 has the solutions ωi > 0, i = 1, 2, 3 and |σ1| <
√

2|a|,
|σ2| <

√
2|b|, |σ3| <

√
2|c|, then the relations (12) are true.

From Proposition 2 results that steady-state e0 is stable in probability.
Corollary 1. If α1 = 1, α2 = −1, α3 = 1, a positive solution of the equation
ω1 − ω2 + ω3 = 0 is ω1 = 1, ω2 = 2, ω3 = 1. The Lyapunov function is given
by

V (x) = x2
1 + 2x2

2 + x2
3. (13)

Corollary 2. If α1 = 1, α2 = −1, α3 = −k2, a solution of the equation
ω1 − ω2 − ω3 = 0 is ω1 = 1 + k2, ω2 = 1, ω3 = 1. The Lyapunov function is
given by

V (x) = (1 + k2)x2
1 + x2

2 + x2
3. (14)

Corollary 3. If α1 = 1
I3
− 1

I2
, α2 = 1

I1
− 1

I3
, α3 = 1

I2
− 1

I1
, I1 > I2 > I3 > 0, a

positive solution of the equation α1ω1 + α2ω2 + α3ω3 = 0 is given by ω1 = 1
α1

,

ω2 = 2
|α2| , ω3 = 1

α3
. The Lyapunov function is given by

V (x) =
1

α1

x2
1 +

2

|α2|
x2

2 +
1

α3

x2
3. (15)

Corollary 4. If α1 = 1
I2

+ 1
I3

, α2 = −( 1
I1

++ 1
I3

), α3 = 1
I1
− 1

I2
, I1 > I2 > I3 > 0,

a positive solution of the equation α1ω1 + α2ω2 + α3ω3 = 0 is of the form
ω1 = 1

|α1| , ω2 = 2
α2

, ω3 = 1
|α3| and the Lyapunov function is given by

V (x) =
1

|α1|
x2

1 +
2

α2

x2
2 +

1

|α3|
x2

3. (16)
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The Poisson structure that defines the system of differential equations of
free rigid body motion in SO(3) is

{x1, x2} = −x2, {x1, x3} = x2, {x2, x3} = −x1. (17)

The stochastic perturbation of the system of differential equation, corre-
sponding to the rigid body in SO(3) along the directions

d1(x) = a1x1(t), d2(x) = a2x2(t), d3(x) = a3x3(t), (18)

where ai ∈ R, i = 1, 2, 3 is

dx1(t) = (α1x2(t)x3(t)− (a2
2 + a2

3)x1(t))dt− a2x3(t)dB2(t) + a3x2(t)dB3(t),

dx2(t) = (α2x1(t)x3(t)− (a2
1 − a2

3)x2(t))dt− a3x33(t)dB1(t)− a3x1(t)dB3(t),

dx3(t) = (α3x1(t)x2(t)− (a2
1 + a2

2)x3(t))dt− a1x2(t)dB1(t) + a2x1(t)dB2(t).

(19)

Stochastic equations are obtained from (17), (18) and (7).
Proposition 3. The steady state e0 is stable in probability, for all αi ∈ R,

i = 1, 2, 3.
Proof. For ω1 = 1, ω2 = 1, ω3 = 1, and α1 = 1

I3
− 1

I2
, α2 = 1

I1
− 1

I3
, α3 = 1

I2
− 1

I1
it results that ω1α1 + ω2α2 + ω3α3 = 0. The Lyapunov function is then given
by

V (x) = x2
1 + x2

2 + x2
3. (20)

From (20), and (9) it results that

LV (x) = −(a2
2+a2

3)x
2
1−(a2

3+a2
1)x

2
2−(a2

1+a2
2)x

2
3 ≤ −max(a2

2+a2
3, a

2
3+a2

1, a
2
1+a2

2)‖x‖2.
(21)

3.The Lyapunov function for ei, i = 1, 2, 3

Let us consider the study for the steady-state e1 = (m, 0, 0)T .

Proposition 4. If there exist ωi, i = 1, 2, 3, ωi ∈ R+ so that

α1ω1 + α2ω2 + α3ω3 = 0, (22)

a < 0, b < 0, c < 0, |σ1| <
√

2|a|, |σ2| <
√

2|b|, |σ3| <
√

2|c|, m ∈ R and

|mα1| <
√

(2b + σ2
2)(2c + σ2

3)ω2ω3

ω1

, (23)
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then the Lyapunov function has the form

V1(x) = V1(x1 −m,x2, x3) = ω1(x
1 −m)2 + ω2x

2
2 + ω3x

2
3. (24)

Proof. Let V1(x) be given by (24). From (3) and (2) it results that

LV1(x) = 2x1x2x3(ω1α1 + ω2α2 + ω3α3) + ω1(x1 −m)2(2a + σ2
1)

+ ω2x
2
2(2b + σ2

2) + ω3x
2
3(2c + σ2

3)− 2ω1α1mx2x3.

From (22) and (23) we have the following inequations

min{ω1, ω2, ω3}((x1 −m)2 + x2
2 + x2

3) ≤ V1(x) ≤ max{ω1, ω2, ω3}((x1 −m)2 + x2
2 + x2

3),

V1(x) = ω1(x1 −m)2(2a + σ2
1) + ω2x

2
2(2b + σ2

2) + ω3x
2
3(2c + σ2

3)− 2ω1α1mx2x3

≤ −max(−ω1(2a + σ2
1),−ω2(2b + σ2

2),−ω3(2c + σ2
3))((x1 −m)2 + x2

2 + x2
3).

Thus V1(x) is Lyapunov function for e1 and the steady-state e1 is stable in
probability.

The result for the steady-state e2 = (0, m, 0)T is the following proposition.

Proposition 5. If there exist ωi, i = 1, 2, 3, ωi ∈ R+ such that

α1ω1 + α2ω2 + α3ω3 = 0, (25)

a < 0, b < 0, c < 0, |σ1| <
√

2|a|, |σ2| <
√

2|b|, |σ3| <
√

2|c|, m ∈ R and

|mα2| <
√

(2a + σ2
1)(2c + σ2

3)ω1ω3

ω2

, (26)

the Lyapunov function is given by

V2(x) = ω1x
2
1 + ω2(x2 −m)2 + ω3x

2
3. (27)

The proof is similar to that for the Proposition 4.

Let us consider the steady-state e3 = (0, 0, m)T .
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Proposition 6. If there exist ωi, i = 1, 2, 3, ωi ∈ R+ so that

α1ω1 + α2ω2 + α3ω3 = 0, (28)

a < 0, b < 0, c < 0, |σ1| <
√

2|a|, |σ2| <
√

2|b|, |σ3| <
√

2|c|, m ∈ R and

|mα3| <
√

(2a + σ2
1)(2b + σ2

2)ω1ω2

ω3

, (29)

then the Lyapunov function is

V3(x) = ω1x
2
1 + ω2x

2
2 + ω3(x3 −m)2. (30)

Using the Propositions 4, 5, 6 the following results are obtained.
Corollary 5. If α1 = 1, α2 = −1, α3 = 1, then ω1 = 1, ω2 = 2, ω3 = 3

a. If

|m| <
√

2(2b + σ2
2)(2c + σ2

3), (31)

the steady-state e1 is stable in probability.

b. If

|m| <
√

(2a + σ2
1)(2c + σ2

3)

2
(32)

the steady-state e2 is stable in probability.

c. If

|m| <
√

2(2a + σ2
1)(2b + σ2

2), (33)

the steady-state e3 is stable in probability.

Corollary 6. If α1 = 1, α2 = −1, α3 = −k2, k ∈ (0, 1), then ω1 = 1 + k2,
ω2 = 1, ω3 = 1.

a. If

|m| <
√

(2b + σ2
2)(2c + σ2

3)

1 + k2
, (34)

the steady-state e1 is stable in probability.
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S. Anikó, D. Opriş - Stochastic stability for the stochastic perturbation...

b. If

|m| <
√

(2a + σ2
1)(2c + σ2

3)(1 + k2), (35)

the steady-state e2 is stable in probability.

c. If

|m| <
√

2(2a + σ2
1)(2b + σ2

2)(1 + k2), (36)

the steady-state e3 is stable in probability.

Corollary 7. If α1 = 1
I3
− 1

I1
, α2 = 1

I1
− 1

I2
, α3 = 1

I2
− 1

I3
, I1 > I2 > I3 > 0,

then ω1 = 1
α1

, ω2 = 1
|α2| , ω3 = 1

α3
.

a. If

|m| <

√
2(2b + σ2

2)(2c + σ2
3)

α3|α2|
, (37)

the steady-state e1 is stable in probability.

b. If

|m| < 1

2

√
(2a + σ2

1)(2c + σ2
3)

α1α3

, (38)

the steady-state e2 is stable in probability.

c. If

|m| <

√
2(2a + σ2

1)(2b + σ2
2)

α1|α2|
, (39)

the steady-state e3 is stable in probability.

Corollary 8. If α1 = −( 1
I2

+ 1
I3

), α2 = 1
I1

+ 1
I2

, α3 = 1
I1
− 1

I2
, I1 > I2 > I3 > 0,

Then ω1 = 1
|α1| , ω2 = 1

α2
, ω3 = 1

|α3| .

a. If

|m| <

√
2(2b + σ2

2)(2c + σ2
3)

α2|α3|
, (40)

the steady-state e1 is stable in probability.
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b. If

|m| < 1

2

√
(2a + σ2

1)(2c + σ2
3)

|α1|α3

, (41)

the steady-state e2 is stable in probability.

c. If

|m| <

√
2(2a + σ2

1)(2b + σ2
2)

|α1|α2

, (42)

the steady-state e3 is stable in probability.

4. Numerical simulation

Numerical simulation can be done using Matlab or Maple 12, using the
Euler stochastic method. Simulation results confirm the exposed theory.

For α1 = 1, α2 = −1, α3 = −k2, k = and m satisfying (32), orbits
(i, x1(i, ω)), (i, x2(i, ω)), (i, x2(i, ω)) are obtained. Their graphical representa-
tion are shown in Figure 1, Figure 2, Figure 3.
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For m satisfying (33), we obtain Figure 4, Figure 5, Figure 6.
For m satisfying (34), we obtain Figure 7, Figure 8, Figure 9.
Similarly simulations are performed for all the cases described in Corollary

1, 2, 3, 4, 5, 7, 8.
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5. Conclusions

In this paper, for classical Hamilton-Poisson systems of R3 (Rabinovicz,
Titeica-Liouville, rigid body in SO(3), rigid body in SO(2,1)) with linear con-
trol, stochastic perturbation was defined, associated to the steady states e0,
ei, i = 1, 2, 3. For stochastic differential equations system, Lyapunov function
was determined, and also the values of the parameters that describe the sys-
tem, such that the steady states to be stable in probability. The method used
in this paper can be applied to other Hamilton-Poisson systems from R3 such
as the Rikitake [11] and planar motions of an autonomous underwater vehicle
[10].
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