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AN EXTENDED ORIGIN-BASED METHOD FOR SOLVING
CAPACITATED TRAFFIC ASSIGNMENT PROBLEM
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Abstract. In this paper, we have proposed a new algorithm for solving Capaci-
tated Traffic Assignment Problem (CTAP). The proposed method first approximates
original problem with a sequence of standard Traffic Assignment Problems (TAP)
by an inner penalty strategy and then this subproblems will be solved by recently
proposed Origin-Based (OB) algorithm with some modifications. This algorithm
will be more useful for large scale problems since all computations in OB algorithm
are done under a topological order.
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1. Introduction

Capacitated traffic assignment problem is the same as standard traffic assignment
problem but link capacity constraints are added to it. Generally, without regard-
ing multi-commodity flow models, methods provided for solving capacitated traffic
assignment problem (CTAP) are divided into two categories [15]:

• Algorithms that use asymptotical link costs.

• Algorithms that transform original problem to a sequence of uncapacitated
traffic assignment problems by a penalty/dual strategy.

Daganzo [5, 6], was first one that considered link capacity constraints implicitly
by using asymptotical link cost functions. Although this method always provides
feasible solutions but it causes some problems. Results of a research by Boyce et
al. [4], shows that using asymptotical link costs functions may cause unrealistical
high travel costs, devious rerouting of trips, and numerical difficulty near capacity
flows.
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In algorithms of second category, link capacities are added to objective function
using penalty functions or Lagrange multipliers. For first time, Hearn [7], solved
capacitated traffic assignment problem by transforming it to a sequence of standard
TAP subproblems. He used an exterior penalty function for transforming CTAP to
standard TAP, and solved subproblems by Frank-Wolf (FW) algorithm. Inouye [10]
proposed a similar method by using asymptotical penalty functions, and called it
inner penalty function (IPF) method, and like Hearn, he used FW algorithm to solve
subproblems.

One of the other methods in second category is Augmented Lagrange Multi-
pliers (ALM) method. This method was proposed separately by Powell [14] and
Hestenes [9] for solving nonlinear programming problems. Hearn and Ribera [8]
used ALM for solving traffic assignment problem with link capacity constraints.
They applied FW algorithm to solve uncapacitated subproblems and provided the
results for some small size networks. Larsson and Patriksson [11] also presented
the results obtained from the application of a similar ALM method for small to
medium size networks. In this method, the subproblems are solved using the dis-
aggregate simplicial decomposition (DSD) algorithm. Nie et al. [12] implemented
IPF method on small, medium and large scale networks and used Gradient Projec-
tion (GP) method for solving uncapacitated subproblems. Except for Larson’s DSD
method, solutions provided by above mentioned methods have not a simple route
flow interpretation, because all of these methods are link based, that is, their main
variables are total link flows.

Recently Bar-Gera [2], proposed a new method for solving TAP, and called it
Origin-Based (OB) method. In Origin Based algorithm all computations are done
under topological order, and as showed in [1], algorithm running time reduces signif-
icantly in large scale networks. One main advantage of OB algorithm is that, solu-
tions provided by this algorithm have simple route flow interpretation with modest
memory requirement [17].

In this paper we have proposed some modification on original OB algorithm to
apply it for solving CTAP, and we called it extended origin based (EOB) algorithm.
Further we proposed an iterative method, that transforms CTAP to a sequence of
TAPs by an inner penalty strategy, and then solves subproblems by EOB. Solutions
provided by proposed method has a simple route flow interpretation, and according
to the property that all computations have topological order, we expect it to be
useful for large scale networks.

The rest of paper is organized as follows. Next section discusses mathematical
formulation of CTAP, and preparing CTAP to apply OB algorithm on it. A short
review of OB algorithm is given in sect. 3. Extended origin based algorithm is
presented in sect. 4. Convergence proof of EOB algorithm is provided in sect. 5.
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2. Mathematical formulation of capacitated traffic assignment
problem

2.1. Notation
A the set of all links
Ap the restricting subnetwork for origin p
No the set of origin nodes
Nd the set of destination nodes
R+ the set of positive real numbers
Rpq the set of all routes from p to q
dpq O-D flow (demand)
B̄p
j the set of nonbasic links to node j in Ap

hpqr the flow on route r from p to q
~h route flow vector
fij total flow on link (i, j)
~f total link flow vector
Cij capacity of link (i, j)
ηpj the flow on node j from origin p

τpij proportion of ηpj which arrives from (i, j)

tij the cost of link (i, j)
~t link cost vector

t′ij link cost derivative i.e. t′ij =
∂tij
∂fij

~t′ vector of link cost derivative
ttij penalized cost of link (i, j)
~tt penalized link cost vector

tt′ij penalized link cost derivative i.e. tt′ij =
∂ttij
∂fij

~tt
′

vector of penalized link cost derivative
(b, j) basic link among all entering links to node j
φpij average cost of link (i, j) in Ap
φpbj average cost of basic link to node j i.e. (b, j) in Ap
ωpj average cost to node j in Ap
ψpij approximated derivative of φpij with respect to fij
ξpj approximated derivative of ωpj with respect to ηpj
Ωib(j) desirable shift from (i, j) to (b, j) in Ap
Θ algorithmic map of original OB algorithm
Ξ algorithmic map of EOB algorithm
ζpj last common node to j in restricting subnetwork Ap
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2.2. Mathematical Formulation
Some times we have tij = tij(fij) for each link (i, j), i.e. the travel time function

is separable. In this special case, CTAP is given by the following convex nonlinear
programming problem [11]:

Min Z(~f) =
∑

(i,j)∈A

∫ fij

0
tij(x)dx

subject to :
∑
r∈Rpq

hpqr = dpq; ∀p ∈ No, q ∈ Nd (1)

hpqr ≥ 0; ∀r ∈ Rpq, p ∈ No, q ∈ Nd (2)

fij =
∑
p∈No

∑
q∈Nd

∑
r∈Rpq

hpqrδ
pq
ij,r; ∀(i, j) ∈ A (3)

fij ≤ Cij ; ∀(i, j) ∈ A; (4)

where

δpqij,r =

{
1 (i, j) ⊂ r ∈ Rpq
0 o.w. .

Since the problem CTAP is a strictly convex optimization program (with respect to
the link flows) subject to linear constraints, it has a unique optimal solution of link
flows. Furthermore, the necessary and sufficient conditions of its optimality can be
stated explicitly according to Karush-Kuhn-Tucker (KKT) conditions (See [3]). Let
urs and vij denote the optimal values of multipliers associated with trip demands
and link capacities respectively, then the KKT conditions are:

hpqr

cpqr +
∑
r∈Rpq

vijδ
pq
ij,r − upq

 = 0 ∀r ∈ Rpq, p ∈ No, q ∈ Nd

vij(Cij − fij) = 0 ∀(i, j) ∈ A
cpqr +

∑
r∈Rpq

vijδ
pq
ij,r − upq ≥ 0 ∀r ∈ Rpq, p ∈ No, q ∈ Nd

(Cij − fij) ≥ 0 ∀(i, j) ∈ A
hpqr ≥ 0 ∀r ∈ Rpq, p ∈ No, q ∈ Nd

vij ≥ 0 ∀(i, j) ∈ A∑
r∈Rpq

hpqr = dpq ∀p ∈ No, q ∈ Nd;

where cpqr =
∑

(i,j)∈A tijδ
pq
ij,r denotes the path travel cost. It can be shown that by

introducing a generalized path travel cost which is defined as

ĉpqr =
∑

(i,j)∈A

(tij + vij)δ
pq
ij,r,
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the optimality conditions of CTAP give rise to Wardrop’s first principle [16] in terms
of generalized travel cost [13], i.e. if (~h, ~f) solves CTAP then

hpqr(ĉpqr − upq) = 0 ∀r ∈ Rpq, p ∈ No, q ∈ Nd (5)

ĉpqr − upq ≥ 0 ∀r ∈ Rpq, p ∈ No, q ∈ Nd. (6)

It is obvious that (5) and (6) state the Wardrop’s first principle considering the
generalized travel cost of any path r.

2.3. Inner Penalty Function Method
In this method, CTAP has been defined as a sequence of unbounded traffic

assignment problems, in which the objective functions include a penalty term to
prevent constraint violation. Using inner penalty function (IPF) method, CTAP
can be replaced by an uncapacitated TAP as follows, called CTAP-IPF by Nie et
al. [12] :

Min T (~f, γ) =
∑

(i,j)∈A

∫ fij

0
tij(x)dx+ γ

∑
(i,j)∈A

p(fij)

subject to : (1)− (3),

where γ ∈ R+ is penalty parameter and

lim
fij→Cij

p(fij) = +∞, p(fij) > 0,

p(fij) ∈ Cm[0, Cij); m ≥ 2,∀(i, j) ∈ A.

As penalty parameter γ tends to 0, solution points of CTAP-IPF problems and
γ∇p(~f) tends to optimum point of original CTAP and optimal Lagrange multipliers
vector, respectively [12].

In each iteration, say n, gradient of asymptotical penalized objective function is

gn(fij , γ) = tij + γn
dp(fij)

dfij
,

where according to past researches [18], an efficient form of
dp(fij)
dfij

is

dp(fij)

dfij
=

1

Cij − fij
, ∀(i, j) ∈ A.

To implement OB algorithm on CTAP, we have made some modification on orig-
inal CTAP-IPF model. According to selection of 1

Cij−fij as penalty function, it’s
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derivative with respect to total link flow,
dp(fij)
dfij

, is a separable, strictly ascend-

ing and convex function in [0, Cij). Therefore by defining extended link cost as

ttij = tij + γ
dp(fij)
dfij

, for a given constant γ, we can state CTAP-IPF equivalently as:

Min T γ(~f) =
∑

(i,j)∈A

∫ fij

0
ttij(x)dx

subject to : (1)− (3). (7)

According to above illustrations, ttij is a separable and strictly ascending function

with respect to fij ; that is, T γ(~f) is a convex function of ~f . Now OB algorithm can
be applied for this convex problem.

2.4. Constructing a pseudo-feasible set Our algorithm like other methods first
makes an all or nothing assignment, and thus it may causes link capacity violation.
According to definition of ttij , extended link cost is not well-defined when some links
are over saturated. To solve this problem, we adapted the method has been used by
Nie et al. [12]. They defined a temporary capacity for all saturated links as follows:

Ĉij =

{
Cij fij < Cij
fij + ε o.w.,

(8)

where ε is a small real number. For sufficiently small ε, a significant increase is
obtained on cost of saturated links, so algorithm will attempt to decrease flows
on this kinds of links. Since we want to transform a pseudo-feasible solution to a
feasible one, we adapt a dynamic ε as Nie et al. [12], and update (decrease) it in
every iteration of the proposed method.

εn =
γn

`max
(
tij + γn

Cij−fij

) , 0 ≤ ` ≤ 100. (9)

3. Origin Based algorithm for solving TAP

“Recent researches on the OB algorithm [2] demonstrate that it is one of the state-
of-the-art algorithms for solving the traffic assignment problem. There are two key
steps in this algorithm:

• Restricting the origin-based subnetworks to be acyclic.

• Shifting flows within the acyclic subnetwork using cost deviations.
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Since the restricting subnetwork is always acyclic for a given origin, it permits a
simple route flow interpretation, enables us to define cost, and allows for a definition
of topological order. Using the link proportions, the memory required to store routes
is significantly reduced. The OB algorithm is considered to be suitable for large-scale
networks due to its computational efficiency and modest memory requirements”[17].

Origin based algorithm for solving TAP starts to implement from shortest cost
trees with all or nothing assignment as initial solutions. Then updates restricted
subnetworks for every origin, and adjusts link proportions of current subnetwork.
This algorithm computes the amount of flow that must be transferred from a non-
basic link (i, j) to a basic link (b, j) by a point to set algorithmic map Θij→bj

λ :

[0, 1]|A| ×<|A|+ ×<
|A|
+ → 2[0,1]:

Θij→bj
λ (~τ ,~t,~t′) =


{

min

(
τpij , λ

Ωib(j)(~τ,~t,~t′)
ηpj (~τ)

)}
ηpj > 0

{τpij} ηpj = 0;φpij > φpbj
([0, τpij ]) ηpj = 0;φpij = φpbj

(10)

where

Ωib(j)(~τ ,~t,~t
′) =

φpij(~τ ,~t)− φ
p
bj(~τ ,

~t)

max
(
εν , ψ

p
ij(~τ ,~t

′) + νbp(~τ ,~t′)− ρζpj (~τ ,~t′)
)

is the desired amount of flow to be shifted ignoring feasibility constraints and λ is
the step size in boundary search method proposed by Bar-Gera [1]. In Ωib(j)(~τ ,~t,~t

′),
εν is a small constant to overcome zero derivative approximation [1].

4. Extended Origin Based Algorithm for Solving CTAP

In the original OB algorithm on CTAP problem, if we specify the amount of shifted
flow by original algorithmic map, then it may cause over-saturating on basic links.
To overcome this, we define a new algorithmic map

Ξij→bjλ (~τ , ~tt, ~tt
′
) =


{

min

(
τpij , λ

Ωib(j)(~τ,~tt,~tt
′
)

ηpj (~τ)
,
Ĉbj−fbj
ηpj (~τ)

)}
ηpj > 0

{τpij} ηpj = 0;φpij > φpbj
([0, τpij ]) ηpj = 0;φpij = φpbj .

(11)

In the new algorithmic map the term
Ĉbj−fbj
ηpj (~τ)

prevents over saturating basic link

b when we transfer flow from link a to link b; because the amount of shifted flow
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from nonbasic link a to basic link b is ∆τpij η
p
j (~τ), where ∆~τp ∈ Ξij→bjλ , that is,

∆τpij ≤
Ĉbj−fbj
ηpj (~τ)

, and therefore the amount of shifted flow is less than Ĉbj − fbj .
In the next section we prove that the new algorithmic map is a closed map. In

EOB algorithm, the sequence of penalty parameters must tend to zero, so we add
a penalty parameter update step to the algorithm, and update penalty parameter
at the end of every subproblem solution. Since we attempt to make pseudo-feasible
solutions in every step, we must also add a link capacity update step to the algorithm
and update γ at the same time.

The sequence of penalty parameters, i.e. {γn}n, tends to zero strictly descending.
So, there is a subsequence {γnk

}k that after updating penalty parameter in iteration
nk, the new penalty parameter satisfies:

T γnk+1 (~f) ≤ T γnk (~f), k = 1, 2, 3, . . . .

For simplicity, the subsequence {γnk
}k is denoted by {γn}, unless we define it

explicitly. We can state the EOB algorithm formally as follows:

Algorithm 1.
for p in No do

Ap :=tree of minimum cost routes from p.
~f∗0p := all-or-nothing assignment using Ap.

end for
update link cost by selecting γ0 as penalty parameter; i.e.

ttij(fij) = tij(fij) + γ0
dp(fij)
dfij

.

n← 1
while convergence criteria is satisfied do

update over-saturated links capacity using (8) and (9).
update link cost selecting γn ∈ {γn}n as penalty parameter.

while achieving given accuracy call Algorithm 2, starting from ~f∗n−1

~f∗n := The optimal solution of (7) with penalty parameter γn,
obtained from previous step.

n← n+ 1.
end while

Algorithm 2.

Input a given feasible solution (~f) of (7) with penalty parameter γ.
Main Loop
for n from 1 to the number of main iterations (Imain) do

for p in No do

Update link costs ~ttp = (ttij)a∈Ap .
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Update restricting subnetwork Ap.
Update link proportions vector as follows:

k ← 0
repeat

λ← 2−k.
Compute average costs by following recursive formulas:

σpp(~τ , ~tt) = 0,

φpij(~τ , ~tt) = ttij + σatp(~τ , ~tt)

ωpj (~τ , ~tt) =
∑

a∈Ap;ah=j τ
p
ijφ

p
ij(~τ , ~tt), j 6= p

Compute second order derivative approximations:

ρpp(~τ , ~tt
′
) = 0

ψpij(~τ , ~tt
′
) = tt′ij + ρatp(~τ , ~tt

′
)

ξpj (~τ , ~tt
′
) =

∑
a′∈Ap;ah=j α

2
apψ

p
ij(~τ , ~tt

′
), j 6= p

For all j ∈ Ap \ {p} compute the following algorithmic map

Ξij→bjλ (~τ , ~tt, ~tt
′
) =

{
min

(
τpij , λ

Ωib(j)(~τ,~tt,~tt
′
)

ηpj (~τ)
,
Ĉbj−fbj
ηpj (~τ)

)}
ηpj > 0

{τpij} ηpj = 0;φpij > φpbj
([0, τpij ]) ηpj = 0;φpij = φpbj ,

where ah = bh = j.
Aggregate the shift of all links to the same node j

Ξj:b =


∆τpij ∈ −Ξij→bjλ (~τ , ~tt, ~tt

′
) ∀a ∈ B̄p

j
~∆αp : ∆αbp = −

∑
a∈B̄p

j
∆τpij ,

∆αa′p = 0, a′h 6= j
k ← k + 1

until
∑

a∈Ap
∆fij tt(fij + λ∆fij) < 0.

end for
for m from 1 to the number of inner iterations (Iinner) do

for p in No do

Update link costs ~ttp = (ttij)a∈Ap .
Update link proportions vector same as above.

end for
end for

end for
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5. Convergence Proof

In this section we prove the convergence of the proposed algorithm. Bar-Gera [1]
proved that the algorithmic map defined by (10) is closed. Here we recall this result

for algorithmic map Ξij→bjλ (~τ , ~tt, ~tt
′
). The only difference between algorithmic maps

(10) and (11) is the existence of additional term
Ĉa−fij
ηpj (~τ)

in first case of (11).

Lemma 1. The algorithmic map Ξij→bjλ (~τ , ~tt, ~tt
′
), defined by (11), is a closed map;

That is, if ~τk → ~τ , ~tt
k → ~tt, ~tt

′k → ~tt
′
, ~̃θk ∈ Ξij→bjλ (~τ , ~tt, ~tt

′
); then

~̃θ ∈ Ξij→bjλ (~τ , ~tt, ~tt
′
)

Proof. There exist three cases:

1. ηpj (~τ) > 0

2. ηpj (~τ) = 0;φpij(~τ , ~tt) > φpbj(~τ ,
~tt)

3. ηpj (~τ) = 0;φpij(~τ , ~tt) = φpbj(~τ ,
~tt)

We prove here just case 1; proof of other cases is similar to Lemma 4 of [1]. According

to [1], fij and ηpj (~τ) are continuous functions of ~τ , and therefore
Ĉa−fij
ηpj (~τ)

is continuous.

Also Ωib(j)(~τ , ~tt, ~tt
′
) is a continuous function of (~τ , ~tt, ~tt

′
), therefore Ξij→bjλ (~τ , ~tt, ~tt

′
)

is continuous in a neighborhood of (~τ , ~tt, ~tt
′
), which completes the proof.

Lemma 2. There is a subsequence {γn}n of penalty parameters such that after
updating link capacities, γn+1 satisfies:

T γn+1(~f∗n) ≤ T γn(~f∗n), (12)

where ~f∗n is a solution of (7), obtained from Algorithm 1 in iteration n, with penalty
parameter γn and given accuracy.

Proof. Let T
γn

(~f∗n) be the objective function value of problem (7) after updating
link capacities and before updating penalty parameter. We have two cases:

Case 1: If T
γn

(~f∗n) ≤ T γn(~f∗n), then according to descending property of penalty
parameters, γn+1 ≤ γn, and therefore according to construction of ttij , the

amount of T
γn

(~f∗n) will not increase after updating penalty parameter; that
is, T γn+1(~f∗n) ≤ T γn(~f∗n).
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Case 2: Otherwise, because penalty parameters sequence is descending and con-
vergent to zero, according to construction of ttij , after passing a finite number
of penalty parameters, (12) will be satisfied.

Theorem 3. Algorithm 1 is convergent.

Proof. According to Lemma 1, Algorithm 2 is convergent for subproblems. Also,
for a constant penalty parameter, objective function value is a descending sequence
during implementation Algorithm 2, and according to Lemma 2, objective function
value doesn’t increase after updating link capacities and penalty parameter. So,

objective function value sequence
{
T γn(~fkn)

}
k,n

is always descending. But, this

sequence is bounded from below, so is convergent.

6. Numerical Results

In this section we will examine EOB algorithm on some real world networks and
an small size network. The EOB algorithm will also be compared with two ex-
perimented algorithms in literature. These two algorithms are IPF(Inner Penalty
Function using GP subproblem solver) and ALM(Augmented Lagrange Method)
(see [12]). We have employed BPR performance function in all of our test problems.
The EOB algorithm was coded in MATLAB and tested on a PC with a 1.8 GHz
P-IV CPU and 1GB SDRAM. Since [12] have coded IPF and ALM algorithms in
Fortran while EOB algorithm is coded in MATLAB, we just compare EOB with
IPF and ALM algorithms using number of iterations. In all of our experiments we
have used penalty parameter sequences γn = qn, where q ∈ (0, 1). We have selected
` = q in our experiments.

Our first test problem is an small size well known network namely Hearn’s nine
node network. Figure 1 shows the Hearn’s network. Nodes 1 and 2 are origin nodes
and nodes 3 and 4 are destination nodes.

Table 1 represents the results of implementing algorithms IPF, ALM and EOB
on Hearn’s network. The results due to IPF and ALM algorithms are adopted
from [12]. Nie et al. [12] reported that IPF algorithm achieves an objective of
1572.31 after 19 main iterations and 156 GP iterations, while ALM takes an ob-
jective value 1572.36 after 65 main iterations and 84 GP iterations. However EOB
algorithm reaches an objective value 1572.287 after 18 iterations of Algorithm 1 and
93 iterations of Algorithm 1. It will be seems that rapid convergence and accurate
solutions of EOB algorithm depends on accuracy and rapid convergence of OB algo-
rithm(Algorithm 2). As showed in Table 1 the solution obtained by EOB algorithm
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Figure 1: Hearn’s nine node network

has less queuing delay than that of both IPF and ALM algorithms. Note that each
of these algorithms have provided a solution with six active constraints.

Our experiments demonstrated that for medium and big size networks EOB
algorithm is an advantageous algorithm, since it can achieve very accurate solutions
in subsequent cpu time and number of iterations. Another result is that EOB
algorithm was stable with respect to penalty parameter sequence selection.

In Figure 2 and Figure 3 we have examined EOB algorithm on well known Sioux
Falls network with 24 nodes, 76 links and 528 O-D pairs. Figure 2 represents the
application of EOB algorithm on Sioux Falls network with three different sequences
of penalty parameters (i.e. γn = (0.5)n, γ̄n = (0.1)n, γ̃n = (0.01)n). As is obvious
from Figure 2, EOB algorithm is stable with respect to selection of penalty parame-
ters. Our experiments declared that flow infeasibility drops down to zero in several
beginning iterations of EOB algorithm. Figure 3 and Figure 6 confirms this claim.
With a penalty parameter γn = (0.1)n after forth iteration flow infeasibility dropped
to zero in Sioux Falls network.

Nie et al. [12] reported that for Sioux Falls network, IPF reaches an objective
value 33.31 implementing 15 main iterations and 141 inner GP iterations while
ALM achieves a same objective function value after 26 main iterations and 127
GP iterations. However our experiments showed that EOB algorithm reaches an
objective value 33.2897 after 13 iterations of Algorithm 1 and 133 iterations of
Algorithm 2. As a result EOB algorithm is superior to both IPF algorithm and

180



S. Morowati-Shalilvand, J. Mehri-Tekmeh – An extended Origin-Based . . .

Table 1: The flow patterns by different solution methods for Hearn’s network.
IPF ALM EOB

Link]
Original
Capacity

Modified
Capacity

Flow Delay Flow Delay Flow Delay

1 10 12.02 12.02 0.14 12.02 0.22 12.02 0.135
2 16 18.02 17.98 0.00 17.98 0.00 17.98 0.000
3 35 43.59 43.59 5.92 43.59 5.94 43.59 5.908
4 18 26.59 26.42 0.00 26.42 0.00 26.42 0.000
5 50 50.00 0.14 0.00 1.21 0.00 0.10 0.000
6 25 25.00 20.46 0.00 19.40 0.00 20.38 0.000
7 35 35.00 35.00 0.77 35.00 0.68 35.00 0.775
8 50 50.00 0.00 0.00 0.00 0.00 0.00 0.000
9 25 25.00 20.46 0.00 20.66 0.00 20.41 0.000
10 35 35.00 24.07 0.00 24.95 0.00 24.00 0.000
11 25 25.00 25.00 5.76 25.00 5.59 25.00 5.765
12 24 24.00 24.00 0.54 24.00 0.54 24.00 0.540
13 50 50.00 5.54 0.00 5.34 0.00 5.58 0.000
14 39 39.00 15.00 0.00 15.00 0.00 15.00 0.000
15 43 43.00 36.00 0.00 36.00 0.00 36.00 0.000
16 50 50.00 0.00 0.00 0.00 0.00 0.00 0.000
17 35 35.00 34.07 0.00 34.95 0.00 34.00 0.000
18 25 25.00 25.00 0.99 25.00 0.99 25.00 0.987
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Figure 2: EOB Algorithm on Sioux-falls network: CPU time vs. objective function
value for penalty parameter sequences γn = (0.5)n, γn = (0.1)n and γn = (0.01)n.
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Figure 3: EOB Algorithm on Sioux-falls network: CPU time vs. flow infeasibility.
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Figure 4: EOB Algorithm on Anaheim network: Number of main iterations (Al-
gorithm 1) vs. objective function value for penalty parameter sequences γn =
(0.1)n, γn = (0.05)n and γn = (0.01)n.

182



S. Morowati-Shalilvand, J. Mehri-Tekmeh – An extended Origin-Based . . .

0 20 40 60 80 100 120 140 160 180
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

6

Iterations of Algorithm 2

O
b
je
ct
iv
e
F
u
n
ct
io
n

 

 

γ
n
=(0.5)

n

γ
n
=(0.1)

n

γ
n
=(0.05)

n

γ
n
=(0.01)

n

Figure 5: EOB Algorithm on Anaheim network: Number of inner iterations (Algo-
rithm 2) vs. objective function value for several penalty parameter sequences.
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Figure 6: EOB Algorithm on Anaheim network: Number of inner iterations (Algo-
rithm 2) vs. flow infeasibility.
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ALM.
We also examined EOB algorithm on Anaheim network with 416 nodes, 914

links and 1406 OD pairs. Figure 4 represents behavior of objective function value
versus number of main iterations of EOB algorithm(i.e. Algorithm 1) for several
penalty parameter sequences. Figure 5 illustrates the stability of EOB algorithm
with respect to penalty parameter sequence selection. As is said previously, our
experiments showed that flow infeasibility vanishes in several initial iterations of
EOB algorithm. For Anaheim network, Figure 6 shows that after 20 iterations of
algorithm 2, flow infeasibility drops down to zero.

In our tests on Anaheim network, EOB algorithm achieved an objective value
1,206,461 after 13 iterations of Algorithm 1 and 150 iterations of Algorithm 2. The
best objective value reported in [12] for Anaheim network is bigger than the value
achieved by EOB algorithm. Nie et al. [12] reported that IPF obtains a feasible
solution with an objective value of 1,206,474.50 after 15 main iterations, 181 inner
GP iterations and ALM method achieves objective value 1,206,910.37 after 99 main
iterations, 130 GP iterations. As a comparison between EOB algorithm with IPF
and ALM algorithms it can be claimed that to achieve accurate solutions in big
networks, EOB algorithm acts better than IPF and ALM.

7. Conclusion

We proposed an algorithm to solve capacitated traffic assignment problem. In this
algorithm, all computations are done under a topological order, so it does not need
more computational times. Another advantage of this algorithm is simple route
flow interpretation of its solution, in fact this is one of the main advantages of
original origin based algorithm to other algorithms, because transforming a link
based solution to a route based solution is not trivial task.

Like original OB algorithm, according to using link proportions as main vari-
ables in extended algorithm, memory requirement is significantly reduced. Our ex-
aminations Sioux-falls and Anaheim networks showed that EOB algorithm achieves
accurate solutions in subsequent time. In this sense EOB algorithm was superior to
both ALM and IPF with GP subproblem solver.
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