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MHD BOUNDARY-LAYER FLOW OVER A PERMEABLE
SHRINKING SURFACE

A. Roşca

Abstract. Steady forced convection boundary layer flow past a permeable
shrinking surface in a viscous and electrically conducting fluid is theoretically inves-
tigated. Choosing appropriate similarity variables, the partial differential equations
are transformed into an ordinary (similarity) differential equation, which is then
solved numerically using the function bvp4c from Matlab for different values of the
governing parameters. The effects of the two mass suction and shrinking parame-
ters on the reduced skin friction coefficient and the dimensionless velocity profiles
are presented graphically and discussed.
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1. Introduction

Due to the numerous applications in industrial manufacturing processes, the prob-
lem of the flow due to stretching/shrinking surfaces has attracted the attention of
researchers for the past four decades, being a subject of considerable interest in the
contemporary literature (Crane [3]; Banks [1]; Grubka and Bobba [8]; Magyari and
Keller [10]; Liao and Pop [9], etc.). Some of the application areas are hot rolling,
paper production, metal spinning, drawing plastic films, glass blowing, continuous
casting of metals and spinning of fibers, etc. Recently, the interest has been ex-
tended to the problem of flow and heat transfer over shrinking surfaces. For shrink-
ing problems, the flow is shrunk towards a slot that would cause velocity away from
the sheet. Here, the movement of the sheet is in opposite direction to the stretching
sheet, therefore the flow induced by a shrinking sheet is, of course, distinct from the
stretching flow. The main objective of this paper is to analyze the steady boundary
layer flow of a viscous fluid over a shrinking surface with a special velocity form.
It is shown that the reduced skin friction or the surface shear stress and the flow
velocity are influenced by the mass transfer and the shrinking parameters.
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2. Basic equations

Consider the two-dimensional flow of a viscous and electrically conducting fluid
over a permeable shrinking surface coinciding with the plane y = 0, the flow being
confined to y > 0, where y is the coordinate measured in the normal direction
to the surface of the sheet. It is assumed that the velocity distribution of the
shrinking surface is uw(x) = λUw(x) where x is the coordinate measured along
the shrinking surface and λ < 0 is the parameter related to the shrinking surface
speed. It is also assumed that the mass flux velocity is vw(x) with vw(x) < 0
for suction and vw(x) > 0 for injection or withdrawal of the fluid, respectively.
Further, it assumed that an external variable magnetic field B(x) is applied normal
to the plate. Under these conditions along with the Boussinesq approximation, the
equations which govern this problem are (see Pop and Ingham [11])

∂u

∂x
+
∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB2(x)

ρ
u (2)

subject to the boundary conditions

v = vw(x), u = uw(x) = λUw(x) = λa(x+ b)α at y = 0
u→ 0 as y →∞ (3)

where u and v are the velocity componets along x and y axes, ν is the kinematic
viscosity of the fluid, ρ is the density, σ is the electrical conductivity of the fluid and
a, b and α are constants with a > 0.

3. Similarity solution

We introduce now the following similarity variables

ψ =

√
ν

a(1 + α)
(x+ b)(α+1)/2f(η), η =

√
a(1 + α)

ν
(x+ b)(α−1)/2y (4)

where a 6= 0, a(1 + α) > 0 and ψ is the stream function, which is defined in the
usual way as u = ∂ψ/∂y and v = −∂ψ/∂x . Thus, we have

u = a(x+ b)αf ′(η), v = −1

2

√
a(α+ 1)ν(x+ b)(α−1)/2

[
f(η) +

α− 1

α+ 1
ηf ′(η)

]
(5)
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Thus, in order that we have a similarity solution of Eqs. (1) and (2), we take

vw(x) = −1

2

√
a(α+ 1)ν(x+ b)(α−1)/2S, B(x) = B0(x+ b)(α−1)/2 (6)

where B0 is the constant applied magnetic field and S is the constant parameter of
suction (S > 0 ) or injection (S < 0), respectively.

Substituting (4) into Eq. (2), the following ordinary differential equation results

f ′′′ +
1

2
ff ′′ − βf ′2 −Mf ′ = 0 (7)

and the boundary conditions (3) become

f(0) = S, f ′(0) = λ, f ′(η)→ 0 as η →∞ (8)

where β is a dimensionless constant parameter and M is the magnetic field param-
eter, which are defined by

β =
α

1 + α
, M =

σB2
0

ρa(1 + α)
(9)

It is worth mentioning that for λ = 1, β = 0, M = 0 and S = 0, Eq. (7) becomes
identical with Eq. (6) from the paper by Sakiadis [12].

The physical quantity of interest is the skin friction coefficient Cf , which is
defined as

Cf =
τw

ρU2
w(x)

(10)

where ρ is the density of the fluid and τw is the skin friction or shear stress along
the shrinking surface, which is given by

τw = µ

(
∂u

∂y

)
y=0

(11)

where µ is the dynamic viscosity of the fluid. Using (5) and (10), we get

Re1/2x Cf =
√

1− αf ′′(0) (12)

where Rex = Uw(x)(x+ b)/ν is the local Reynolds number.
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4. Results and discussion

The ordinary differential equation (7) subject to the boundary conditions (8) has
been solved numerically using the function bvp4c from Matlab for different values
of the parameters λ, β, M and S. The relative tolerance was set to 10−7. In this
method, a suitable finite value of η → ∞, namely η = η∞ = 20 has been chosen.
We start with an initial guess satisfing the boundary conditions (8) and reveal the
behavior of the solution. The technique called continuation (Shampine et al. [13])
has been then used. Table 1 shows the comparison of the values of −f ′′(0) for λ = 1,
β = 0, M = 0 and S = 0 with those reported by Sakiadis [12] for several values of
the similarity variable η . We can see that there is an excellent agreement between
these results, so that we are confident that the present numerical method works very
efficiently.

η −f ′′(0) −f ′′(0)
Present study Sakiadis [12]

0 0.44375 0.44375

0.2 0.43946 0.43946

0.3 0.43431 0.43431

0.4 0.42736 0.42736

0.5 0.41878 0.41878

0.9 0.37212 0.37212

1 0.35831 0.35831

Table 1. Comparison of the values of −f ′′(0) for several values of the similarity
variable η with the results of Sakiadis [12], when λ = 1, β = 0, M = 0 and S = 0.

Figures 1 to 3 present the dimensionless velocity profiles f ′(η) for several values
of the parameters β, M and S in the case of λ = −1 (the shrinking sheet). It can be
seen from these figures that the far field boundary condition f ′(η) → 0 as η → ∞
is satisfied asymptotically. Therefore, it is supported the validity of the numerical
results obtained by us.
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Figure 1: Dimensionless velocity profiles f ′(η) for several values of β.

Figure 2: Dimensionless velocity profiles f ′(η) for several values of M .
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Figure 3: Dimensionless velocity profiles f ′(η) for several values of S.

In order to see the effects of the parameters S, M and β on the reduced skin
friction coefficient f ′′(0), we believe that instead of figures we can give a multiple
linear regression denoted by Sfr. In this way one can easily see the effects of these
parameters S, M and β on f ′′(0). When λ = −1 (shrinking surface), we consider a
regression of the form

Sfrest = a0 + a1S + a2M + a3β (13)

where Sfrest is the response variable while S, M and β are independent variables.
The following range values of the parameters are considered in the numerical ex-
periments: S = 2, 3, 4, M = 2, 8, 12 and β = −1, 0, 2. Hence, we used 27, 3-uple
of the form (S,M, β), with the corresponding values of f ′′(0). Thus, we obtain the
following form of the multiple linear regression function Sfrest, with the coefficients
obtained by using the function regress from Matlab:

Sfrest = 0.8903 + 0.3339S + 0.2055M − 0.1346β (14)

The coefficient of multiple determination is R2 = 0.98 and the maximum relative
error defined by ε = |(Sfrest − f ′′(0))/f ′′(0)| is ε = 0.1856. We observe from (14)
that an increase in the parameters S and M leads to an increase in the value of
Sfrest, while a decrease in the parameter β leads to an increase of Sfrest. This
regression can be repeated for other values of λ < 0 (shrinking surface), but for the
sake of space it will not be presented here.
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If we wish to have a more accurate formula, a quadratic regression can be per-
formed. Thus, in the case when λ = −1 (shrinking surface), instead of Eq. (14) we
obtain the following formula:

Sfrest = 0.8716 + 0.2120S + 0.29908M − 0.2265β + 0.0206S2 − 0.0069M2−
−0.0113β2 + 0.0119Mβ − 0.000000004341SM + 0.0052Sβ

(15)
where the coefficient of multiple determination is R2 = 0.99 and the maximum
relative error is ε = 0.0594. As we can see from the regresion Eq. (15), there is a
relatively large interaction between M and β, and almost no interaction between S
and M and S and β.

5. Conclusions

This paper investigates the effect of the magnetic field on the steady boundary-layer
flow past a permeable shrinking surface. Using appropiate similarity transforma-
tions, the partial differential equations are transformed into an ordinary (similar-
ity) differential equation, that is then solved numerically. Comparison with known
results from the open literature is also done. A multiple linear regression and a
quadratic regression are also performed. It is found that the governing parameters
substantially affect the flow. In our opinion, the results are new and original.
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