$\rho-$ CLOSED SETS

TALAL AL-HAWARY

ABSTRACT. Our goal in this paper is to introduce the relatively new notions of ρ -closed and ρ -generalized closed sets. Several properties and connections to other well-known weak and strong closed sets are discussed. ρ -generalized continuous and ρ -generalized irresolute functions and their basic properties and relations to other continuities are explored.

2000 Mathematics Subject Classification: AMS Classification: 54C08, 54H05.

Keywords: ρ -open set, ρ -closed set, ρ -generalized closed set, ρ -generalized continuous function.

1. INTRODUCTION

Let (X, \mathfrak{T}) be a topological space (or simply, a space). If $A \subseteq X$, then the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. A subset $A \subseteq X$ is called *semi-open* [7] if there exists an open set $O \in \mathfrak{T}$ such that $O \subseteq A \subseteq Cl(O)$. Clearly A is a semi-open set if and only if $A \subseteq Cl(Int(A))$. A complement of a semi-open set is called *semi-closed*. A is called *preopen* [10] if $A \subseteq Int(Cl(A))$. A is called *preclosed* [14] if $Cl(Int(A)) \subseteq A$ and regular-closed [14] if A = Cl(Int(A)). A is a generalized closed (= g-closed) set [8] if $A \subseteq U$ and $U \in \mathfrak{T}$ implies that $A \subseteq U$. For more on the preceding notions, the reader is referred to [2, 3, 6, 9, 11, 12, 13].

A function $f: (X, \mathfrak{T}) \to (Y, \mathfrak{T}')$ is called *g*-continuous [1] if $f^{-1}(V)$ is g-closed in (X, \mathfrak{T}) for every closed set V of (Y, \mathfrak{T}') and contra-semi-continuous [4] if $f^{-1}(V)$ is semi-open in (X, \mathfrak{T}) for every closed set V of (Y, \mathfrak{T}') .

We introduce the relatively new notions of ρ -closed sets, which is closely related to the class of closed subsets. We show that the collection of all ρ -open subsets of a space (X, \mathfrak{T}) forms a topology that is cofiner than \mathfrak{T} and we investigate several characterizations of ρ -open and ρ -closed notions via the operations of interior and closure. In section 3, we introduce the notion of ρ -generalized closed sets and study connections to other weak and strong forms of generalized closed sets. In addition several interesting properties and constructions of ρ -generalized closed sets are discussed. Section 4 is devoted to introducing and studying ρ -generalized continuous and ρ -generalized irresolute functions and connections to other similar forms of continuity.

2. ρ -closed sets

We begin this section by introducing the notions of ρ -open and ρ -closed subsets.

Definition 1. Let A be a subset of a space (X, \mathfrak{T}) . The ρ -interior of A is the union of all open subsets of X whose closures are contained in Int(A), and is denoted by $Int_{\rho}(A)$. The ρ -closure of A is $Cl_{\rho}(A) = \{x \in X : Cl(U) \cap Int(A) \neq \emptyset, U \in \mathfrak{T}, x \in U\}$. A is called ρ -open if $A = Int_{\rho}(A)$. The complement of a ρ -open subset is called ρ -closed.

It is easy to see that a subset A of a space X is ρ -open if and only if for every point $x \in A$, there exists an open set U containing x such that $Cl(U) \subseteq Int(A)$. Clearly $Int_{\rho}(A) \subseteq Int(A) \subseteq A$ and hence every ρ -open set is open and thus every ρ -closed set is closed, but the converses needs not be true.

Example 1. Let $X = \{a, b, c\}$ and $\mathfrak{T} = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Set $A = \{a, c\}$. Then A is open but not ρ -open as $Int_{\rho}(A) = \emptyset$.

Next, we show that the collection of all ρ -open subsets of a space (X, \mathfrak{T}) forms a topology \mathfrak{T}_{ρ} that is finer than \mathfrak{T} .

Theorem 1. If (X, \mathfrak{T}) is a space, then (X, \mathfrak{T}_{ρ}) is a space such that $\mathfrak{T} \supseteq \mathfrak{T}_{\rho}$.

Proof. We only need to show (X, \mathfrak{T}_{ρ}) is a space. Clearly \varnothing and X are ρ -open. If $A, B \in \mathfrak{T}_{\rho}$, then $A = Int_{\rho}(A)$ and $B = Int_{\rho}(B)$. Now $Int_{\rho}(A \cap B) = \bigcup \{U \in \mathfrak{T} : Cl(U) \subseteq Int(A \cap B)\} = \cup \{U \in \mathfrak{T} : Cl(U) \subseteq Int(A) \cap Int(B)\}$. Thus $Int_{\rho}(A \cap B) \supseteq Int_{\rho}(A) \cap Int_{\rho}(B) = A \cap B$. Therefore, $A \cap B = Int_{\rho}(A \cap B)$ and so $A \cap B \in \mathfrak{T}_{\rho}$.

If $\{A_{\alpha} : \alpha \in \Delta\}$ is a collection of ρ -open subsets of X, then for every $\alpha \in \Delta$, $Int_{\rho}(A\alpha) = A_{\alpha}$. Hence

$$Int_{\rho}(\cup_{\alpha\in\Delta}A\alpha) = \bigcup\{U\in\mathfrak{T}:Cl(U)\subseteq Int(\cup_{\alpha\in\Delta}A\alpha)\}$$

$$\supseteq \bigcup\{U\in\mathfrak{T}:Cl(U)\subseteq\cup_{\alpha\in\Delta}Int(A\alpha)\}$$

$$\supseteq \bigcup\{U\in\mathfrak{T}:Cl(U)\subseteq A\alpha\} \text{ for every } \alpha\in\Delta$$

$$= Int_{\rho}(A\alpha) \text{ for every } \alpha\in\Delta.$$

Hence $\bigcup_{\alpha \in \Delta} A\alpha \subseteq Int_{\rho}(\bigcup_{\alpha \in \Delta} A\alpha)$ and thus $\bigcup_{\alpha \in \Delta} A\alpha$ is ρ -open.

Next we show that $A \subseteq Cl_{\rho}(A)$ needs not be true.

Example 2. Let $X = \{a, b, c, d\}$ and $\mathfrak{T} = \{\emptyset, X, \{a, b\}, \{c, d\}, \{a\}, \{a, c, d\}\}$. Set $A = \{a, b, c\}$. Then $c \in A$, but $c \notin Cl_{\rho}(A)$ since $c \in \{c, d\} \in \mathfrak{T}$, but $Cl(\{c, d\}) \cap Int(A) = \emptyset$.

One might think that a subset A of a space X is ρ -closed if and only if $A = Cl_{\rho}(A)$, but this is not true as shown in the next example.

Example 3. Consider the space in Example 1 and set $A = \{b, c\}$. Since $\{a\}$ is an open set containing a, $Cl(\{a\}) = \{a, c\}$ and $Int(A) = \{b\}$, we have $Cl(\{a\}) \cap$ $Int(A) = \emptyset$. Namely we have shown $a \notin Cl_{\rho}(A)$. Since for any open set U containing $b, U = \{b\}, \{a, b\}$ or X and so $Cl(U) = \{b, c\}$ or X and $Cl(U) \cap Int(A) \neq \emptyset$, then $b \in Cl_{\rho}(A)$. Similarly, $c \in Cl_{\rho}(A)$ and so $A = Cl_{\rho}(A)$. On the other hand, A is not ρ -closed as for every point $a \in X \setminus A = \{a\}$, let U be any open set containing a. Then $U = \{a\}, \{a, b\}$ or X and as $Cl(\{a\}) = \{a, c\}$ and $Cl(\{a, b\}) = Cl(X) = X$, we have $Cl(U) \subsetneq Int(X \setminus A) = Int(\{a\}) = \{a\}$. This implies $X \setminus A$ is not ρ -open and hence A is not ρ -closed.

Lemma 2. For any subset A of X,

(i) $Int(A) \subseteq Cl_{\rho}(A)$.

(ii) $Int(A) = \emptyset$ if and only if $Cl_{\rho}(A) = \emptyset$.

Proof. (i) $x \notin Cl_{\rho}(A)$ implies that there exists an open set U containing x such that $Cl(U) \cap Int(A) = \emptyset$. Hence $x \notin Int(A)$.

(ii) If $x \in Cl_{\rho}(A)$, then for every open subset U containing $x, Cl(U) \cap Int(A) \neq \emptyset$. Hence there exists $y \in Cl(U) \cap Int(A)$ and as Int(A) is open, $U \cap Int(A) \neq \emptyset$. Therefore $Int(A) \neq \emptyset$.

Conversely if $Cl_{\rho}(A) = \emptyset$, then by (i) as $Int(A) \subseteq Cl_{\rho}(A)$, $Int(A) = \emptyset$.

Lemma 3. The union of an open set with a ρ -open set is open.

Proof. Let A be an open set and B be a ρ -open set. For all $x \in A \cup B$, $x \in A$ or $x \in B$ and so $x \in Int(A) \subseteq Int(A \cup B)$ or $x \in Int_{\rho}(B) \subseteq Int_{\rho}(A \cup B) \subseteq Int(A \cup B)$.

Corollary 4. The intersection of a closed set with a ρ -closed set is closed.

Lemma 5. If A is a semi-open subset of a space X, then $Cl(A) = Cl_{\rho}(A)$.

Proof. If U is an open set containing x such that $Cl(U) \cap Int(A) \neq \emptyset$, then there exists $y \in Cl(U) \cap Int(A)$. Thus $U \cap Int(A) \neq \emptyset$ and so $U \cap A \neq \emptyset$. Therefore $Cl_{\rho}(A) \subseteq Cl(A)$.

Conversely if for every open set U containing A we have $U \cap A \neq \emptyset$, $U \cap Int(Cl(A)) \neq \emptyset$, since A is semi-open. Thus there exists $y \in U \cap Int(Cl(A))$ and so $U \cap Int(A) \neq \emptyset$ which implies that $Cl(U) \cap Int(A) \neq \emptyset$. Hence $Cl(A) \subseteq Cl_{\rho}(A)$.

Corollary 6. (i) For any subset A of X, $Cl_{\rho}(A) \subseteq Cl(A)$. (ii) If A is a semi-open subset of a space X, then $A \subseteq Cl_{\rho}(A)$.

Lemma 7. If A is a ρ -closed subset of a space X, then $Cl_{\rho}(A) \subseteq A$.

Proof. If A is a ρ -closed subset, then A is closed and thus by Corollary 6 (i), $Cl_{\rho}(A) \subseteq A$.

Next, we show that a preclosed set that is also semi-open equals its ρ -closure.

Theorem 8. If A is regular closed subset of a space X, then $Cl_{\rho}(A) \subseteq A$. *Proof.* $Cl_{\rho}(A) \subseteq Cl(A) \subseteq Cl(Cl(Int(A))) = Cl(Int(A)) \subseteq A$. This together with Corollary 6 implies that $A = Cl_{\rho}(A)$.

3. ρ -generalized closed sets

In this section, we introduce the notion of ρ -generalized closed set. Moreover, several interesting properties and constructions of these subsets are discussed.

Definition 2. A subset A of a space X is called ρ -generalized closed (ρ -g-closed) if whenever U is an open subset containing A, we have $Cl_{\rho}(A) \subseteq U$. A is ρ -g-open if $X \setminus A$ is ρ -g-closed.

Theorem 9. A subset A of (X, \mathfrak{T}) is ρ -g-open if and only if $F \subseteq Int\rho(A)$, whenever $F \subseteq A$ and F is closed in (X, \mathfrak{T}) .

Proof. Let A be a ρ -g-open set and F be a closed subset such that $F \subseteq A$. Then $X \setminus A \subseteq X \setminus F$. As $X \setminus A$ is ρ -g-closed and as $X \setminus F$ is open, $Cl_{\rho}(X \setminus A) \subseteq X \setminus F$. So $F \subseteq X \setminus Cl_{\rho}(X \setminus A) = Int_{\rho}(A)$.

Conversely if $X \setminus A \subseteq U$ where U is open, then the closed set $X \setminus U \subseteq A$. Thus $X \setminus U \subseteq Int_{\rho}(A) = X \setminus Cl_{\rho}(X \setminus A)$ and so $Cl_{\rho}(X \setminus A) \subseteq U$.

Next we show that every ρ -closed set is $\rho - g$ -closed sets. Moreover, the class g-closed sets is properly placed between the classes of semi-open closed sets and $\rho - g$ -closed sets. Clearly every closed semi-open set by Lemma 5 is ρ -closed. A closed set is trivially g-closed and every g-closed set is ρ -g-closed by Corollary 6 (i).

The following result follows from Corollary 6 (i) and the fact that every ρ -closed set is closed:

Lemma 10. Every ρ -closed set is ρ -g-closed.

The converse of the preceding result needs not be true.

Example 4. Consider the space $X = \{a, b, c, d\}$ and $\mathfrak{T} = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, b, c\}\}$. Set $A = \{a\}$. Since $Cl_{\rho}(A) = \emptyset$, A is ρ -g-closed, but A is not ρ -closed and not g-closed and hence not closed. Also $B = \{b, d\}$ is a g-closed set that is not closed.

The following is an immediate result from Lemma 5:

Theorem 11. If A is a semi-open subset of a space X, the following are equivalent:

- (1) A is $\rho g closed$;
- (2) A is g-closed

Its clear that if $A \subseteq B$, then $Int_{\rho}(A) \subseteq Int_{\rho}(B)$ and $Cl_{\rho}(A) \subseteq Cl_{\rho}(B)$.

Lemma 12. If A and B are subsets of a space X, then $Cl_{\rho}(A \cup B) = Cl_{\rho}(A) \cup Cl_{\rho}(B)$ and $Cl_{\rho}(A \cap B) \subseteq Cl_{\rho}(A) \cap Cl_{\rho}(B)$.

Proof. Since A and B are subsets of $A \cup B$, $Cl_{\rho}(A) \cup Cl_{\rho}(B) \subseteq Cl_{\rho}(A \cup B)$. On the other hand, if $x \in Cl_{\rho}(A \cup B)$ and U is an open set containing x, then $Cl(U) \cap$ $Int(A \cup B) \neq \emptyset$. Hence either $Cl(U) \cap Int(A) \neq \emptyset$ or $Cl(U) \cap Int(B) \neq \emptyset$. Thus $x \in Cl_{\rho}(A) \cup Cl_{\rho}(B)$.

Finally since $A \cap B$ is a subset of A and B, $Cl_{\rho}(A \cap B) \subseteq Cl_{\rho}(A) \cap Cl_{\rho}(B)$.

Corollary 13. Finite union of ρ -g-closed sets is ρ -g-closed.

While the finite intersection of ρ -g-closed sets needs not be ρ -g-closed.

Example 5. Let $X = \{a, b, c, d, e\}$ and $\mathfrak{T} = \{\emptyset, X, \{a, b\}, \{c\}, \{a, b, c\}\}$. Set $A = \{a, c, d\}$ and $B = \{b, c, e\}$. Then clearly A and B are ρ -g-closed sets since X is their only super open set. But $A \cap B = \{c\}$ is not ρ -g-closed since $\{c\}$ is open and by Lemma 5, $Cl_{\rho}(\{c\}) = Cl(A) = \{c, d, e\} \subsetneq \{c\}$.

Theorem 14. The intersection of a ρ -g-closed set with a ρ -closed set is ρ -g-closed. Proof. Let A be a ρ -g-closed set and B be a ρ -closed set. Let U be an open set containing $A \cap B$. Then $A \subseteq U \cup X \setminus B$. Since $X \setminus B$ is ρ -open, by Lemma 3, $U \cup X \setminus B$ is open and since A is ρ -g-closed, $Cl_{\rho}(A \cap B) \subseteq Cl_{\rho}(A) \cap Cl_{\rho}(B)$ and by Lemma 7, $Cl_{\rho}(A \cap B) \subseteq Cl_{\rho}(A) \cap B \subseteq (U \cup X \setminus B) \cap B = U \cap B \subseteq U$.

4. ρ -g-continuous and ρ -g-irresolute functions

Definition 3. A function $f: (X, \mathfrak{T}) \to (Y, \mathfrak{T}')$ is called

(1) ρ -g-continuous if $f^{-1}(V)$ is ρ -g-closed in (X, \mathfrak{T}) for every closed set V of (Y, \mathfrak{T}') ,

(2) ρ -g-irresolute if $f^{-1}(V)$ is ρ -g-closed in (X, \mathfrak{T}) for every ρ -g-closed set V of (Y, \mathfrak{T}') .

Lemma 15. Let $f : (X, \mathfrak{T}) \to (Y, \mathfrak{T}')$ be g-continuous. Then f is ρ -g-continuous but not conversely.

Proof. Follows from the fact that every g-closed set is ρ -g-closed.

Example 6. Consider the space $X = \{a, b, c, d\}$ and $\mathfrak{T} = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, b, c\}\}$. Let $\mathfrak{T}' = \{\emptyset, \{d\}, X\}$. Let $f : (X, \mathfrak{T}) \to (X, \mathfrak{T}')$ be the identity function. Since $f^{-1}(\{a, b, c\} = \{a, b, c\} = Cl_{\rho}(\{a, b, c\})$, f is ρ -g-continuous, but f is not g-continuous and hence not continuous.

Even the composition of ρ -g-continuous functions needs not be ρ -g-continuous.

Example 7. Let f be the function in Example 6. Let $\mathfrak{T}'' = \{\emptyset, \{a, b, d\}, X\}$. Let $g : (X, \mathfrak{T}') \to (X, \mathfrak{T}'')$ be the identity function. It is easily observed that g is also ρ -generalized continuous as the only super set of $\{c\}$ is X. But the composition function $f : (X, \mathfrak{T}) \to (X, \mathfrak{T}'')$ is not ρ -generalized continuous since $\{c\}$ is closed in (X, \mathfrak{T}'') , but not ρ -g-closed in (X, \mathfrak{T}) .

Corollary 16. If $f : (X, \mathfrak{T}) \to (Y, \mathfrak{T}')$ is a continuous and contra-semi-continuous function, then f is ρ -g-continuous.

Proof. If V is a closed subset of Y, then as f is continuous $f^{-1}(V)$ is closed and as f is contra-semi-continuous, $f^{-1}(V)$ is semi-open. Thus $f^{-1}(V)$ is ρ -g-closed.

We end this section by giving a necessary condition for ρ -g-irresolute function to be ρ -g-continuous.

Theorem 17. If $f: (X, \mathfrak{T}) \to (Y, \mathfrak{T}')$ is bijective, open and ρ -g-irresolute, then f is ρ -g-continuous.

Proof. Let V be a closed subset of Y and let $f^{-1}(V) \subseteq O$, where $O \in \mathfrak{T}$. Clearly, $V \subseteq f(O)$. Since $f(O) \in \mathfrak{T}'$ and since V is ρ -g-closed, $Cl_{\rho}(V) \subseteq f(O)$ and thus $f^{-1}(Cl_{\rho}(V)) \subseteq O$. Since f is ρ -generalized irresolute and since $Cl_{\rho}(V)$ is ρ -g-closed in Y, $f^{-1}(Cl_{\rho}(V))$ is ρ -g-closed. $f^{-1}(Cl_{\rho}(V) \subseteq Cl_{\rho}(f^{-1}(Cl_{\rho}(V))) = f^{-1}(Cl_{\rho}(V)) \subseteq O$. Therefore, $f^{-1}(V)$ is ρ -g-closed and hence, f is ρ -g-continuous.

References

[1] K. Balachandran, P. Sundaram, and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kôchi Univ. Ser. A Math. 12 (1991), 5–13.

[2] S. Crossley and S. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.

[3] S. Crossley and S. Hildebrand, *Semi-topological Properties*, Fund. Math. LXXI (1972), 233-254.

[4] J. Dontchev and T. Noiri, *Conra-semi-continuous Functions*, Mathematica Pannonica 10 (2) (1999), 159-168.

[5] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kôchi Univ. Ser. A Math. 16 (1995), 35–48.

[6] M. Ganster and I. Reilly, A Decomposition of Continuity, Acta Math. Hung. 56 (3-4) (1990), 299-301.

[7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41. [8] — , *Generalized closed sets in topology*, Rend. Circ. Mat. Palermo (2) 19 (1970), 89–96.

[9] H. Maki, R. Devi, and K. Balachandran, Generalized α -closed sets in topology, Bull. Fukuoka Univ. Ed. III 42 (1993), 13–21.

[10] A. S. Mashhour, M. E. Abd El Monsef, and S. N. El Deep, *On precontinuous and weak precontinuous mappings*, Proc. Math. Phys. Soc. Egypt (1982), no. 53, 47–53.

[11] A. Mashhour, I. Hasanein and S. El-Deeb, A note on semi-continuity and precontinuity, Indian J. Pure & Appl. Math., 13 (1982), 1119-1123.

[12] J. Tong, A Decomposition of Continuity, Acta Math. Hung. 48 (1-2) (1986), 11-15.

[13] J. Tong, On Decomposition of Continuity in Topological Spaces, Acta Math. Hung. 54 (1-2) (1989), 51-55.

[14] S.N. Wl-Deep, I.A. Husanein, A.S. Mashhour and T. Noiri, *On p-regular Spaces*, Bull. Math. Soc. Math. R.S. Rouman. 27 (75) (1983).

Talal Al-Hawary Department of Mathematics. Yarmouk University Irbid-Jordan email:talalhawary@yahoo.com