
ACTA UNIVERSITATIS APULENSIS Special Issue

NONUNIFORM BEHAVIORS FOR LINEAR DISCRETE-TIME
SYSTEMS IN BANACH SPACES

Ioan-Lucian Popa, Mihail Megan and Traian Ceauşu

Abstract. The aim of this paper is to emphasize two concepts of expo-
nential behaviors for linear discrete-time systems in Banach spaces. Charac-
terizations and relations between these concepts are given.
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1. Introduction and preliminaries.

In the theory of difference equations both in finite and infinite dimensional
spaces, the concepts of exponential stability play a central role in the study of
the asymptotical behaviors of solutions of discrete-time systems.

The purpose of this paper is to characterize the nonuniform exponential
stability of linear discrete-time systems in Banach spaces. The concept of
exponential stability is a direct generalization of the concept of uniform expo-
nential stability.

Our main objectives are to establish relations between these concepts and
to give necessary and sufficient conditions for the nonuniform exponential sta-
bility and respectively uniform exponential stability. The obtained results are
generalizations of some well known results due to K.M. Przyluski & S. Rolewicz
([11]), E.A. Barbashin ([2]) and A. Lyapunov ([8]).

Let X be a real or complex Banach space and X∗ its dual space. By B(X)
will be denoted the Banach algebra of all linear and bounded operators from
X into itself. The norms on X, X∗ and B(X) shall be denoted by ‖ . ‖ . Let
∆ be the set of all pairs (m,n) of positive integers satisfying the inequality
m ≥ n. We also denote by T the set of all triplets (m, n, p) of positive integers
with (m, n) and (n, p) ∈ ∆.

In this paper we consider linear discrete-time systems of the form
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xn+1 = A(n)xn. (A)

For system (A) we consider the mapping A : ∆ → B(X) defined by

An
m =

{
A(m) · . . . · A(n + 1), m ≥ n + 1

I , m = n.
(1)

where I is the identity operator on X.

Definition 1. The linear discrete-time system (A) is said to be uniformly
exponentially stable (and denote u.e.s) if there exist two constants N ≥ 1 and
α > 0 such that:

‖ A(m) · . . . · A(n + 1)x ‖≤ Ne−α(m−n) ‖ x ‖ (2)

for all (m, n, x) ∈ ∆×X.

Remark 1. For every linear discrete-time system (A) the following statements
are equivalent:

i) (A) is uniformly exponentially stable;

ii) there exist two constants N ≥ 1 and α > 0 such that

‖ Ap
mx ‖≤ Ne−α(m−n) ‖ Ap

nx ‖

for all (m, n, p, x) ∈ T ×X.

iii) there exist two constants N ≥ 1 and α > 0 such that

‖ An
mx ‖≤ Ne−α(m−n) ‖ x ‖

for all (m, n, x) ∈ ∆×X.

Example 1. Let X = R and A : N → B(R) defined by

A(n)(x) =
x

an

where an = en+ 1
2 , for all (n, x) ∈ N× R. According to (1) we have that

An
mx =

{
e

(n+1)2−(m+1)2

2 x m > n
x m = n

.

Hence, for N = 1 and α = 1
2

we have that system (A) is u.e.s.
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Definition 2. The linear discrete-time system (A) is said to be nonuniformly
exponentially stable (and denote n.e.s) if there exists a nondecreasing sequence
of real numbers φ : N −→ R∗+ such that:

‖ A(m) · . . . · A(n + 1)x ‖≤ φ(n)e−α(m−n) ‖ x ‖ (3)

for all (m, n, x) ∈ ∆×X.

Remark 2. For every linear discrete-time system (A) the following statements
are equivalent:

i) (A) is nonuniformly exponentially stable;

ii) there exists a nondecreasing sequence of real numbers φ : N −→ R∗+ such
that

‖ Ap
mx ‖≤ φ(n)e−α(m−n) ‖ Ap

nx ‖

for all (m, n, p, x) ∈ T ×X.

iii) there exists a nondecreasing sequence of real numbers φ : N −→ R∗+ such
that

‖ An
mx ‖≤ φ(n)e−α(m−n) ‖ x ‖

for all (m, n, x) ∈ ∆×X.

Definition 3. A mapping L : N × X −→ R+ is called a Lyapunov function
for the system (A) if

i) there is a sequence ϕ : N −→ [1,∞) such that

‖ x ‖≤ L(n, x) ≤ ϕ(n) ‖ x ‖,

and

ii) there is a constant a ∈ (1,∞) such that

L (m,An
mx)− aL

(
m + 1,An

m+1x
)
≥‖ An

mx ‖ (L)

for all (m, n, x) ∈ ∆×X.

2. Main results
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It is obvious that if system (A) it is uniformly exponentially stable then it
is nonuniformly exponentially stable. The following example shows that the
converse implication is not valid.

Example 2. Let X = R and A : N −→ B(R) given by:

A(n) = canI, where an =

{
1

(n+2)b if n = 2k

(n + 1)b if n = 2k + 1
(4)

with b ∈ (0, 1) and c > 1, for all (n, x) ∈ N × X. According to (1) we have
that:

An
mx =

{
cm−namnx m > n
x m = n

,

where

amn =



1 if m = 2q + 1 and n = 2p + 1
(n + 2)b if m = 2q + 1 and n = 2p

1

(m + 2)b
if m = 2q and n = 2p + 1(

n + 2

m + 2

)b

if m = 2q and n = 2p

(5)

We observe that previous inequality it is satisfied for φ(n) = (n + 1)c and
α = − ln b. Now, using Remark 2 we can conclude that system (A) is n.e.s. If
we suppose that system (A) is u.e.s. then there are two constants N ≥ 1 and
α > 0 such that

bm−namn ≤ Ne−α(m−n),

for all (m, n) ∈ ∆. In particular, for m = 2q + 1 and n = 2q we have that

beα(2q + 2)c ≤ N,

for all q ∈ N, which is a contradiction. Hence, system (A) is not u.e.s.

Remark 3. If system (A) is nonuniformly exponentially stable then using
Remark 2 there are two sequences of real numbers θ, γ : N −→ R∗+ with
lim

n→∞
θ(n) = ∞ such that

θ(m− n) ‖ An
mx ‖≤ γ(n) ‖ x ‖, (6)

for all (m, n, x) ∈ ∆ × X. For the case of uniform exponential stability the
converse implication is true, but for the nonuniform exponential stability it is
not, fact illustrated by the following example.
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Example 3. Let X = R and A : N −→ B(R) defined by:

A(n) =
n

n + 1
I,

for all n ∈ N. According to (5) we have that An
m = n+1

m+1
, for all m > n. If we

suppose that system (A) is n.e.s. then there exists a constant α > 0 and a
nondecreasing sequence of real numbers φ : N −→ R∗+ such that

‖ An
m ‖≤ φ(n)e−α(m−n),

for all (m, n) ∈ ∆. In particular for n = 0 we have that

1

m + 1
≤ φ(0)e−αm,

which is false. But, for θ(n) = γ(n) = n + 1 inequality (6) is verified and that
completes the proof.

Theorem 1. The linear discrete-time system (A) is nonuniformly exponen-
tially stable if and only if there exists a constant d > 0 and a nondecreasing
sequences of real numbers N : N → [1,∞) such that:

∞∑
k=n

ed(k−n) ‖ Ap
kx ‖≤ N(n) ‖ Ap

nx ‖, (7)

for all (m, n, p, x) ∈ T ×X.

Proof. Necessity. By a simple computation for d ∈ (0, α) we have that

∞∑
k=n

ed(k−n) ‖ Ap
kx ‖ ≤ φ(n) ‖ Ap

nx ‖
∞∑

k=n

e(d−α)(k−n)

= eαφ(n)
eα−ed ‖ Ap

nx ‖ .

Hence, for N(n) = eαφ(n)
eα−ed we obtain relation (7), with α and sequence φ(n)

given by Definition 2.
Sufficiency. The inequality (7) implies that:

ed(m−n) ‖ An
mx ‖≤ N(n) ‖ x ‖,

for all (m, n, x) ∈ ∆×X. Using Remark 2 it results that (A) is n.e.s.
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Theorem 2. If there is a constant b > 0 and a nondecreasing sequence of real
numbers N : N → [1,∞) such that:

m∑
k=n

eb(m−k) ‖ (Ak
m)∗x∗ ‖≤ N(n) ‖ x∗ ‖, (8)

for all (m, n, x∗) ∈ ∆×X∗, then the linear discrete-time system (A) is nonuni-
formly exponentially stable.

Proof. By (8) we have that:

‖ An
m ‖≤ N(n)e−b(m−n),

for all (m, n) ∈ ∆, which implies that (A) is n.e.s.

Remark 4. The characterizations given by previous Theorem can be consid-
ered as a variants for the discrete-time case of a result due to E.A. Barbasin
([2]) in the continuous case.

Theorem 3. The linear discrete-time system (A) is nonuniformly exponen-
tially stable if and only if there exists a Lyapunov function for (A).

Proof. Necessity. We define L : ∆× N −→ R+ by

L(n, x) =
∞∑

k=n

ed(k−n) ‖ An
kx ‖,

for all d > 0 and all (m, n, x) ∈ ∆×X.
For d ∈ (0, α) we have that

L(n, x) =
∞∑

k=n

ed(k−n) ‖ An
kx ‖

≤
∞∑

k=n

ed(k−n)e−α(k−n)N(n) ‖ x ‖

=
N(n)eα

eα − ed
= ϕ(n) ‖ x ‖ .

Hence,
‖ x ‖≤ L(n, x) ≤ ϕ(n) ‖ x ‖ .
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for all (n, x) ∈ N×X.
On the other hand we have that

L(m,An
mx) =

∞∑
k=m

ed(k−m) ‖ An
kx ‖

= an
m + qan

m+1 + q2an
m+2 + . . . (9)

where an
m =‖ An

mx ‖ and q = ed > 1.
Also,

L(m + 1,An
m+1x) =

∞∑
k=m+1

ed(k−m−1) ‖ An
kx ‖

= an
m+1 + qan

m+2 + q2an
m+3 + . . . (10)

According to (9) and (10) we have that

L(m,An
mx) = an

m + qL(m + 1,An
m+1x).

Hence
L(m,An

mx)− aL(m + 1,An
m+1x) ≥‖ An

mx ‖,
for every a ∈ (1, ed) and (m,n, x) ∈ ∆×X.

Sufficiency. According to (L) we have that

L(m,An
mx)−aL(m + 1,An

m+1x) ≥‖ An
mx ‖

L(m + 1,An
m+1x)−aL(m + 2,An

m+2x) ≥‖ An
m+1x ‖

L(m + 2,An
m+2x)−aL(m + 3,An

m+3x) ≥‖ An
m+2x ‖

. . . . . . . . . . . .

...

which implies
∞∑

j=m

aj−m ‖ Am
j x ‖=

∞∑
k=0

ak ‖ An
m+kx ‖≤ L(m,An

mx) ≤ ϕ(n) ‖ x ‖

for all (m, n, x) ∈ ∆×X.
Therefore for α = ln a > 0 we obtain

∞∑
k=n

eα(k−n) ‖ An
kx ‖≤ L(n, x) ≤ ϕ(n) ‖ x ‖ .

for every (n, x) ∈ N × X. By Theorem 1 we conclude that the system (A) is
n.e.s.
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Independenţei 54, 050094 Bucharest, Romania
email:megan@math.uvt.ro

Traian Ceauşu
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