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LINEAR BOUNDARY ELEMENTS FOR SOLVING THE
NONSINGULAR BOUNDARY INTEGRAL EQUATION OF

THE FLUID FLOW AROUND OBSTACLES

Luminiţa Grecu

Abstract. The aim of the paper is to present a numerical solution for
the problem of the 2D fluid flow around an obstacle, a solution obtained by
applying the boundary element method. It is focused on the second step in
applying the mentioned method. In order to satisfy the conditions required by
the unknown of the problem, the solution is obtained by using linear bound-
ary elements for solving the boundary integral equation of the problem. The
boundary integral equation considered is a nonsingular one, and so the numer-
ical solution is expected to be better than the numerical solution of the same
problem solved when a singular boundary integral equation is considered. A
computer code in MathCAD, based on the method described, is also made
in order to get the numerical solution. This solution is compared with the
exact one for some particular cases, and with the one obtained in case when
a singular integral equation, equivalent with the same problem, is considered.
The graphics show a high agreement between the numerical solution and the
exact one. It is also pointed out the biggest advantage of the present solution:
it is obtained without considering singular integrals, and special methods to
treat them, and so all coefficients that appear are easier to evaluate with a
computer code.
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1. Introduction

There are two main techniques which can be applied when solving problems
of fluid mechanics by BEM: the direct technique and the indirect technique
with sources or vortex distributions. Both of them bring the real advantage of
the BEM over other numerical methods, the fact that they reduce the prob-
lem dimension by one, but both offer an equivalent model of the problem, in
terms of singular boundary integral equations. When solving singular integral
equations difficult problem arise when evaluating singular integrals and near
singular integrals. Special techniques must be considered in order to overpass
this aspect, because an improper evaluation of these integrals brings large er-
rors in the numerical formulation and so they can influence the well behavior
of the problem to be solved.

For some problems there can be used other techniques for finding the in-
tegral formulation of the problem, which lead to nonsingular integrals, as for
example the method of regularization. Starting with such a formulation for
the 2D problem of the inviscid fluid flow around an obstacle we want to find a
numerical solution based on linear isoparametric boundary elements. We con-
sider that the uniform, steady, 2D potential motion of an ideal inviscid fluid of
subsonic velocity U∞i, pressure p∞and density ρ∞is perturbed by the presence
of a fixed body of a known boundary, assumed to be smooth and closed. The
objective is to find the perturbed motion, and the fluid action on the body.
In [3] a nonsingular boundary integral is deduced. In the herein paper we use
linear isoparametric boundary elements to solve the problem. We so reduce,
by discretization, the integral equation to an algebraic system and the solu-
tion of this system is then used to calculate the perturbation velocity and the
pressure coefficient on the body. For understanding its signification, specially
for better understanding the unknowns and the variables that appear in it, we
present it in the following paragraph.

The boundary integral equation is formulated in velocity vector terms and
uses the fundamental solution of source type (can also be found in [3]) , in fact
the fundamental solution of the system (we consider dimensionless variables):

∂u

∂x
+

∂v

∂y
= δ (x− x0, y − y0)

∂v

∂x
− ∂u

∂y
= 0

(1)
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given by the following expressions:

u∗ (x, x0) =
1

2π

x− x0

(x− x0)
2 + (y − y0)

2 , v∗
(
x, x0

)
=

1

2π

y − y0

(x− x0)
2 + (y − y0)

2 ,

(2)

v∗
(
x, x0

)
=

1

2π

x− x0

(x− x0)
2 + (y − y0)

2 (3)

First, it is deduced an integral formulation for the perturbation velocity, v (x0),
which stands for x0 in the fluid domain, but also for x0 ∈ C:

v (x0) =

∫
C

{[n (v − v0)] v
∗ + [n× (v − v0)]× v∗} ds (4)

where v∗ is the fundamental solution given by (2), and n is the unit normal
vector at C, inward the fluid

The above boundary integral is a nonsingular one because lim
x→x0∈C

(v − v0) =

0.
On C, the following relations hold: n × v = vsk, and [n (v − v0)] v

∗ =
−nxv

∗ − n0
x (n0 · n) v∗ − v0

s (n · s0) v∗, where k is the versor of Oz, vs is the
tangential component of the velocity, n = nxi + nyj is the unit normal vector
at C, inward the fluid, n0 = n (x0) = n0

xi + n0
yj and s0 is the unit tangential

vector at C evaluated in x0.
Using some elementary formulas and some consideration about the compo-

nents of the unit normal vector at C, and the unit tangential vector, further
there is obtained the following boundary integral representation, formulated
in velocity vector terms too:

v (x0) =

∫
C

{
vsk × v∗ + v0

s

[(
v∗ · s0

)
n− (n · v∗) s0 −

(
n · s0

)
v∗
]
− nxv

∗} ds−

−
∫
C

n0
x

[(
n0 · v∗

)
n− (n · v∗) n0 −

(
n · n0

)
v∗
]
ds (5)

where there are used the same notations as before.
After doing the vectorial product n0×v (x0) , there is deduced the boundary

integral representation for the tangential component of the velocity. The tan-
gential component of the perturbation velocity in any point of the boundary,

503



L.Grecu - Linear Boundary Elements for Solving the Nonsingular...

x0 ∈ C, has the following expression:

v0
s =

∫
C

{[(
n0 · v∗

)
vs −

(
n0 · v∗

)
v0

s

]
+
[(

v∗ · s0
)
n0

x −
(
v∗ · s0

)
nx

]}
ds (6)

Equation (6) is the nonsingular integral equation of the problem (for more
information about obtaining this boundary integral equation see [3] ).

In order to solve the integral equation we consider a boundary mesh using
linear boundary elements. For a particular case, when the problem has an
analytical solution, we make a comparison between the numerical solutions
obtained and the exact one in order to validate the method proposed.

2. Solving the nonsingular integral equation by using linear
isoparametric boundary elements

In the boundary element approach used herein, for solving the integral
equation (7), we consider linear isoparametric boundary elements, so the case
when the geometry and the unknown are local approximated by linear models
that use the same base functions. The boundary C is divided into N linear
segments, noted Lj, j = 1, N , with ends in , xj, xj+1, j = 1, N , xN+1 = x1; the
extremes of the segments being situated on C. So we approximate the contour
C with a polygonal line. The extremes of the segment Lj are noted x1

j , x
2
j ,in

a local numbering. We have relations: x2
j = x1

j+1,∀i ∈ {1, 2, ..., N − 1} ,and
x2

N = x1
1, contour C being closed.

For evaluating the integrals we use a local system of coordinates (see [1],
[2]) with the origin in the first node of an element , and so we have, for a
boundary element, the relations:

x = x1
jϕ1 + x2

jϕ2 (7)

where ϕ1, ϕ2 are the shape functions given by: ϕ1 = 1− t, ϕ2 = t, t ∈ [0, 1] .
Using isoparametric boundary elements (see [1], [2]) we have, for the

unknown function vs , noted w for simplifying the writing, the local represen-
tation:

w = w1
jϕ1 + w2

jϕ2

where w1
j , w

2
j are the nodal values of the unknown, it means the values of w at

the extremes of the boundary element Lj, in the local numbering. Considering
first the case of a smooth boundary these values satisfy the relations: w2

j =
w1

j+1,∀i ∈ {1, 2, ..., N − 1} , and w2
N = w1

1.
Equation (6) becomes:
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w0 =
N∑

j=1

∫
Lj

{[(
n0 · v∗

)
w −

(
n0 · v∗

)
w0
]
+
[(

v∗ · s0
)
n0

x −
(
v∗ · s0

)
nx

]}
ds

(8)

For x0 = x1
i , it becomes:

w1
i =

N∑
j=1

∫
Lj

[(
ni · v∗

(
x, x1

i

))
w −

(
ni · v∗

(
x, x1

i

))
w1

i

]
ds +

+
N∑

j=1

∫
Lj

[(
v∗
(
x, x1

i

)
· si
)
ni

x −
(
v∗
(
x, x1

i

)
· si
)
nx

]
ds (9)

w1
i =

N∑
j=1

∫
Lj

{(
ni · v∗

(
x, x1

i

)) (
w − w1

i

)
+
(
v∗
(
x, x1

i

)
· si
) (

ni
x − nx

)}
ds (10)

Using relation ds = ljdt, and introducing the local behavior of the unknown
function on Lj,we obtain:

w1
i =

N∑
j=1

lj

1∫
0

(
ni

x · u∗
(
x, x1

i

)
+ ni

y · v∗
(
x, x1

i

)) (
w1

jϕ1 + w2
jϕ2 − w1

i

)
dt +

=
N∑

j=1

lj

1∫
0

(
v∗
(
x, x1

i

)
· si
) (

ni
x − nx

)
dt (11)

Taking into account the expressions of the fundamental solutions (3) and
the relation between n and s , s = −nyi + nxj, we get:

w1
i =

N∑
j=1

lj
2π

1∫
0

(
ni

x

x− x1
i

(x− x1
i )

2
+ (y − y1

i )
2 + ni

y

y − y1
i

(x− x1
i )

2
+ (y − y1

i )
2

)
(
w1

jϕ1 + w2
jϕ2 − w1

i

)
dt+
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+
N∑

j=1

lj
2π

1∫
0

(
−ni

y

x− x1
i

(x− x1
i )

2
+ (y − y1

i )
2 + ni

x

y − y1
i

(x− x1
i )

2
+ (y − y1

i )
2

)(
ni

x − nx

)
dt

(12)

where lj =
((

x2
j − x1

j

)2
+
(
y2

j − y1
j

)2) 1
2

=
∥∥x2

j − x1
j

∥∥ .

Further we introduce in the above equation the geometry of the boundary
element: x = x1

jϕ1 + x2
jϕ2, y = y1

j ϕ1 + y2
j ϕ2.

w1
i =

N∑
j=1

lj
2π

1∫
0

(
ni

x

(
x2

j − x1
j

)
t + x1

j − x1
i

ajt2 + 2bijt + cij

+ ni
y

(
y2

j − y1
j

)
t + y1

j − y1
i

ajt2 + 2bijt + cij

)
((

w2
j − w1

j

)
t + w1

j − w1
i

)
dt+

+
N∑

j=1

lj
2π

1∫
0

(
−ni

y

(
x2

j − x1
j

)
t + x1

j − x1
i

ajt2 + 2bijt + cij

+ ni
x

(
y2

j − y1
j

)
t + y1

j − y1
i

ajt2 + 2bijt + cij

)(
ni

x − nx

)
dt

(13)
We have used the following notations:

aj = l2j , (14)

bij =
(
x1

j − x1
i

) (
x2

j − x1
j

)
+
(
y1

j − y1
i

) (
y2

j − y1
j

)
,

cij =
(
x1

j − x1
i

)2
+
(
y1

j − y1
i

)2
.

Further we get:

w1
i =

N∑
j=1

lj
2π

(
w2

j − w1
j

) 1∫
0

(
ni

x[(x2
j−x1

j)t+x1
j−x1

i ]+ni
y[(y2

j−y1
j )t+y1

j−y1
i ]

ajt2+bijt+cij
t

)
dt +

+
N∑

j=1

lj
2π

(
w1

j − w1
i

) 1∫
0

(
ni

x[(x2
j−x1

j)t+x1
j−x1

i ]+ni
y[(y2

j−y1
j )t+y1

j−y1
i ]

ajt2+bijt+cij

)
dt+

+
N∑

j=1

lj
2π

1∫
0

(
−ni

y

(
x2

j − x1
j

)
t + x1

j − x1
i

ajt2 + bijt + cij

+ ni
x

(
y2

j − y1
j

)
t + y1

j − y1
i

ajt2 + bijt + cij

)(
ni

x − nx

)
dt

((15))
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Taking into account the going sense on C we have the following relations for

the components of the unit normal vector in xj : nj
x =

y2
j−y1

j

lj
, nj

y =
x1

j−x2
j

lj
,∀j =

1, N. In case of a linear boundary element we notice that everywhere on Lj

nx = nj
x, ny = nj

y.With the notations:

I ij
k =

1∫
0

tkdt

ajt2 + bijt + cij

, k = 0, 2 (15)

Pij =
lj
2π

{[
ni

x

(
x2

j − x1
j

)
+ ni

y

(
y2

j − y1
j

)]
I ij
2 +

[
ni

x

(
x1

j − x1
i

)
+ ni

y

(
y1

j − y1
i

)]
I ij
1

}
(16)

Rij =
lj
2π

{[
ni

x

(
x2

j − x1
j

)
+ ni

y

(
y2

j − y1
j

)]
I ij
1 +

[
ni

x

(
x1

j − x1
i

)
+ ni

y

(
y1

j − y1
i

)]
I ij
0

}
(17)

Sij =
lj (ni

x − nj
x)

2π

[
−ni

y

(
x2

j − x1
j

)
+ ni

x

(
y2

j − y1
j

)]
I ij
1 +

+
lj (ni

x − nj
x)

2π

[
−ni

y

(
x1

j − xi

)
+ ni

x

(
y1

j − yi

)]
I ij
0 (18)

we get the following equivalent form for equation (15 ):

w1
i =

N∑
j=1

Pij

(
w2

j − w1
j

)
+

N∑
j=1

Rij

(
w1

j − w1
i

)
+

N∑
j=1

Sij (19)

Because i can take all values between 1 and N we have reduced the problem
at a system of N linear equations of the above form.

3. Numerical evaluation of the coefficients

As it can be seen all the coefficients that appear depend on the coordinates
of the nodes chosen for the boundary discretization and can be exactly evalu-
ated. Obvious they are usually integrals when x1

i is not one of Lj extremes.
In papers [5], [6] the same problem is solved using linear boundary elements
too, but in those cases the boundary equivalent representations of the problem
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were, in all cases, singular boundary integral equations. When solving such
boundary integral equations it is quite difficult to handle, and to evaluate, the
singular integrals, and the near singular integrals that appear, see [7] for more
details about singular integrals. Special techniques, some of them quite diffi-
cult to apply, must be used in such cases for obtaining a good accuracy for the
numerical solutions. What is interesting in this approach, is the fact that we
don’t have to overpass such problems, because the boundary integral equation
is not a singular one. As we shall see we can obtain analytical expression even
in the case when x1

i is one of Lj extremes.
For x1

i 6= x1
j ,in fact for i 6= j, the analytical expressions for these coefficients

can be easily obtained:

I ij
0 =

1√
ajcij − b2

ij

arctan

√
ajcij − b2

ij

cij + bij

, I ij
1 =

1

2aj

ln
aj + 2bij + cij

cij

−

− bij

aj

√
ajcij − b2

ij

arctan

√
ajcij − b2

ij

cij + bij

, (20)

I ij
2 =

1

aj

− bij

a2
j

ln
aj + 2bij + cij

cij

+
2b2

ij − ajcij

a2
j

I ij
0 . (21)

Considering now that x1
i = x1

j , so that i = j, we first notice that the
corresponding term of the middle sum from the right hand site vanishes, so
we can consider that Rii = 0. Using the same notations as before we deduced
that bij = 0, cij = 0, and so we have:

I ii
2 =

1

aj

, Sii = 0 (22)

Pii =
1

2πlj

[
ni

x

(
x2

i − x1
i

)
+ ni

y

(
y2

i − y1
i

)]
(23)

All the coefficients that appear in equation (20) depend only on the nodes
chosen for the boundary discretization. Returning to the global system of
notation, that mean considering w(x1

i ) = wi, i = 1, N , we have wj = w1
j =

w2
j−1, j = 2, N, w1 = w1

1 = w2
N . Conveniently grouping the terms in (20), we

508



L.Grecu - Linear Boundary Elements for Solving the Nonsingular...

finally obtain the following equivalent system, in terms of nodal unknowns, the
nodal values of the tangential component of the velocity on the boundary:

N∑
j=1

Aijwj = Bi , i = 1, N (24)

where

Aij = −Rij + Pij − Pij−1, i = 2, N, i 6= j, Ai1 = −Ri1 + Pi1 − PiN , i 6= 1

Aii = 1 +
N∑

j=1

Rij + Pii − Pii−1, i = 2, N, A11 = 1 +
N∑

j=1

R1j + P11 − PiN

Bi =
N∑

j=1

Sij, i = 1, N (25)

So all the coefficients in system (25) can be computed analytically, so,
notwithstanding the truncation errors that arise, they can be exactly evaluated
with a computer code. After solving system (25) we obtain the numerical
results for the nodal values of the perturbation velocity.

4. Numerical results and conclusions

In order to test the method, we consider the case of the circular obstacle. In
this particular case the problem has an exact solution (see [3], [4]). The exact
solution furnishes the following expressions for the components of the velocity
in a point M (R, θ) situated on the circle C (O,R) (the quantities we use are
also dimensionless): u = − cos 2θ, v = − sin 2θ. These components are used
to evaluate the local pressure coefficient, but also the tangential component
of the velocity. So, after the components of the velocity are found, the exact
values for the tangential velocity, W, can be calculate with the formula:

W = nxv − nyu (26)

With a computer code made in MathCAD we evaluate, based on the
method exposed, the numerical values for the nodal tangential velocities on
C, and the exact ones. The results are shown in Fig.1.As it can be seen we
have used 20 nodes for the boundary discretization. The comparison between
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the exact values and the numerical ones shows a high degree of accuracy, even
for a small number of nodes on the boundary. Better results can be obtained
when using more nodes for the boundary discretization.

In paper [5] , considering the indirect boundary element method with
sources distribution, which implies a singular boundary integral equation for
the problem (SBIE), and solving it with linear isoparametric boundary ele-
ments too, it is obtained a numerical solution for the same particular case, the
circular obstacle. In order to establish which method offers better results we
compare, in Fig.2., the numerical solutions obtained with the exact one. As
we can see, the calculated and the analytical values of the tangential velocity
are very close , in both cases, but better results are obtained with the present
method. This is an expected result because the numerical integration doesn’t
imply numerical evaluations of singular integrals and so it improves the nu-
merical solution accuracy. The present method has another big advantage
too, namely that it is easier to apply because it deals only with nonsingular
integrals which doesn’t need special treatments. When the boundary integral
formulation of the problem implies singular integrals it is difficult to carry out
their numerical evaluation. An improper method to evaluate them can affect
the accuracy of the numerical solution. Finding good techniques for the sin-
gular integrals numerical evaluation represents a great challenge and the most
difficult step to overpass.

We have considered in this paper only the case of a smooth obstacle, but
taking into account a Kutta-Jukovsky condition, it can be applied to obstacles
with cusped trailing edge too. It is also interesting to try to extend the method
to the compressible case too, if it is possible.
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Fig. 1. The nodal values of the tangential velocity - exact and numerical
solution; circular obstacle; 20 nodes.

Fig. 2. The nodal values of the tangential velocity - exact, numerical
solution, numerical solution in case of SBIE; circular obstacle; 20 nodes.
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