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Eugen Zaharescu

Abstract. The purpose of this paper is to define and to analyze three new
sets of logarithmic morphological operators and it is focused on theoretical and
practical aspects concerning the enhancement of the transmitted images and
the physical absorption/transmission laws expressed within LIP (Logarithmic
Image Processing) mathematical framework. Using different logarithmic image
representations, an approach of redefining mathematical morphology operators
based upon structuring elements with a variable geometrical shape or adap-
tative structuring elements is presented here. The specific LIP algebraic and
functional operations and structures are very well adapted to image represen-
tation and processing, and more generally to digital signal processing within
a bounded intensity range. This very well structured theory determined us to
use the logarithmic image representation in our approach of defining three new
categories of mathematical morphology operators: Multiplicative LMO (Loga-
rithmic Morphological Operators), Additive LMO and Additive-Multiplicative
LMO.

2000 Mathematics Subject Classification: Applied Mathematics

1. Introduction

Many representation techniques are currently available in the signal and
image processing domain, but most of them require an intensive computa-
tion and sequential implementation, disregarding the geometrical information
present in signals. By extending mathematical morphology for logarithmic
image representation we will take the advantage of a well structured mathe-
matical framework within LIP (Logarithmic Image Processing) theory where
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we can redefine the entire hierarchy (or pyramid) of morphological oper-
ators based upon structuring elements with a variable geometrical shape or
adaptative structuring elements. They prove to be very well adapted to the
representation and processing of images, and more generally of signals, valued
in a bounded intensity range, while reducing the algorithms complexity for
efficient parallel implementation. In the past, there were several approaches
to define an adaptative structuring element which could change geometrical
shape for each image pixel. For example, P. Salembier [4] proposed such an
adaptative structuring element where total pixel number varies between an
inferior and a superior limit for a given neighborhood using the criteria of
minimization of mean squared error calculated from the output image and the
desired signal.
More recently, C.-P. Huang and L. F. Chaparro [10] developed a novel signal
representation using fuzzy mathematical morphology and achieve geometri-
cal decomposition of a signal by windowing and applying sequentially fuzzy
morphological opening with adaptative structuring functions. Before them,
T. Kichuchi et al. [9] defined the fuzzy adaptive structuring element (FASE),
sensitive to ambiguous images, where the shapes and values of structuring el-
ements are dynamically determined from an input image by searching for the
local regions in the image.
Also, using fuzzy morphological operations with adaptive structuring elements,
S. Letitia et al. [11] can dynamically modify the shape, size and gray-scale
values of the structuring elements, based on the geometric and radiometric
properties of the objects to be retained. In this paper we will present sev-
eral possibilities of defining structuring elements with a variable geometrical
shape within the logarithmic image processing theory, i.e. using only vector-
oriented operations with images represented as gray-tone functions operands.
Finally we will demonstrate that, in fact, all the classical mathematical mor-
phology operators are solely a particular case of the logarithmic mathematical
morphology operators, based upon the definition of the structuring elements
with a variable geometrical shape or adaptative structuring elements. At least
three categories of mathematical morphology operators can be defined within
the context of a logarithmic image representation:

1. multiplicative logarithmic morphological operators;

2. additive logarithmic morphological operators;

3. additive-multiplicative logarithmic morphological operators;
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In this paper we will only analyze the properties of the first category of derived
mathematical morphology operators, i.e. multiplicative logarithmic morpho-
logical operators. From now on we will associate both the image and the
structuring element with gray-tone functions defined by M. Jourlin and J.C.
Pinoli ([1]):

F : D → E, where D ⊂ Υ2 and E = [0,M) or E ′ = (−M,M),M > 0. (1)

Also, we will denote by I(D,E) the set of gray-tone functions, defined on a spa-
tial support D ⊂ Υ2, and taking values within a gray-tone interval E = [0,M)
or E ′ = (−M,M).
First of all, we will use the definition of the specific operations in the loga-
rithmic image processing theory as presented by M. Jourlin, J.C. Pinoli, V.
Pătraşcu and V. Buzuloiu [1], [2]. In the set of gray levels E we will define the
logarithmic addition ⊕:

∀u, v ∈ E, u⊕ v =
u+ v

1 + uv
M2

(2)

where the operations in the right side are meant in Υ. In the same set of gray
levels E we will define the real scalar multiplication ⊗. For ∀λTMΥ,∀uTME,
we define the logarithmic product between λ and u by:

∀λTMΥ,∀u ∈ E, λ⊗ u = M · (M + u)λ − (M − u)λ

(M + u)λ + (M − u)λ
(3)

where again the operations in the right hand side of the equality are meant in
Υ. The two operations, addition ⊕ and scalar multiplication ⊗ establish on E
a real vector space structure as demonstrated in [2].
A gray level image is a function defined on a bi-dimensional compact D from
Υ2 taking the values in the gray level space E. We denote with F (D,E) the
set of gray level images defined on D. The operations and the functions from
gray level space E to gray level images F (D,E) can be extended in a very
natural way as shown in [1], [2]: Logarithmic addition for gray level images is
defined as:

∀f1, f
TM
2 F (D,E),∀(x, y)TMD, (f1 ⊕ f2)(x, y) = f1(x, y)⊕ f2(x, y). (4)

Logarithmic scalar multiplication for gray level images is:

∀λTMΥ,∀fTMF (D,E),∀(x, y)TMD, (λ⊗ f)(x, y) = λ⊗ f(x, y). (5)
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The two operations, addition and scalar multiplication establish on F(D,E) a
real vector space structure [2]. For the morphological operators we will use the
classical functional definition from [5] and [6], where the morphological erosion
and dilation are defined as follows:

(f∃ğ)(x) = inf{f(y)− g(y − x)|y ∈ Υn} (6)

(f ⊕ ğ)(x) = sup{f(y) + g(y − x)|y ∈ Υn} (7)

where f and g are semi-continuous functions from Υn to ΥY {−∞,∞} and ğ
is the symmetrical structuring element defined as follows: ∀x ∈ Υn, ğ(x) =
g(−x).

Multiplicative logarithmic morphological operators

A. Multiplicative Logarithmic Morphological Erosion and Dilation
Definition 1: Multiplicative logarithmic morphological erosion for the image f
by structuring element g, represents the gray-tone function defined as follows:

(f∃MLğ)(x) = inf{k ⊗ (f(y)− g(y − x)) : y ∈ Υ2} (8)

Definition2: Multiplicative logarithmic morphological dilation for the image
f by structuring element g, represents the gray-tone function defined as follows

(f ⊕ML ğ)(x) = sup{k ⊗ (f(y) + g(y − x))|y ∈ Υ2}. (9)

In the definitions (1) and (2) is the symmetrical structuring element (∀x ∈
Υ2, ğ(x) = g(−x)) and ⊗ represents LIP product of a gray-tone function with
a real scalar.
Within different LIP models we will obtain the following definitions for multi-
plicative logarithmic morphological erosion and dilation, respectively:

1. M. JOURLIN and J.-C. PINOLI [1] logarithmic model:

(f∃MLğ)(x) = inf{M −M(1− f(y)− g(y − x)

M
)k|y ∈ Υ2} (10)

(f ⊕ML ğ)(x) = sup{M −M(1− f(y)− g(y − x)

M
)k|y ∈ Υ2}. (11)
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2. . Pătraşcu and V. Buzuloiu [2] logarithmic model:

(f∃ML(̆g))(x) = inf{M ·(M + f(y)− g(y − x))k − (M − f(y)− g(y − x))k

(M + f(y)− g(y − x))k + (M − f(y)− g(y − x))k
|y ∈ Υ2}

(12)

(f⊕MLğ)(x) = sup{M ·(M + f(y)− g(y − x))k − (M − f(y)− g(y − x))k

(M + f(y)− g(y − x))k + (M − f(y)− g(y − x))k
|y ∈ Υ2}

(13)

Observation: Scalar k can be a constant for the entire image or can be another
gray-tone function (i.e. an adaptative scalar multiplication) defined like this:

∀x ∈ Υ2, k(x) =
f(x)

M
. (14)

Observation: : As shown in the last section, ”Experimental results”, the
structuring elements have the particular behavior of a variable geometrical
shape SE all over the definition domain, i.e. larger or wider when the deriva-
tive gray-tone function f’(x) is low and narrower when high.
B. Multiplicative Logarithmic Morphological Erosion Properties
Proposition 1:Multiplicative logarithmic morphological erosion for image f
by the structuring element gk, characterized by the constant scalar parameter
k = 1 represents the classical morphological erosion defined by the same struc-
turing element.
Proposition 2: Let be the gray-tone functions f, f ′, g, g′ : D → E. Then, the
following propositions are truthful and can be easily demonstrated like in [6]:

a) If the origin of the set Υ2, belongs to the support set of the structuring
element g, then ∃ML is anti-extensive : f∃MLg ≤ f.

b) ∃ML is ascending related to f and descending related to g:

f ≤ f ′ ⇒ f∃MLg ≤ f ′∃MLg (15)

g ≤ g′ ⇒ f∃MLg
′ ≤ f∃MLg. (16)

c) ∃ML verifies the following equations (where stands for ”sup” and ∧ stands
for ”inf”):

f∃ML(g ∨ g′) = (f∃MLg) ∧ (f∃MLg
′) (17)

f∃ML(g ∧ g′) ≥ (f∃MLg) ∨ (f∃MLg
′) (18)
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C. Multiplicative Logarithmic Morphological Dilation Properties
Proposition 3: Multiplicative logarithmic morphological dilation for image f
by the structuring element gk, characterized by the constant scalar parameter
k = 1, represents the classical morphological erosion defined by the same struc-
turing element. Because dilation is a dual operator for erosion, then all the
algebraic properties already presented for erosion can be transposed for dilation
based upon duality principle as follows:
Proposition 4: Let be the gray-tone functions f, f ′, g, g′ : D → E. Then, the
following propositions are truthful and can be easily demonstrated like in [6]:

a) If the origin of the set Υ2, belongs to the support set of the structuring
element g then ⊕ML is extensive i.e.: f ≤ f ⊕ML g

b) ⊕ML is ascending related to f and g, i.e.:

f ≤ f ′ ⇒ f ⊕ML g ≤ f ⊕ML g (19)

g ≤ g′ ⇒ f ⊕ML g ≤ f ⊕ML g
′ (20)

c) ⊕ML is distributive related ”sup”(where stands for ”sup” operator) i.e.:

f ⊕ML (g ∨ g′) = (f ⊕ML g) ∨ (f ⊕ML g
′) (21)

d) ⊕ML verifies the following equation(where stands for ”inf” operator):

f ⊕ML (g ∧ g′) ≤ (f ⊕ML g) ∧ (f ⊕ML g
′) (22)

e) ⊕ML is associative i.e.:

(f ⊕ML g)⊕ML g
′ = f ⊕ML (g ⊕ML g

′) (23)

The third property shows the fact that, as structuring element is defined as
the ”sup” for other elements, it is sufficient to perform the dilations for every
element, individually, and then to operate with ”sup”, finally. Consequently,
any more complex dilation can be decomposed in several elementary dilations.
The fourth property gives us another rule for decomposing the dilation, very
useful in practice. It shows the fact that the dilation of a function f by plane
disk with radius p ∈ N∗ will produce the same result obtained by the p times
repeated dilation by plane disk with radius 1.
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Obervation: Multiplicative logarithmic morphological erosion and dilation are
compatible with translations.
Because multiplicative logarithmic morphological erosion and dilation are dual
transformations, but not reverse to each other, their functional composition
allow us to generate the pyramid of the derivative transformations: multiplica-
tive logarithmic morphological opening and closing.
D. Multiplicative Logarithmic Morphological Opening and Closing
Definition 3: Multiplicative logarithmic morphological opening for the image
f by structuring element g, represents the gray-tone function denoted by ψML

g

and defined as follows:

ψML
g = (f∃MLğ)⊕ML g. (24)

Definition 4: Multiplicative logarithmic morphological closing for the image
f by structuring element g, represents the gray-tone function denoted by φML

g

and defined as follows:

φML
g = (f ⊕ML ğ)∃MLg. (25)

In the definitions (3) and (4) ğ is the symmetrical structuring element (∀x ∈
Υ2, ğ(x) = g(−x). Also, ∃ML and ⊕ML represent multiplicative logarithmic
morphological erosion and dilation, respectively, already defined in (1) and (2).
E. Multiplicative Logarithmic Morphological Opening and Closing Properties
Proposition 5: : Multiplicative logarithmic morphological opening and closing
for image f by the structuring element gk, characterized by the constant scalar
parameter k = 1, represents the classical morphological opening and closing
defined by the same structuring element.
Proof: This result can be easily achieved using the propositions (1) and (3)
which proof the same property for the fundamental operators, multiplicative
logarithmic morphological erosion and dilation.
Observation: Multiplicative logarithmic morphological opening and closing
are compatible with translation.
Proposition 6: Multiplicative logarithmic morphological opening and closing
are idempotent transforms, i.e.:

∀g ∈ I(D,E), ψML
g ◦ ψML

g = ψML
g and φML

g ◦ φML
g = φML

g (26)
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where we have denoted by I(D,E) the set of gray-tone functions, defined onto
a spatial support D ⊂ Υ2 and taking values in a gray-tone interval E = [0,M)
or E ′ = (−M,M).
Proposition 7: Multiplicative logarithmic morphological opening and closing
are ascending transforms related to the image, i.e.:

∀f, f ′, g ∈ I(D,E) with f ≤ f ′ ⇒ ψML
g (f) ≤ ψML

g (f ′) and φML
g (f) ≤ φML

g (f ′)
(27)

Proposition 8:Multiplicative logarithmic morphological opening and clos-
ing are anti-extensive (or extensive) transforms, respectively, related to the
image, i.e.:

∀f, g ∈ I(D,E) ψML
g (f) ≤ f and φML

g (f) ≥ f. (28)

Logarithmic top-hat transforms

In the context of the transmitted signals through different optical mediums,
the objects observed on a dark background generate smaller peaks associated
with segmentation threshold r, then the peaks generated in the case of a light
background. This phenomenon occurs due to the non-linear physics laws for
the absorption associated to the optical mediums. Using the logarithmic con-
trast M. Jourlin and J.C. Pinoli have introduced the notion of Logarithmic
Top-Hat (LTH) [1]. In this new logarithmic morphological context we can in-
troduce two new different logarithmic top-hat transforms:
Definition 5:Logarithmic White Top-Hat Transform of an image f represents
the logarithmic contrast between the gray-tone function and its logarithmic
opening:

LWTH(f)(x, y) =
f(x, y)− δg[εg(f(x, y))]

1− δg [εg(f(x,y))]

M

(29)

where εg(f(x, y)) stands for the logarithmic morphological erosion, δg(f(x, y))
stands for the logarithmic morphological dilation and obviously, in the end, we
can rewrite the definition of logarithmic opening with this new notation like
this:

ψL
g = δg[εg(f(x, y))]. (30)
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Analog, like in the classic morphology, we can introduce its complementary
transform associated:
Definition 6:Logarithmic Black Top-Hat Transform of an image f represents
the logarithmic contrast between the logarithmic closing of a gray-tone function
and function itself:

LBTH(f)(x, y) =
εg[δg(f(, y))]− f(x, y)

1− f(x,y)
M

(31)

where φL
g = εg[δg(f(x, y))] stands for the logarithmic morphological closing.

These transforms are used in image segmentation by detecting the interesting
objects associated with the peaks of the gray-tone function f (in the case of
logarithmic white top-hat transform defined by opening) or by detecting the
local minimums (in the case of logarithmic black top-hat transform defined by
closing) [8].
Image segmentation is realized by selecting the pixels (x, y) in the spatial
domain, satisfying the following criteria:

LWTH(f)(x, y) > r. (32)

The purpose of the structuring element g and the segmentation threshold r is
to select the important peaks (higher and wider then the unimportant noise
peaks) [8].

4. Experimental results

The experimental results, subsequently presented in this paper, used the mul-
tiplicative version of the logarithmic top-hat transforms:
Definition 7:Multiplicative Logarithmic White Top-Hat Transform of an im-
age f represents the logarithmic difference between the gray-tone function and
its multiplicative logarithmic opening:

WTHML(f)(x, y) = f∃ψML
g = f∃((f∃MLğ)⊕ML g) (33)

Definition 8:Multiplicative Logarithmic Black Top-Hat Transform of an im-
age f represents the logarithmic difference between multiplicative logarithmic
closing of the gray-tone function and function itself:

BTHML(f)(x, y) = φML
g ∃f = ((f ⊕ML ğ)∃MLg)∃f (34)
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Definition 9:Logarithmic contrast of an image f represents the logarithmic
addition between the gray-tone function and its multiplicative logarithmic white
top-hat transform followed by the logarithmic difference with its multiplicative
logarithmic black top-hat transform:

ContrastML(f) = f ⊕WTHML(f)∃BTHML(f). (35)

All these experiments were first made in a MATLAB environment and finally
translated in a high-level level programming language as presented in [7].
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Algorithm Complexity

A classical kernel based image processing algorithm (e.g. rank and morphol-
ogy filters) replaces the pixel at the kernel origin with the result of a function
of all pixels defined by the kernel. Direct implementations of such algorithm
typically involve visiting all pixels defined by the kernel in order to evaluate
the function. Such an approach leads to an algorithm complexity proportional
to the number of pixels in the kernel (or O(nd), where n is the kernel size
and d is the dimensionality). The most typically used approaches to reduce
complexity of kernel based image processing algorithm are separability and
recursive computation. The kernel is usually referred to as the structuring
element in mathematical morphology. The separability implementation uses
a multidimensional structuring element by cascading several one dimensional
structuring elements, therefore reducing complexity from O(nd) to O(nd).
The second approach, recursive computation, exploits redundancy that might
be present in the computations of kernel functions at neighboring locations,
leading, in some cases, to a complexity independent of n. Multiplicative log-
arithmic morphological operators (e.g. erosions and dilations) are separable
as we have presented in the properties section. For example, successive dila-
tions by orthogonal lines are equivalent to dilation by a rectangle with sides
equal to the line lengths. This means that any hyper-rectangular structuring
element can be constructed using several orthogonal lines, typically parallel to
the axes. The implemented algorithm uses decomposition of structuring ele-
ments in order to achieve the reduced complexity of O(nd). The implemented
algorithm relies on the simple concept of an up-datable histogram or ”mov-
ing histogram” approach. A histogram is computed for a structuring element
located at the first pixel. The histogram at the neighboring pixel can then
be computed by including newly included pixels and removing newly excluded
pixels. The list of included and excluded pixels corresponding to movement in
any direction can be computed when the structuring element is created, and
the direction with the smallest number of changes should be selected as the
direction for sweeping the kernel across the image. The erosion or dilation at
each location is computed by selecting the minimum or maximum from the
histogram. This approach is very efficient when 8 or 16 bit pixels are used be-
cause the histogram can be represented as an array and the histogram updated
by incrementing or decrementing the appropriate bins. Using place holders to
track the current maximum or minimum increases performance.
The ”moving histogram” approach reduces the algorithm complexity from
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O(nd) to O(nd−1), while keeping the structuring element identical to the direct
implementation Execution times for the multiplicative logarithmic morpholog-
ical dilation and opening are shown in table 1. The predicted linear complexity
for the number of neighbors is observed for the basic algorithm, as well as the
constant complexity of the van Herk/Gil Werman and the anchor algorithm.
The linear complexity for the number of pixels added and removed per trans-
lation is observed for the moving histogram algorithm, as expected.
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