ALEPH-FUNCTION AND EQUATION OF INTEGRAL BLOOD PRESSURE

V.B.L. CHAURASIA, V. GILL

ABSTRACT. The aim of the present note is to establish an equation of Internal Blood Pressure pertaining to the Aleph-function. A few interesting special cases have also been recorded.

2000 Mathematics Subject Classification: 33C60.

Keywords: Internal Blood Pressure, Aleph-function.

1. INTRODUCTION

The Aleph (\aleph)-function, introduced by Südland *et al.* [3], however the notation and complete definition is presented here in the following manner in terms of the Mellin-Barnes type integrals [see also 4]

$$\begin{split} \aleph[\mathbf{z}] &= \aleph_{\mathbf{p}_{i},\mathbf{q}_{i},\tau_{i};\mathbf{r}}^{\mathbf{m},\mathbf{n}}[\mathbf{z}] &= \aleph_{\mathbf{p}_{i},\mathbf{q}_{i},\tau_{i};\mathbf{r}}^{\mathbf{m},\mathbf{n}}\left[\mathbf{z} \left| \begin{pmatrix} (\mathbf{a}_{j},\mathbf{A}_{j})_{1,\mathbf{n}}, [\tau_{i}(\mathbf{a}_{ji},\mathbf{A}_{ji})]_{\mathbf{n}+1,\mathbf{p}_{i};\mathbf{r}} \\ (\mathbf{b}_{j},\mathbf{B}_{j})_{1,\mathbf{m}}, [\tau_{i}(\mathbf{b}_{ji},\mathbf{B}_{ji})]_{\mathbf{m}+1,\mathbf{q}_{i};\mathbf{r}} \right] \\ &= \frac{1}{2\pi\omega} \int_{\mathbf{L}} \Omega_{\mathbf{p}_{i},\mathbf{q}_{i},\tau_{i};\mathbf{r}}^{\mathbf{m},\mathbf{n}}(\mathbf{s}) \ \mathbf{z}^{-\mathbf{s}} \ \mathrm{ds}. \end{split}$$
(1)

For all $z \neq 0$, where $\omega = \sqrt{-1}$ and

$$\Omega_{p_{i},q_{i},\tau_{i};r}^{m,n}(s) = \frac{\prod_{j=1}^{m} \Gamma(b_{j} + B_{j}s) \prod_{j=1}^{n} \Gamma(1 - a_{j} - A_{j}s)}{\sum_{i=1}^{r} \tau_{i} \prod_{j=n+1}^{p_{i}} \Gamma(a_{ji} + A_{ji}s) \prod_{j=m+1}^{q_{i}} \Gamma(1 - b_{ji} - B_{ji}s)},$$
(2)

the integration path L = $L_{i\gamma}\infty$, $\gamma \in \mathbb{R}$ extends from $\gamma - i\infty$ to $\gamma + i\infty$, and is such that the poles, assumed to be simple, of $\Gamma(1 - a_j - A_js)$, j = 1,...,n do not concide with the poles of $\Gamma(b_j + B_js)$, j = 1,...,m the parameter p_i, q_i are non-negative integers satisfying $0 \leq n \leq p_i$, $1 \leq m \leq q_i$, $\tau_i > 0$ for i = 1, ..., r. The parameter $A_j, B_j, A_{ji}, B_{ji}, > 0$ and $a_j, b_j, a_{ji}, b_{ji} \in C$. The empty product in (2) is interpreted as unity. The existence conditions for the defining integral (1) are given below:

$$\varphi_{\ell} > 0, |\operatorname{arg}(\mathbf{z})| < \frac{\pi}{2} \varphi_{\ell}, \quad \ell = 1, ..., r;$$
(3)

$$\varphi_{\ell} \geq 0, |\operatorname{arg}(\mathbf{z})| < \frac{\pi}{2} \varphi_{\ell} \text{ and } \mathbb{R}\{\xi_{\ell}\} + 1 < 0,$$
(4)

where

$$\varphi_{\ell} = \sum_{j=1}^{n} A_{j} + \sum_{j=1}^{m} B_{j} - \tau_{\ell} \left(\sum_{j=n+1}^{p_{\ell}} A_{j\ell} + \sum_{j=m+1}^{q_{\ell}} B_{j\ell} \right)$$
(5)

$$\xi_{\ell} = \sum_{j=1}^{m} b_{j} - \sum_{j=1}^{n} a_{j} + \tau_{\ell} \left(\sum_{j=m+1}^{q_{\ell}} b_{j\ell} - \sum_{j=n+1}^{p_{\ell}} a_{j\ell} \right) + \frac{1}{2} (p_{\ell} - q_{\ell}), \quad \ell = 1, \dots, r \quad (6)$$

For detailed account of the Aleph (\aleph) -function see [3] and [4].

2. Main Result

Our main result of the present paper is the equation of Internal Blood Pressure in terms of Aleph (\aleph)-function contained in the following main theorem:

Main Theorem. With φ_{ℓ} and ξ_{ℓ} given by (5) and (6), let P be the Internal Blood Pressure in Blood vessel having volume V, at any time and P_1 and V_1 be the partial change in internal pressure and volume, with following conditions (i) $V > V_1, P > P_1$,

Where h is proportional constant.

Proof. Let P be the Internal Blood Pressure in Blood vessel having volume V, at any time. If P_1 and V_1 be the partial change in Internal Pressure and Volume respectively, then Internal Blood Pressure is given by the following equation [9, p.77]:

$$V\alpha P$$
 (8)

from which we get the following differential equation

$$\frac{\mathrm{dV}}{\mathrm{dP}} = \mathrm{h}; \quad \mathrm{V} \to 0, \, \mathrm{P} \to 0 \tag{9}$$

where h is proportional constant. Integrating (9), we have

$$V = hP + k \text{ or } \frac{\Gamma(1+V)}{\Gamma(V)} = h \frac{\Gamma(1+P)}{\Gamma(P)} + k, \qquad (10)$$

where k is integral constant.

Replacing $P = P + P_1 s$ and $V = V + V_1 s$ (since as volume increases Internal Blood Pressure will also increase) in (10) and multiplying both sides by $\frac{1}{2\pi\omega}\Omega_{\mathrm{Pi},\mathrm{qi},\tau_{\mathrm{i}};\mathrm{r}}^{\mathrm{m,n}}(\mathrm{s})\mathrm{z}^{-\mathrm{s}}$, further integrating with respect to s in the direction of contour from $\gamma - i\infty$ to $\gamma + i\infty$ and with the help of (1), we get (7).

3. Special Cases

As the Aleph-function is the most generalized special function, numerous special cases with potentially useful transcendental functions, for sake of brevity, some interesting special cases of main theorem are given below:

(i) If we take $\tau_1 = \tau_2 = ... = \tau_r = 1$ in (7), then the Aleph-function reduces to an I-function [8] and we get equation of Internal Blood Pressure in terms of I-function. (ii) If we set $\tau_1 = \tau_2 = ... = \tau_r = 1$ and r = 1 in (7), then the Aleph-function reduces to Fox's H-function, we have a known result recently obtained by Srivastava [6,p.184, (9.6.4)].

(iii) Letting r = 1 and $\tau_1 = \tau_2 = ... = \tau_r = 1$ in equation (7), we get a known result due to Chaurasia [7] when $a_i = b_j = 1(i = 1, ..., n; j = m + 1, ..., q)$.

References

[1] A.M. Mathai, R.K. Saxena, *The H-function with applications in statistics and other disciplines*, Wiley Eastern, New Delhi (1978).

[2] C. Fox: The G and H-function as symmetrical fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395-429.

[3] N. Südland, B. Baulmann, T.F. Nonnenmacher, *Open problem : who knows about the Aleph* (ℵ)-*function*?, Fract. Calc. Appl. Anal. 1(4), (1998), 401-402.

[4] N. Südland, B. Baumann, T.F.Nonnenmacher, Fractional Driftless Fokker-Planck Equation with Power Law Diffusion Coefficients, in: V.G. Gangha, E.W. Mayr, W.G. Vorozhtsov, editors, Computer Algebra in Scientific computing (CASC Konstanz 2001), Springer, Berlin (2001), 513-525.

[5] R.G. Buschman and H.M. Srivastava, The \overline{H} -Function associated with a certain class of Feynman integrals, J. Phys. A.: Math. Gen., 23, 4707-4710 (1990).

[6] S.S. Srivastava, An advanced study of generalized hypergeometric functions with their applications, Ph.D. Thesis, A.P.S. University, Rewa (1999).

[7] V.B.L. Chaurasia, Equation of internal blood pressure and the \overline{H} -function, Acta Ciencia Indica, 30M, No.4, 719-720 (2004).

[8] V.P. Saxena, Formal solution of certain new pair of dual integral equations involving H-functions, Proc. Nat. Acad. Sci. India Sect. A 51 (1982), 366-375.

[9] V.P. Saxena, *Introductory Bio-Mathematics*, Vishwa Prakashan, New Delhi (1989).

Vinod Bihari Lal Chaurasia

Department of Mathematics, University of Rajasthan, Jaipur-302004, Rajasthan, India. email: drvblc@yahoo.com

Vinod Gill

Department of Mathematics, Arya Institute of Engineering and Technology, Kukas, Jaipur-302028, Rajasthan, India. email: vinod.gill08@gmail.com