EXPONENTIAL INSTABILITY IN MEAN SQUARE AND ADMISSIBILITY FOR STOCHASTIC VARIATIONAL EQUATION

DIANA STOICA AND MIHAIL MEGAN

ABSTRACT. We associate with a stochastic cocycle $\Theta = (\varphi, \Phi)$, on $Y = \Omega \times H$, a stochastic variational integral equation and we characterize the exponential instability in mean square of stochastic equations in therms of solvability of the associated equation. Thus we obtain a generalization of stochastic case for results obtained by O. Perron [8], in deterministic case.

2000 Mathematics Subject Classification:Primary 37L55; Secundary 60H25; 93E15.

Keywords: Stochastic cocycle, instability in mean square, admissibility, stochastic variational equations.

1. INTRODUCTION

Let $(\Omega, F, \{F_t\}_{t\geq 0}, \mathbf{P})$ be a standard filtered probability space and let φ : $\mathbf{R}_+ \times \Omega \to \Omega$ a stochastic semiflow on Ω . We consider a stochastic variational equations

$$\frac{du(t)}{dt} = A(\varphi(t,\omega))u(t), \quad t \ge 0$$
(1)

and the nonhomogeneous equation

$$du(t) = A(\varphi(t,\omega))u(t)dt + B(t)dW(t), \quad t \ge 0$$
⁽²⁾

where A is given by linear operators $A(\omega) \in L(H)$ on Hilbert space H, such that $\omega \to A(\omega)$ is strongly measurable. In addition $A(\omega)$ are infinitesimal generators of an analytic C_0 -semigroup on H denoted by $e^{-tA(\omega)}, t \ge 0$ and he function $t \to A(\varphi(t, \omega))$ is Holder continuous with values in L(H) (see Carrabalo in [3]). B is a continuous and bounded in mean square stochastic process on H, and $W(t), t \ge 0$ is a real Wiener process.

If there exists a stochastic cocycle $\Theta = (\varphi, \Phi)$, on $Y = \Omega \times H$ associated with the stochastic equation (1) then for every $\omega \in \Omega$ the mild solution of (2) is given by the stochastic integral variational equation:

$$u(t) = \Phi(t - s, \varphi(s, \omega))u(s) + \int_{s}^{t} \Phi(t - \tau, \varphi(\tau, \omega))B(\tau)dW(\tau), \quad \forall t \ge s \ge 0.$$
(3)

The existence of the stochastic cocycle associated with the stochastic variational equation (1) is conditioned by specific conditions for the family of linear operators $\{A(\omega)\}_{\omega\in\Omega}$ and was studied in [3, 6, 11] and L. Arnold in [1].

In the stochastic variational case we may associate with a stochastic cocycle $\Theta = (\varphi, \Phi)$ at avery $\omega \in \Omega$ the stochastic integral equation

$$f(t) = \Phi(t-s,\varphi(s,\omega))f(s) + \int_s^t \Phi(t-\tau,\varphi(\tau,\omega))B(\tau)dW(\tau), \quad \forall t \ge s \ge 0$$
(4)

where $B \in I(R_+, H)$ - the input space and $f \in O(R_+, H)$ - the output space, and thus the uniform exponential instability in mean square can be expressed in therms of the admissibility of the pair $(I(R_+, H), O(R_+, H))$ for stochastic variational equation, i.e for every $(\omega, B) \in \Omega \times I(R_+, H)$ the stochastic integral equation (4) has a unique solution $f \in O(R_+, H)$.

The main results is a new characterizations for uniform exponential instability in mean square of stochastic variational equations, and thus extends the results from deterministic case, obtained in [5, 10].

2. Preliminaries

Let H be a separable Hilbert space, L(H)- the set of all bounded linear operators on H and $(\Omega, F, \{F_t\}_{t>0}, \mathbf{P})$ be a standard filtered probability space.

Definition 1 A stochastic semiflow on Ω is a measurable random field φ : $(\mathbf{R}_+ \times \Omega, B(\mathbf{R}_+) \otimes F) \rightarrow (\Omega, F)$ satisfying the following properties:

- $\varphi(0,\omega) = \omega$,
- $\varphi(t+s,\omega) = \varphi(t,\varphi(s,\omega))$

for all $(t, s, \omega) \in R^2_+ \times \Omega$.

Definition 2 A pair $\Theta = (\varphi, \Phi)$ is called stochastic cocycle on $Y = \Omega \times H$ if φ is a stochastic semiflow on Ω and the mapping $\Phi : \mathbf{R}_+ \times \Omega \to L(H)$ satisfies the following properties

- $\Phi(0,\omega) = I$ (the identity operator on H),
- $\Phi(t+s,\omega) = \Phi(t,\varphi(s,\omega))\Phi(s,\omega),$

for all $(t, s, \omega) \in \mathbb{R}^2_+ \times \Omega$.

Example 1 Let H be a real separable Hilbert space and let Ω be the space of all continuous paths $\omega : R_+ \to X$, such that $\omega(0) = 0$ with the compact open topology. Let F_t for $t \ge 0$, be the σ -algebra generated by the set $\{\omega \to \omega(u) \in X \text{ with } u \le t\}$ and let F be the associated Borrel σ -algebra to Ω . If \mathbf{P} is a Wiener measure on Ω then $(\Omega, F, \{F_t\}_{t\ge 0}, \mathbf{P})$ is a filtered probability space with the Wiener motion $W(t, \omega) = \omega(t)$ for all $(t, \omega) \in R_+ \times \Omega$.

Then $\varphi : R_+ \times \Omega \to \Omega$ defined by $\varphi(t, \omega)(\tau) = \omega(t+\tau) - \omega(t)$ is a stochastic semiflow on Ω generated by Wiener shift.

For every $\omega \in \Omega$ we consider the stochastic parabolic system

$$\frac{dy(\xi,t)}{dt} = \omega(t)\frac{\partial^2 y}{\partial^2 \xi}(t,\xi), \quad t > 0, \ \xi \in (0,1)$$

$$u(0,t) = u(1,t) = 0$$
(5)

$$y(0,t) = y(1,t) = 0$$

where $H = L^2(0,1)$, $Ax = \frac{\partial^2}{\partial^2 \xi} x$ with $D(A) = H_0^1 \cap H^2(0,1)$. If for every $\omega \in \Omega$ we denote $A(\omega) = \omega(0)A$. The operator A is the infinitesimal generator of an analytic semigroup T(t) on H [7], and the eigenvalues of A are $\lambda_n = -n^2 \pi^2$ with the corresponding eigenvectors $\alpha_n = \sqrt{2}cos(\pi n\xi)$, $n \in N^*$. Thus the analytic semigroup on H is

$$T(t)x = \sum_{n=1}^{\infty} 2e^{-n^2\pi^2} \cos(\pi n\xi) \int_0^1 x(\tau) \cos(\pi n\tau) d\tau, \quad x \in H.$$
 (6)

Then the stochastic parabolic equation (5) is rewritten of stochastic variational equation

$$dx(t) = A(\varphi(t,\omega))x(t), \quad t > 0,$$
(7)

which generates the stochastic cocycle $\Theta(\varphi, \Phi)$ on $H \times \Omega$, where $\Phi : \mathbf{R}_+ \times \Omega \to L(H)$, is defined by

$$\Phi(t,\omega)x = T\left(\int_0^t \omega(\tau)dW(\tau)\right)x$$

and $\varphi: R_+ \times \Omega \to \Omega$ is the stochastic semiflow generated by Wiener shift.

Definition 3 A stochastic cocycle $\Theta = (\varphi, \Phi)$ on Y is with uniform exponential growth in mean square if there exists a constant $M \ge 1$ and $\lambda > 0$ such that:

$$E||\Phi(t,\omega)x||^2 \leq Me^{\lambda t}E||x||^2$$
, for all $t \geq 0$, and $\omega \in \Omega$.

Definition 4 The stochastic equation (1) is said to be uniformly exponentially instable in mean square if for every $(\omega, t) \in \Omega \times R_+$ the operator $\Phi(t, \omega)$ is invertible and there are two constants $N \ge 1$, $\nu \ge 0$, such that:

$$E||\Phi(s,\omega)x||^{2} \le Ne^{-\nu(t-s)}E||\Phi(t,\omega)x||^{2},$$
(8)

for all $t \ge s \ge 0$, and $(\omega, x) \in Y$.

3. Exponential instability in mean square and admissibility

In the next we denote by $C_b(R_+, H)$ the Banach space of all bounded stochastic process $u: R_+ \to H$ with the norm

$$||u||_2 = \left(\sup_{t\geq 0} E||u(t)||^2\right)^{1/2}$$

In the all of the paper we have the hypothesis that the stochastic cocycle $\Theta = (\varphi, \Phi)$ is with uniform exponential growth in mean square.

Definition 5 The pair $(C_b(R_+, H), C_b(R_+, H))$ is said to be admissible for stochastic equation (2), and denoted by (C_b, C_b) , if for every $\omega \in \Omega$ and $B \in C_b(R_+, H)$ there exists a unique function $f_B \in C_b(R_+, H)$ such that the pair (f_B, B) satisfies the stochastic integral equation

$$f_B(t) = \Phi(t-s,\varphi(s,\omega))f_B(s) + \int_s^t \Phi(t-\tau,\varphi(\tau,\omega))B(\tau)dW(\tau), \quad \forall t \ge s \ge 0.$$
(9)

Lemma 1 If the pair (C_b, C_b) is admissible for stochastic equation (2) then $\Phi(t, \omega)$ is invertible, for all $(t, \omega) \in R_+ \times \Omega$.

426

Proof. We prove that $\Phi(t, \omega)$, for all $(t, \omega) \in R_+ \times \Omega$, is a bijective mapping. Let $x \in Ker\Phi(t_0, \omega), t_0 > 0$ if we consider that the stochastic process $B \equiv 0$ and $f_B(t) = \Phi(t, \omega)x$ then $f_B \in C_b$ and the pair (f_B, B) satisfies the relation (9), and from the hypothesys we obtain that $f_B \equiv 0$ and since $x = f_B(0) = 0$ it follows that the stochastic process $\Phi(t, \omega)$ is injective.

Let $x \in H$ and let β be a continuous stochastic process with $\int_0^1 \beta(\tau) dW(\tau) =$ 1. If denote by

$$B(t) = -\beta(t - t_0)\Phi(t - t_0, \varphi(t_0, \omega))x, \text{ for all } t \ge t_0$$
$$f_B(t) = \Phi(t - t_0, \varphi(t_0, \omega))x \int_t^\infty \beta(\tau - t_0)dW(\tau)$$

we have that $B, f_B \in C_b$ and the pair (f_B, B) satisfies the relation (9) for all $t \ge t_0 \ge 0$. If define the mapping

$$g(t) = f_B(t+t_0) - \Phi(t,\varphi(t_0,\omega)) \int_{t+t_0}^{\infty} \beta(\tau) dW(\tau) x$$

we obtain that $g \in C_b$ and we deduce that the pair (g, 0) satisfies the equation (9) and thus from hypothesis it follows that g = 0 and so from relation (9) we have $x = f_B(t_0) = \Phi(t_0, \omega)f(0) \in Im\Phi(t_0, \omega)$. Thus the mapping $\Phi(r, \omega)$ is surjective and so is an invertible mapping. \Box

Remark 1 If the pair (C_b, C_b) is admissible for stochastic equation (2) then for every $\omega \in \Omega$ we can consider the subspace D(Q) of all stochastic process from $C_b(R_+, H)$ which are solutions of stochastic integral equation (9).

Lemma 2 If the pair (C_b, C_b) is admissible for stochastic equation (2) then there exist a positive constant K such that

$$E||f_B||^2 \le K \ E||B||^2, \tag{10}$$

for every $f_B \in D(Q)$, where K is independent of B.

Proof. From hypothesis we have that the operator $Q: D(Q) \to C_b(R_+, H)$ is a bijective mapping. In the next we consider the norm

$$|||f||| = ||f||_2 + ||Qf||_2.$$
(11)

and we prove D(Q) is a complete space. Let $\{f_B^n\}$ be a sequence, and so from (11) this is a fundamental sequence and is in $C_b(R_+, H)$, and so exists a limit $f_B \in C_b(R_+, H)$ such that for all $t \ge 0$ we have

$$E||f_B^n - f_B||^2 \to 0, \quad n \to \infty.$$

From

$$||Q(f_B^n - f_B^m)||_2 \le ||Q|||||f_B^n - f_B^m|||$$

result that the sequence $Qf_B^n = B_n$ is fundamental in $C_b(R_+, H)$ and so here exist a limit B(t) such that

$$\sup_{t \ge 0} E||B_n(t) - B(t)||^2 \to 0,$$

for $n \to \infty$, and $B \in C_b(R_+, H)$. We prove that $f_B(t)$ satisfies the equation (9). Thus, since the stochastic process B(t) is continuous and bounded it follows that f_B is F_t -measurable and so exist the integral from equation (9). For all $t \ge 0$ we have

$$E \left\| f_B(t) - \Phi(t - s, \varphi(s, \omega)) f_B(s) - \int_s^t \Phi(t - \tau, \varphi(\tau, \omega)) B(\tau) dW(\tau) \right\|^2 \le$$

$$\le 2E ||f_B(t) - f_B^n(t)||^2 +$$

$$+ 2E \left\| f_B^n(t) - \Phi(t - s, \varphi(s, \omega)) f_B(s) - \int_s^t \Phi(t - \tau, \varphi(\tau, \omega)) B(\tau) dW(\tau) \right\|^2$$

For $n \to \infty$, the first therm of sum tends to 0, so in the next we estime the second therm. Since $f_B^n(t) \in D(Q)$, for all $n \to \infty$, we have that

$$f_B^n(t) = \Phi(t-s,\varphi(s,\omega))f_B^n(s) + \int_s^t \Phi(t-\tau,\varphi(\tau,\omega))B_n(\tau)dW(\tau), \quad \forall t \ge s \ge 0$$
(12)

and so

$$E \left\| f_B^n(t) - \Phi(t-s,\varphi(s,\omega)) f_B(s) - \int_s^t \Phi(t-\tau,\varphi(\tau,\omega)) B(\tau) dW(\tau) \right\|^2 \le \\ \le 2E ||\Phi(t-s,\varphi(s,\omega))||^2 E ||f_B^n(s) - f_B(s)||^2 +$$

$$+2E \left\| \int_{s}^{t} \Phi(t-\tau,\varphi(\tau,\omega)) (B_{n}(\tau)-B(\tau)) dW(\tau) \right\|^{2} \leq \\ \leq 2E ||\Phi(t-s,\varphi(s,\omega))||^{2} E ||f_{B}^{n}(s)-f_{B}(s)||^{2} + \\ +2 \int_{s}^{t} E ||\Phi(t-\tau,\varphi(\tau,\omega))||^{2} E ||B_{n}(\tau)-B(\tau)||^{2} d\tau$$

From hypothesis obtained that the both therms of sum tends to 0 for $n \to \infty$. So we have that $f_B(t)$ satisfies the equation (9) with probability 1, for all $t \ge 0$. Thus the space D(Q) is complet and from closed graph theorem result that Q^{-1} is a continuous stochastic process and from (11) we have

$$||f_B||_2 \le |||f_B||| \le ||Q^{-1}||||B||_2 \le K||B||_2,$$

and so we obtain the relation (10).

The main result is a theorem of Perron type [8], and represent a characterization of exponential instability in mean square in therms of admissibility for stochastic variational equation.

Theorem 1 Let $\Theta = (\varphi, \Phi)$ be a stochastic cocycle on Y with exponential growth in mean square. Then the stochastic variational equation (1) is uniform exponentially instable in mean square if and only if the pair (C_b, C_b) is admissible for stochastic integral equation (2).

Proof. Necessity Let $B \in C_b(R_+, H)$ and we consider the stochastic process

$$f_B: R_+ \to H, \quad f_B(t) = -\int_t^\infty \Phi(t - \tau, \varphi(\tau, \omega))^{-1} B(\tau) dW(\tau).$$

We have that $f_B \in C_b(R_+, H)$ and that the pair (f_B, B) satisfies the equation (9). Let $\tilde{f}_B \in C_b(R_+, H)$ be such that (\tilde{f}_B, B) satisfies the equation (9). If we denote $g = \tilde{f}_B - f_B$ we obtained that $g(t) = \Phi(t - s, \varphi(s, \omega))g(s)$ for all $t \ge s \ge 0$. Let $s \ge 0$ and from hypothesis we have

$$E||g(s)||^{2} \le Ne^{-\nu(t-s)}E||g(t)||^{2} \le Ne^{-\nu(t-s)}||g||_{2}$$

and so $g \equiv 0$. This shows that the stochastic process f is uniquely determined and we obtain that the pair (C_b, C_b) is admissible for stochastic integral equation (2).

Sufficiency For every $t_0 > 0$, let $\alpha : R_+ \to [0, 1]$ be a stochastic process, with compact support in (t_0, ∞) , defined by $\alpha(t) = 1$, for $t \in [0, t_0]$, and $\alpha(t) = 0$, for $t \ge t_0 + 1$.

If we consider the stochastic processes $B, f_B : \mathbb{R}_+ \to H$ defined by

$$B(t) = -\alpha(t) \frac{\Phi(t,\omega)x}{E||\Phi(t,\omega)x||^2},$$

$$f_B(t) = \int_t^\infty \frac{\alpha(\tau)\Phi(t,\omega)x}{E||\Phi(\tau,\omega)x||^2} dW(\tau).$$

then $f_B, B \in C_b(R_+, H)$ and the pair (f_B, B) satisfies the relation (9) for every $t_0 > 0$. Thus, from Lemma 10 it follows that

$$E \left\| \Phi(t,\omega) x \int_t^\infty \frac{\alpha(\tau)}{E ||\Phi(\tau,\omega) x||^2} dW(\tau) \right\|^2 \le K,$$

for all $(t, \omega) \in \mathbf{R}_+ \times \Omega$. So we obtain

.

$$\int_{t}^{\infty} \frac{1}{E||\Phi(\tau,\omega)x||^2} d\tau \le \frac{K}{E||\Phi(t,\omega)x||^2}.$$
(13)

If we consider the function

$$\delta(t) = \int_t^\infty \frac{1}{E||\Phi(s,\omega)x||^2} ds,$$

then it follows that

$$\delta'(t) \le -\frac{1}{K}\delta(t).$$

Integrating this inequality on [0, t] result

$$\delta(t) \le e^{-\frac{1}{K}t} \delta(0). \tag{14}$$

Since the stochastic cocycle Φ have uniform exponential growth in mean square, there exists the positive constants M, λ such that

$$E||\Phi(s,\omega)x||^2 \le M e^{\lambda(s-t)} E||\Phi(t,\omega)x||^2, \tag{15}$$

for all $(\omega, x) \in \Omega \times X$ and $s \ge t$. Thus we obtain

$$\delta(t)E||\Phi(t,\omega)x||^2 = E||\Phi(t,\omega)x||^2 \int_t^\infty \frac{1}{E||\Phi(\tau,\omega)x||^2} d\tau \ge \frac{1}{E||\Phi(\tau,\omega)x||^2} d\tau \ge \frac{1}{E||\Phi(\tau,\omega)x||^2} d\tau$$

$$\geq \int_t^\infty \frac{1}{M} e^{-\lambda(\tau-t)} d\tau = L,$$

where L is a positive constant. From the relations (13) and (14) results

$$E||\Phi(t,\omega)x||^2 \ge \frac{L}{\delta(t)} \ge \frac{L}{\delta(0)}e^{\frac{1}{K}t} \ge \frac{L}{K}e^{\frac{1}{K}t}E||x||^2$$

If denote $N = \frac{K}{L}$, $\nu = \frac{1}{K}$, we have

$$E||x||^2 \le N e^{-\nu t} E||\Phi(t,\omega)x||^2, \ \forall \ t \ge 0, \ \forall \ (x,\omega) \in H \times \Omega.$$
(16)

Thus, from Lemma 1 and relation (16), we obtain that the stochastic variation equation (1) is uniformly exponentially instable in mean square. \Box

References

- L, ARNOLD, Stochastic Differential Equations: Theory and Applications, New York: Wiley, 1972
- [2] A. M. ATEIWI, About bounded solutions of linear stochastic Ito systems, Mathematical Notes, Miskolc, 3(2002) No.1., 3-12,
- [3] T. CARABALLO, J. DUAN, K. LU, B. SCHMALFUSS, Invariant manifolds for random and stochastic partial differential equations, arXiv:0901.0382v1[math.DS] 4 Ian 2009, 1–30
- [4] G. DA PRATO, A. ICHIKAWA, Lyapunov equations for time-varying linear systems, Systems & Control Letters 9, 1987 pp. 165–172.
- [5] M. MEGAN, A. L. SASU, AND B. SASU, Perron conditions for uniform exponential expansiveness of linear skew-product flows, Monatsh. Math.,, 138 (2003)
- [6] S. E. A. MOHAMMED, T. ZHANG, H. ZHAO, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Memoirs of the American Mathematical Society pp. 98 (2006)

431

- [7] A. PAZY, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, Berlin, 1983
- [8] O. PERRON, *Die stabilitatsfrage bei differentialgeighungen*, Math. Z., 32(1930), 703–728.
- [9] P. Preda, On a Perron Condition for Evolutionary Process in Banach spaces, Bull. Math. Soc. Sci. Math. of R.S. Roumanie, 32(80), no.1 (1988), 65–70
- [10] B. SASU, Exponential expansiveness and variational integral equations, Adv. in Dynamical Systems and Appl., 1(2), 2006, 191–198.
- B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, The Annals of Probability, 31(4), 2003, 2109–2135
- [12] D. STOICA, Uniform exponential dichotomy of stochastic cocycles, Stochastic Processes and their Aplications, **12**(2010), 1920-1928

Diana Stoica Politehnica University of Timisoara, Engineering Faculty of Hunedoara, Str. Revolutiei, No. 5, Hunedoara, Romania, *email:* diana.stoica@fih.upt.ro

Mihail Megan West University of Timisoara, Department of Mathematics, Bd. V.Parvan, No. 4, Timisoara, Romania, *email:* megan@math.uvt.ro.

432