SOME NEW GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

Ahmad H. A. Bataineh and Omran A. Al-Mahmod

ABSTRACT. In this paper, we define the sequence spaces : $c_0(M_k, \Delta_u^n, p, q), c(M_k, \Delta_u^n, p, q)$ and $l_{\infty}(M_k, \Delta_u^n, p, q)$, where for any sequence $x = (x_n)$, the difference sequence Δx is given by $\Delta x = (\Delta x_n)_{n=1}^{\infty} = (x_n - x_{n-1})_{n=1}^{\infty}$. We also examine some inclusion relations between these spaces and discuss some properties and results related to them. These spaces will give as a special cases the spaces defined and studied by Tripathy and Sarma in 2005 and some others before.

2000 Mathematics Subject Classification:40A05, 40C05, 46A45.

Keywords: Difference sequence spaces, a sequence of Orlicz functions.

1. INTRODUCTION AND DEFINITIONS

Let w, c, c_0 and l_{∞} denote the spaces of all, convergent, null and bounded sequences respectively. Throughout this article $p = (p_k)$ is a sequence of strictly positive real numbers and (p_k^{-1}) will be denoted by (t_k) .

A paranorm on a linear topological space X is a function $g: X \to \mathbb{R}$ which satisfies the following axioms :

for any $x, y, x_0 \in X$ and $\lambda, \lambda_0 \in \mathbb{C}$, (i) $g(\theta) = 0$, where $\theta = (0, 0, 0, \cdots)$, the zero sequence, (ii) g(x) = g(-x), (iii) $g(x+y) \leq g(x) + g(y)$ (subadditivity), and (iv) the scalar multiplication is continuous, that is

(iv) the scalar multiplication is continuous, that is,

$$\lambda \to \lambda_0, x \to x_0 \text{ imply } \lambda x \to \lambda_0 x_0 ;$$

in other words,

$$\lambda - \lambda_0 \mid \to 0, g(x - x_0) \to 0 \text{ imply } g(\lambda x - \lambda_0 x_0) \to 0.$$

A paranormed space is a linear space X with a paranorm g and is written (X, g).

Any function g which satisfies all the conditions (i)-(iv) together with the condition :

(v) g(x) = 0 if and only if $x = \theta$,

is called a total paranorm on X, and the pair (X, g) is called a total paranormed space, (see Maddox [4]).

An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$ which is continuous, nondecreasing, and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$, as $x \to \infty$.

If convexity of M is replaced by $M(x+y) \leq M(x) + M(y)$, then it is called a modulus function, defined and studied by Nakano [6], Ruckle [7], Maddox [5] and others.

An Orlicz function M is said to satisfy the Δ_2 -condition for all values of h, if there exist a constant K > 0 such that

$$M(2h) \le KM(h) \ (h \ge 0).$$

It is easy to see that always K > 2. The Δ_2 -condition is equivalent to the satisfaction of the inequality

$$M(lh) \le KlM(h),$$

for all values of h and for l > 1.

Lindenstrauss and Tzafriri [2] used the idea of Orlicz function to construct the Orlicz sequence space :

$$l_M := \{ x = (x_k) : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) < \infty, \text{ for some } \rho > 0 \},\$$

which is a Banach space with the norm :

$$||x||_M = \inf\{\rho > 0 : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) \le 1\}.$$

If $M(x) = x^p, 1 \le p < \infty$, the space l_M coincide with the classical sequence space l_p .

Let (X,q) be a seminormed space seminormed by q. Then Tripathy and Sarma [8] defined the sequence spaces $c_0(M, \Delta, p, q), c(M, \Delta, p, q)$ and $l_{\infty}(M, \Delta, p, q)$.

Now, let $M = (M_k)$ be a sequence of Orlicz functions, n is a nonnegative integer and $u = (u_k)$ is any sequence such that $u_k \neq 0$ for each k, then we define the following sequence spaces :

$$c_0(M_k, \Delta_u^n, p, q) = \{x = (x_k) : [M_k(q(\frac{\Delta_u^n x_k}{\rho})]^{p_k} t_k \to 0, \text{ as } k \to \infty, \text{ for some } \rho > 0\},\$$

$$c(M_k, \Delta_u^n, p, q) = \{ x = (x_k) : [M_k(q(\frac{\Delta_u^n x_k - le}{\rho})]^{p_k} t_k \to 0,$$

as $k \to \infty$, for some $\rho > 0$ and some $l \in \mathbb{C} \},$

and

$$l_{\infty}(M_{k}, \Delta_{u}^{n}, p, q) = \{x = (x_{k}) : \sup_{k} [M_{k}(q(\frac{\Delta_{u}^{n} x_{k}}{\rho})]^{p_{k}} t_{k} < \infty, \text{ for some } \rho > 0\},\$$

where $e = (1, 1, 1, \dots)$ and

$$\Delta_u^0 x_k = u_k x_k,$$

$$\Delta_u^1 x_k = u_k x_k - u_{k+1} x_{k+1},$$

$$\Delta_u^2 x_k = \Delta(\Delta_u^1 x_k),$$

$$\vdots$$

$$\Delta_u^n x_k = \Delta(\Delta_u^{n-1} x_k),$$

so that

$$\Delta_{u}^{n} x_{k} = \Delta_{u_{k}}^{n} x_{k} = \sum_{r=0}^{n} (-1)^{r} \binom{n}{r} u_{k+r} x_{k+r}.$$

If $M_k = M$ for each k, n = 0 and u = e, then these gives the spaces of Tripathy and Sarma [8].

2. Main results

We need the following inequality (see Tripathy and Sarma [8]) Let $p = (p_k)$ be any sequence of strictly positive real numbers, $H = \sup_k p_k$ and $D = \max(1, 2^{H-1})$, then

 $|a_k + b_k|^{p_k} \leq D[|a_k|^{p_k} + |b_k|^{p_k}].$ Now, We prove the following theorems :

Theorem 1 For any sequence $p = (p_k)$ of strictly positive real numbers, the sequence spaces $c_0(M_k, \Delta_u^n, p, q), c(M_k, \Delta_u^n, p, q)$ and $l_{\infty}(M_k, \Delta_u^n, p, q)$ are linear spaces over the set of complex numbers.

Proof: We shall prove only for $c_0(M_k, \Delta_u^n, p, q)$. The others can be treated similarly. Let $x = (x_k), y = (y_k) \in c_0(M_k, \Delta_u^n, p, q)$ and $\alpha, \beta \in \mathbb{C}$. Then there exists some positive ρ_1 and ρ_2 such that :

 $[M_k(q(\frac{\Delta_u^n x_k}{\rho_1})]^{p_k} t_k \to 0, \text{ as } k \to \infty$

and $[M_k(q(\frac{\Delta_u^n y_k}{\rho_2})]^{p_k} t_k \to 0$, as $k \to \infty$ Define $\rho = \max(2 \mid \alpha \mid \rho_1, 2 \mid \beta \mid \rho_2)$. Then we have

$$\begin{split} & [M_k(q(\frac{\alpha\Delta_u^n x_k + \beta\Delta_u^n y_k}{\rho})]^{p_k} t_k \\ \leq & [M_k(q(\frac{\alpha\Delta_u^n x_k}{\rho}) + q(\frac{\beta\Delta_u^n y_k}{\rho}))]^{p_k} t_k \\ \leq & [M_k(q(\frac{\Delta_u^n x_k}{2\rho_1}) + q(\frac{\Delta_u^n y_k}{2\rho_2}))]^{p_k} t_k \\ \leq & \frac{1}{2^{p_k}} [M_k(q(\frac{\Delta_u^n x_k}{\rho_1}) + q(\frac{\Delta_u^n y_k}{\rho_2}))]^{p_k} t_k \\ \leq & D[M_k(q(\frac{\Delta_u^n x_k}{\rho_1}))]^{p_k} t_k + D[M_k(q(\frac{\Delta_u^n y_k}{\rho_2}))]^{p_k} t_k \\ \to & 0 \text{ as } k \to \infty. \end{split}$$

Hence $\alpha x + \beta y \in c_0(M_k, \Delta_u^n, p, q).$

Theorem 2 The space $l_{\infty}(M_k, \Delta_u^n, p, q)$ is a paranormed space with the paranorm

$$g(x) = q(x_1) + \inf\{\rho^{\frac{p_k}{j}} : \sup_{k \ge 1} \{M_k(q(\frac{\Delta_u^n x_k}{\rho})t_k^{\frac{1}{p_k}}\} \le 1, \rho \ge 0\},\$$

where $j = \max(1, H), H = \sup_k p_k$.

Proof:

$$g(\theta) = q(0) + \inf\{\rho^{\frac{p_k}{j}} : \sup_{k \ge 1} \{M_k(q(\frac{\theta}{\rho})t_k^{\frac{1}{p_k}}\} \le 1, \rho \ge 0\}$$

= 0.

$$g(-x) = q(-x_1) + \inf\{\rho^{\frac{p_k}{j}} : \sup_{k \ge 1}\{M_k(q(\frac{\Delta_u^n(-x_k)}{\rho})t_k^{\frac{1}{p_k}}\} \le 1, \rho \ge 0\}$$

$$= q(x_1) + \inf\{\rho^{\frac{p_k}{j}} : \sup_{k \ge 1}\{M_k(q(\frac{\Delta_u^n x_k}{\rho})t_k^{\frac{1}{p_k}}\} \le 1, \rho \ge 0\}$$

$$= g(x).$$

Let $x = (x_k), y = (y_k) \in l_{\infty}(M_k, \Delta_u^n, p, q)$. Then there exists some $\rho_1 > 0$ and $\rho_2 > 0$ such that :

Let $w = (w_k), g = (g_k) \in t_{\infty}(M_k, \Delta_u, \rho, q)$. The $\rho_2 > 0$ such that : $M_k(q(\frac{\Delta_u^n x_k}{\rho})t_k^{\frac{1}{p_k}}) \leq 1$ and $M_k(q(\frac{\Delta_u^n y_k}{\rho})t_k^{\frac{1}{p_k}}) \leq 1$. Let $\rho = \rho_1 + \rho_2$. Then we have

$$\sup_{k \ge 1} \{ M_k (q(\frac{\Delta_u^n(x_k + \Delta_u^n y_k)}{\rho}) t_k^{\frac{1}{p_k}} \} \\
\le \sup_{k \ge 1} \{ M_k (q(\frac{\Delta_u^n x_k}{\rho}) + q(\frac{\Delta_u^n y_k}{\rho})) t_k^{\frac{1}{p_k}} \} \\
\le \sup_{k \ge 1} \{ M_k (q(\frac{\Delta_u^n x_k}{\rho})) t_k^{\frac{1}{p_k}} \} + \sup_{k \ge 1} \{ M_k (q(\frac{\Delta_u^n y_k}{\rho})) t_k^{\frac{1}{p_k}} \} \\
\le \frac{\rho_1}{\rho_1 + \rho_2} \sup_{k \ge 1} \{ M_k (q(\frac{\Delta_u^n x_k}{\rho})) t_k^{\frac{1}{p_k}} \} + \frac{\rho_2}{\rho_1 + \rho_2} \sup_{k \ge 1} \{ M_k (q(\frac{\Delta_u^n y_k}{\rho})) t_k^{\frac{1}{p_k}} \} \\
\le \frac{\rho_1}{\rho_1 + \rho_2} + \frac{\rho_2}{\rho_1 + \rho_2} = 1.$$

Now, we have

$$\begin{split} g(x+y) &= q(x_1+y_1) + \inf\{(\rho_1+\rho_2)^{\frac{p_k}{j}} : \sup_{k\geq 1}\{M_k(q(\frac{\Delta_u^n x_k + \Delta_u^n y_k}{\rho})t_k^{\frac{1}{p_k}}\} \leq 1\}\\ &\leq q(x_1) + \inf\{\rho_1^{\frac{p_k}{j}} : \sup_{k\geq 1}\{M_k(q(\frac{\Delta_u^n x_k}{\rho_1})t_k^{\frac{1}{p_k}}\} \leq 1\}\\ &+ q(y_1) + \inf\{\rho_2^{\frac{p_k}{j}} : \sup_{k\geq 1}\{M_k(q(\frac{\Delta_u^n y_k}{\rho_2})t_k^{\frac{1}{p_k}}\} \leq 1\}\\ &= g(x) + g(y). \end{split}$$

Finally, Let $\eta \in \mathbb{C}$. Then the continuity of the product follows from the following inequality :

$$g(\eta x) = q(\eta x_1) + \inf\{\rho^{\frac{p_k}{j}} : \sup_{k \ge 1}\{M_k(q(\frac{\eta \Delta_u^n x_k}{\rho})t_k^{\frac{1}{p_k}}\} \le 1, \rho \ge 0\}$$

$$= |\eta| q(x_1) + \inf\{(|\eta|r)^{\frac{p_k}{j}} : \sup_{k \ge 1}\{M_k(q(\frac{\Delta_u^n x_k}{\rho})t_k^{\frac{1}{p_k}}\} \le 1, \rho \ge 0\}$$

$$= |\eta| g(x),$$

where $\frac{1}{r} = \frac{|\eta|}{\rho}$.

Theorem 3 Let $p = (p_k)$ be a bounded sequence. Then the sequence spaces $c_0(M_k, \Delta_u^n, p, q), c(M_k, \Delta_u^n, p, q)$ and $l_{\infty}(M_k, \Delta_u^n, p, q)$ are complete paranormed spaces paranormed by g given in Theorem 2.

Proof: We prove it for the case $l_{\infty}(M_k, \Delta_u^n, p, q)$. The others are similar. Let (x^i) be a Cauchy sequence in $l_{\infty}(M_k, \Delta_u^n, p, q)$, where $(x^i) = (x^i)_{k=1}^{\infty}$, for all $i \in \mathbb{N}$. Then $g(x^i - x^j) \to 0$ as $i, j \to \infty$.

For a given $\varepsilon > 0$, let r, u_0 and x_0 be fixed such that $\frac{\varepsilon}{ru_0x_0} > 0$ and $M_k(\frac{ru_0x_0}{2}) \ge \sup_{k>1}(p_k)^{t_k}$.

Now $g(x^i - x^j) \to 0$ as $i, j \to \infty$ implies that there exists $m_0 \in \mathbb{N}$ such that $g(x^i - x^j) < \frac{\varepsilon}{ru_0x_0}$ for all $i, j \ge m_0$.

Therefore we obtain that $g(x_1^i - x_1^j) < \frac{\varepsilon}{ru_0 x_0}$ and

$$\inf\{\rho^{\frac{p_k}{j}} : \sup_{k \ge 1}\{M_k(q(\frac{\Delta_u^n x_k^i - \Delta_u^n x_k^j}{\rho})t_k^{\frac{1}{p_k}}\} \le 1, \rho \ge 0\} < \frac{\varepsilon}{ru_0 x_0}.$$

Since $g(x_1^i - x_1^j) < \frac{\varepsilon}{ru_0x_0}$ for all $i, j \ge m_0$, we get that (x_1^i) is a Cauchy sequence in \mathbb{C} . This implies that (x_1^i) is convergent in \mathbb{C} .

Let $\lim_{i\to\infty} x_1^i = x_1$, then we have $\lim_{j\to\infty} g(x_1^i - x_1^j) < \frac{\varepsilon}{ru_0x_0}$ which imply that $g(x_1^i - x_1) < \frac{\varepsilon}{ru_0x_0}$.

But $M_k(q(\frac{\Delta_u^n x_k^i - \Delta_u^n x_k^j}{\rho})t_k^{\frac{1}{p_k}}\} \leq 1$, then letting $\rho = g(x^i - x^j)$, we see that $M_k(q(\frac{\Delta_u^n x_k^i - \Delta_u^n x_k^j}{g(x^i - x^j)})t_k^{\frac{1}{p_k}}\} \leq 1$. This implies that $M_k(q(\frac{\Delta_u^n x_k^i - \Delta_u^n x_k^j}{g(x^i - x^j)})t_k^{\frac{1}{p_k}}\} \leq p_k^{t_k} \leq M_k(\frac{ru_0 x_0}{2})$. Now $q(\frac{\Delta_u^n x_k^i - \Delta_u^n x_k^j}{g(x^i - x^j)}) \leq \frac{ru_0 x_0}{2}$ yields that $q(\Delta_u^n x_k^i - \Delta_u^n x_k^j) \leq g(x^i - x^j)\frac{ru_0 x_0}{2} < \frac{\varepsilon}{ru_0 x_0}\frac{ru_0 x_0}{2} = \frac{\varepsilon}{2}$. Therefore $(\Delta_u^n x_k^i)$ is a Cauchy sequence in \mathbb{C} for all

 $k \in \mathbb{N}$. This implies that $(\Delta_u^n x_k^i)$ is convergent in \mathbb{C} . Now let $\lim_{i\to\infty} \Delta_u^n x_k^i =$ $\Delta_u^n x_k$, for all $k \in \mathbb{N}$. Then we have

$$\lim_{j \to \infty} \sup_{k \ge 1} \{ M_k(q(\frac{\Delta_u^n x_k^i - \Delta_u^n x_k^j}{\rho}) t_k^{\frac{1}{p_k}} \} \le 1$$

which implies that

$$\sup_{k \ge 1} \{ M_k(q(\frac{\Delta_u^n x_k^i - \Delta_u^n x_k}{\rho}) t_k^{\frac{1}{p_k}} \} \le 1$$

Let $i \geq m_0$. Then taking infimum of such ρ 's, we have $g(x^i - x) < \varepsilon$. Hence $x = x^i - (x^i - x) \in l_{\infty}(M_k, \Delta_u^n, p, q)$ since $l_{\infty}(M_k, \Delta_u^n, p, q)$ is a linear space.

Therefore $l_{\infty}(M_k, \Delta_u^n, p, q)$ is complete.

Theorem 4 Let $0 < p_k \leq r_k$ for all $k \in \mathbb{N}$. Then $c_0(M_k, \Delta_u^n, p, q) \subseteq c_0(M_k, \Delta_u^n, r, q)$.

Proof: Let $x = (x_k) \in c_0(M_k, \Delta_u^n, p, q)$. Then there exists some $\rho > 0$ such that $\lim_{k\to\infty} [M_k(q(\frac{\Delta_u^n x_k}{\rho})]^{p_k} t_k = 0$, and this implies that $[M_k(q(\frac{\Delta_u^n x_k}{\rho})]^{p_k} t_k \leq 1$, for sufficiently large k since (M_k) is a sequence of nondecresing Orlicz functions. Therefore $\lim_{k\to\infty} [M_k(q(\frac{\Delta_u^n x_k}{\rho})]^{r_k} t_k \leq \lim_{k\to\infty} [M_k(q(\frac{\Delta_u^n x_k}{\rho}))]^{p_k} t_k = 0$. This proves that $x = (x_k) \in c_0(M_k, \Delta_u^n, r, q)$ and completes the proof.

Theorem 5 (i) Let $0 < \inf p_k \le p_k \le 1$. Then $c_0(M_k, \Delta_u^n, p, q) \subseteq c_0(M_k, \Delta_u^n, q)$. (ii) Let $1 \le p_k \le \sup p_k < \infty$. Then $c_0(M_k, \Delta_u^n, q) \subseteq c_0(M_k, \Delta_u^n, p, q)$.

Proof: (i) Let $x = (x_k) \in c_0(M_k, \Delta_u^n, p, q)$. Then $\lim_{k \to \infty} [M_k(q(\frac{\Delta_u^n x_k}{\rho}))]^{p_k} t_k =$ 0.

This gives that

$$\lim_{k \to \infty} [M_k(q(\frac{\Delta_u^n x_k}{\rho})]t_k \le \lim_{k \to \infty} [M_k(q(\frac{\Delta_u^n x_k}{\rho})]^{p_k}t_k = 0.$$

Hence $x = (x_k) \in c_0(M_k, \Delta_u^n, q).$

(ii) Let $p_k \ge 1$ for all k, $\sup_k p_k < \infty$ and let $x = (x_k) \in c_0(M_k, \Delta_u^n, q)$. Then for each $\varepsilon(0 < \varepsilon < 1)$ there exists a positive integer N such that

$$\lim_{k \to \infty} [M_k(q(\frac{\Delta_u^n x_k}{\rho})]t_k \le \varepsilon < 1.$$

Since $1 \leq p_k \leq \sup p_k < \infty$, we have

$$\lim_{k \to \infty} [M_k(q(\frac{\Delta_u^n x_k}{\rho})]^{p_k} t_k \le \lim_{k \to \infty} [M_k(q(\frac{\Delta_u^n x_k}{\rho})] t_k \le \varepsilon < 1.$$

Hence $x = (x_k) \in c_0(M_k, \Delta_u^n, p, q).$

Theorem 6 Let $n \ge 1$. Then for all $0 \le i \le n$, $Z(M_k, \Delta_u^i, p, q) \subseteq Z(M_k, \Delta_u^n, p, q)$, where $Z = l_{\infty}, c, c_0$.

Proof: We show that $c_0(M_k, \Delta_u^{n-1}, p, q) \subseteq c_0(M_k, \Delta_u^n, p, q)$. Let $x = (x_k) \in c_0(M_k, \Delta_u^{n-1}, p, q)$. Then we have $[M_k(q(\frac{\Delta_u^{n-1}x_k}{\rho})]^{p_k}t_k \to 0$ as $k \to \infty$ for some $\rho > 0$. Since (M_k) is a sequence of nondecreasing convex functions, we have

$$\begin{split} [M_{k}(q(\frac{\Delta_{u}^{n}x_{k}}{\rho})]^{p_{k}}t_{k} &= [M_{k}(q(\frac{\Delta_{u}^{n-1}x_{k} - \Delta_{u}^{n-1}x_{k+1}}{\rho})]^{p_{k}}t_{k} \\ &\leq [M_{k}(q(\frac{\Delta_{u}^{n-1}x_{k} + \Delta_{u}^{n-1}x_{k+1}}{\rho})]^{p_{k}}t_{k} \\ &\leq D[M_{k}(q(\frac{\Delta_{u}^{n-1}x_{k}}{\rho})]^{p_{k}}t_{k} + D[M_{k}(q(\frac{\Delta_{u}^{n-1}x_{k+1}}{\rho})]^{p_{k}}t_{k} \\ &\to 0 \text{ as } k \to \infty \text{ for some } \rho > 0. \end{split}$$

Therefore $x = (x_k) \in c_0(M_k, \Delta_u^n, p, q).$

Hence the result follows by mathematical induction.

Theorem 7 Let $M = (M_k)$ be a sequence of Orlicz functions such that M_k satisfies the Δ_2 -condition for each k. Then $c_0(M_k, \Delta_u^n, p, q) \subseteq c(M_k, \Delta_u^n, p, q) \subseteq l_{\infty}(M_k, \Delta_u^n, p, q)$.

Proof: Let $x = (x_k) \in c_0(M_k, \Delta_u^n, p, q)$. Then $x = (x_k) \in c(M_k, \Delta_u^n, p, q)$. Let $x = (x_k) \in c(M_k, \Delta_u^n, p, q)$. Then we have

$$\begin{split} [M_k(q(\frac{\Delta_u^n x_k}{\rho})]^{p_k} t_k &= [M_k(q(\frac{\Delta_u^n x_k - l + l}{\rho})]^{p_k} t_k, \text{ for some } l \in \mathbb{C} \\ &\leq D[M_k(q(\frac{\Delta_u^n x_k - l}{\rho})]^{p_k} t_k + D[M_k(q(\frac{l}{\rho})]^{p_k} t_k \\ &\leq D[M_k(q(\frac{\Delta_u^n x_k - l}{\rho})]^{p_k} t_k + D[\frac{l}{\rho} K \delta^{-1} M_k(2]^H t_k, \end{split}$$

where $H = \sup_k p_k$, $D = \max(1, 2^{H-1})$. Hence we get that $x = (x_k) \in l_{\infty}(M_k, \Delta_u^n, p, q)$.

Theorem 8 Let $M = (M_k)$ be a sequence of Orlicz functions such that M_k satisfies the Δ_2 -condition for each k. Then $Z(\Delta_u^n, q) \subseteq Z(M_k, \Delta_u^n, p, q)$, where $Z = l_{\infty}, c$ and c_0 .

Proof: We prove it for the case $l_{\infty}(\Delta_u^n, q) \subseteq l_{\infty}(M_k, \Delta_u^n, p, q)$.

Let $x = (x_k) \in l_{\infty}(\Delta_u^n, q)$. Then there exists L > 0 such that $q(\Delta_u^n x_k) \leq L$, for all $k \in \mathbb{N}$. Therefore

$$[M_k(q(\frac{\Delta_u^n x_k}{\rho})]^{p_k} t_k \leq [M_k(\frac{L}{\rho})]^{p_k} t_k \leq [KhM_k(L)], \text{ for all } k \in \mathbb{N}, \text{ using } \Delta_2 - \text{ condition.}$$

Hence $\sup_k [M_k(q(\frac{\Delta_u^n x_k}{\rho})]^{p_k} t_k < \infty$. Thus $l_\infty(\Delta_u^n, q) \subseteq l_\infty(M_k, \Delta_u^n, p, q)$.

References

- Alsaedi, Ramzi S. and Bataineh, Ahmad H. A., Some generalized difference sequence spaces defined by a sequence of Orlicz functions, Aust. J. Math. Analy. & Appli. (AJMAA), Volume 5, Issue 2, Article 2, pp. 1-9, 2008.
- [2] Lindenstrauss, J., and Tzafriri, L., On Orlicz sequence spaces, Israel J. Math., 10 (3) (1971), 379-390.
- [3] Maddox, I. J., Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2), 18(1967), 345-355.
- [4] Maddox, I. J., *Elements of functional analysis*, 2nd Edition, Cambridge University Press, 1970.
- [5] Maddox, I. J., Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100(1986), 161-166.
- [6] Nakano, H., Concave modulus, J. Math. Soc. Japan 5(1953), 29-49.
- [7] Ruckle, W. H., FK spaces in which the sequence of coordinate vectors is bounded, Can. J. Math., 25 (5) (1973), 973-978.
- [8] Tripathy, B. C. and Sarma, B., Some classes of difference paranormed sequence spaces defined by Orlicz functions, Thai J. Math., (3) (2005), 209-218.

Ahmad H. A. Bataineh, Omran A. Al-Mahmod Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan email:*ahabf2003@yahoo.ca*