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EXISTENCE OF SOLUTIONS FOR NONLOCAL PROBLEMS IN
ORLICZ-SOBOLEV SPACES VIA GENUS THEORY
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Abstract. Using the genus theory, introduced by Krasnoselskii, we study the
existence of weak solutions for a class of nonlocal problems in Orlicz-Sobolev spaces.
Our results are natural extensions from the previous ones in [2, 14]. To our knowl-
edge, this is the first contribution to the study of nonlocal problems in this class of
spaces.
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1. Introduction

Let Ω be a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω. Assume
that a : (0,∞)→ R is a function such that the mapping, defined by

ϕ(t) :=

{
a(|t|)t for t 6= 0,

0, for t = 0,

is an odd, increasing homeomorphisms from R onto R. For the function ϕ above,
let us define

Φ(t) =

∫ t

0
ϕ(s)ds for all t ∈ R,

on which will be imposed some suitable conditions later.
In this article, we are concerned with a class of nonlocal problems in Orlicz-

Sobolev spaces of the form{
−M

( ∫
Ω Φ(|∇u|)dx

)
div
(
a(|∇u|)∇u

)
= f(x, u) in Ω,

u = 0 on ∂Ω,
(1)
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where M : R+ → R+ is a continuous function, f : Ω × R → R is a Carathéodory
function.

Firstly, it should be noticed that if ϕ(t) = p|t|p−2t for all t ∈ R, p > 1 then
problem (1) becomes the well-known p-Kirchhoff-type equation{

−M
( ∫

Ω |∇u|
pdx
)

∆pu = f(x, u) in Ω,

u = 0 on ∂Ω,
(2)

which has been intensively studied in recent years, see the papers [3, 6, 14, 19, 20,
24, 25]. In the case when p(.) is a function, problem (2) has also been studied by
many authors, see for examples [2, 8, 9, 13, 15, 16]. Since the first equation in
(2) contains an integral over Ω, it is no longer a pointwise identity; therefore it is
often called a nonlocal problem. This problem models several physical and biological
systems, where u describes a process which depends on the average of itself, such as
the population density, see [7]. Moreover, problem (2) is related to the stationary
version of the Kirchhoff equation which is presented by Kirchhoff in 1883, see [18]
for details.

We point out the fact that if M(t) ≡ 1 and the function ϕ(t) is defined above,
problem (1) becomes a nonlinear and non-homogeneous problem, namely,{

−div
(
a(|∇u|)∇u

)
= f(x, u) in Ω,

u = 0 on ∂Ω,
(3)

which has been studied by some authors in Orlicz-Sobolev spaces, we refer to [4, 11,
12, 17, 21, 22].

In this article, motivated by the works mentioned above, we shall study the
existence of solutions for nonlocal problems of type (1). It is clear that this is a
natural extension from the earlier studies on nonlocal problems in classical Sobolev
spaces and on nonlinear non-homogeneous problems in Orlicz-Sobolev spaces. To
our knowledge, this is the first contribution to the study of nonlocal problems in
this class of spaces. More precisely, using the ideas firstly introduced in the paper
[14] and developed in [2] we want to illustrate how to handle problem (1) in Orlicz-
Sobolev spaces by using the genus theory.

In order to study problem (1), let us introduce the functional spaces where it
will be discussed. We will give just a brief review of some basic concepts and facts
of the theory of Orlicz and Orlicz-Sobolev spaces, useful for what follows, for more
details we refer the readers to the books by Adams [1], M.M. Rao et al. [23], the
papers by Clément et al. [11, 12], M. Mihăilescu et al. [21, 22] and F. Cammaroto
et al. [4].
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For ϕ : R → R and Φ introduced at the start of the paper, we can see that
Φ is a Young function, that is, Φ(0) = 0, Φ is convex, and limt→∞Φ(t) = +∞.

Furthermore, since Φ(t) = 0 if and only if t = 0, limt→0
Φ(t)
t = 0, and limt→∞

Φ(t)
t =

+∞, the function Φ is then called an N -function. The function Φ∗ defined by the
formula

Φ∗(t) =

∫ t

0
ϕ−1(s)ds for all t ∈ R

is called the complementary function of Φ and it satisfies the condition

Φ∗(t) = sup{st− Φ(s) : s ≥ 0} for all t ≥ 0.

We observe that the function Φ∗ is also an N -function in the sense above and the
following Young inequality holds

st ≤ Φ(s) + Φ∗(t) for all s, t ≥ 0.

The Orlicz class defined by the N -function Φ is the set

KΦ(Ω) :=

{
u : Ω→ R measurable :

∫
Ω

Φ(|u(x)|)dx <∞
}

and the Orlicz space LΦ(Ω) is then defined as the linear hull of the set KΦ(Ω). The
space LΦ(Ω) is a Banach space under the following Luxemburg norm

‖u‖Φ := inf

{
k > 0 :

∫
Ω

Φ
(u(x)

k

)
dx ≤ 1

}
or the equivalent Orlicz norm

‖u‖LΦ
:= sup

{∣∣∣ ∫
Ω
u(x)v(x)dx

∣∣∣ : v ∈ KΦ∗(Ω),

∫
Ω

Φ∗(|v(x)|)dx ≤ 1

}
.

For Orlicz spaces, the Hölder inequality reads as follows (see [23]):∫
Ω
uvdx ≤ 2‖u‖LΦ(Ω)‖u‖L∗Φ(Ω) for all u ∈ LΦ(Ω) and v ∈ LΦ∗(Ω).

The Orlicz-Sobolev space W 1LΦ(Ω) built upon LΦ(Ω) is the space defined by

W 1LΦ(Ω) :=

{
u ∈ LΦ(Ω) :

∂u

∂xi
∈ LΦ(Ω), i = 1, 2, ..., N

}
.

and it is a Banach space with respect to the norm

‖u‖1,Φ := ‖u‖Φ + ‖|∇u|‖Φ.
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We now introduce the Orlicz-Sobolev space W 1
0LΦ(Ω) as the closure of C∞0 (Ω) in

W 1LΦ(Ω). It turns out that the space W 1
0LΦ(Ω) can be renormed by using as an

equivalent norm
‖u‖ := ‖|∇u|‖Φ.

For an easier manipulation of the spaces defined above, we define the numbers

ϕ0 := inf
t>0

tϕ(t)

Φ(t)
and ϕ0 := sup

t>0

tϕ(t)

Φ(t)
.

Throughout this paper, we assume that

1 < ϕ0 ≤
tϕ(t)

Φ(t)
≤ ϕ0 <∞, ∀t ≥ 0, (4)

which assures that Φ satisfies the ∆2-condition, i.e.,

Φ(2t) ≤ KΦ(t), ∀t ≥ 0, (5)

where K is a positive constant, see [22, Proposition 2.3].
In this paper, we also need the following condition

the function t 7→ Φ(
√
t) is convex for all t ∈ [0,∞). (6)

We notice that Orlicz-Sobolev spaces, unlike the Sobolev spaces they generalize,
are in general neither separable nor reflexive. A key tool to guarantee these prop-
erties is represented by the ∆2-condition (5). Actually, condition (5) assures that
both LΦ(ω) and W 1

0LΦ(Ω) are separable, see [1]. Conditions (5) and (6) assure that
LΦ(Ω) is a uniformly convex space and thus, a reflexive Banach space (see [22]);
consequently, the Orlicz-Sobolev space W 1

0LΦ(Ω) is also a reflexive Banach space.
The following important lemma will be used throughout this paper.

Proposition 1 (see [4, 21, 22]). Let u ∈W 1
0LΦ(Ω). Then we have

(i) ‖u‖ϕ0 ≤
∫

Ω Φ(|∇u(x)|)dx ≤ ‖u‖ϕ0 if ‖u‖ < 1.

(ii) ‖u‖ϕ0 ≤
∫

Ω Φ(|∇u(x)|)dx ≤ ‖u‖ϕ0
if ‖u‖ > 1.

We also find that with the help of condition (4), the Orlicz-Sobolev spaceW 1
0LΦ(Ω)

is continuously embedded in the classical Sobolev space W 1,ϕ0
0 (Ω), as a result,

W 1
0LΦ(Ω) is continuously and compactly embedded in the classical Lebesgue space

Lq(Ω) for all 1 ≤ q < ϕ∗0 := Nϕ0

N−ϕ0
. On the theories of Lebesgue spaces with variable

exponent used in this paper, we refer the readers to [9, 15]. Before stating and
proving the main result of this paper in the next section, the rest of this section is
devoted to present some examples of functions ϕ : R→ R which are odd, increasing
homeomorphism from R onto R and satisfy conditions (5) and (6), the readers can
find them in the papers [4, 21].
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Example 1.

(1) Let ϕ(t) = p|t|p−2t, t ∈ R, p > 1. A simple computation shows that ϕ0 =
ϕ0 = p. In this case, the corresponding Orlicz space LΦ(Ω) is the classical
Lebesgue space Lp(Ω) while the Orlicz-Sobolev space W 1

0LΦ(Ω) is the classical
Sobolev space W 1,p

0 (Ω). Therefore, we obtain the p-Kirchhoff-type problems as
in [3, 6, 14, 19, 20, 24, 25] and the references cited there.

(2) Let ϕ(t) = log(1+ |t|s)|t|p−2t, t ∈ R, p, s > 1. Then we can deduce that ϕ0 = p
and ϕ0 = p+ s.

(3) Let ϕ(t) = |t|p−2t
log(1+|t|) if t 6= 0, ϕ(0) = 0 with p > 2. Then we can deduce that

ϕ0 = p− 1 and ϕ0 = p.

2. Main result

In this section, we will use Krasnoselskii’s genus theory to get the existence of
solutions for problem (1). For simplicity, we denote X = W 1

0LΦ(Ω), C+(Ω) :=
{p : p ∈ C(Ω), p(x) > 1 for all x ∈ Ω}, p+ = supx∈Ω p(x), p− = infx∈Ω p(x). In the
following, when there is no misunderstanding, we always use Ci to denote positive
constants. Firstly, we recall some basic notations of Krasnoselskii’s genus, we refer
the readers to the book [5] for details.

Let Y be a real Banach space. Let

R = {E ⊂ Y \{0} : E is compact and E = −E} .

Definition 1. Let E ∈ R and Y = RN . The genus γ(E) of E is defined by

γ(E) = min
{
k ≥ 1; there exists an odd continuous mapping φ : E → Rk\{0}

}
.

If such a mapping φ does not exist for any k > 0, we set γ(E) =∞.

Note that if E is a subset, which consists of finitely many pairs of points, then
γ(E) = 1. Moreover, from the definition, γ(∅) = 0. A typical example of a set of
genus k is a set, which is homeomorphic to a (k− 1) dimensional sphere via an odd
map.

Lemma 1. Let Y = RN and ∂Ω be the boundary of an open, symmetric and bounded
subset Ω ⊂ RN with 0 ∈ Ω. Then we have γ(∂Ω) = N .

From Lemma 1, we conclude the following remark.
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Remark 1. Let us denote by S the unit sphere in Y . Then we have

(i) γ(SN−1) = N ;

(ii) If Y is of infinite dimension and separable then γ(S) =∞.

Definition 2. A function u ∈ X = W 1
0LΦ(Ω) is said to be a weak solution of

problem (1) if it holds that

M
(∫

Ω
Φ(|∇u|)dx

)∫
Ω
a(|∇u|)∇u · ∇vdx−

∫
Ω
f(x, u)vdx = 0

for all v ∈ X.

Our first result is given by the following theorem.

Theorem 2. Assume that

(M0) M : R+ → R+ is a continuous function such that

m1t
α1−1 ≤M(t) ≤ m2t

α2−1

for all t ∈ R+, where m2 ≥ m1 > 0 and α2 ≥ α1 > 1;

(F0) f : Ω× R→ R is a continuous funtion such that

C1|t|q(x)−1 ≤ f(x, t) ≤ C2|t|r(x)−1

for all t ∈ R and all x ∈ Ω, where C1, C2 are two positive constants and the
functions q, r ∈ C+(Ω) satisfy 1 < q− ≤ q+ < r− ≤ r+ < ϕ∗0 = Nϕ0

N−ϕ0
;

(E1) ϕ0 < r− and r+ < ϕ0α1.

Then problem (1) has a non-trivial weak solution in X. In addition, if the following
condition holds

(F1) f(x, t) = −f(x,−t) for all t ∈ R and all x ∈ Ω,

then problem (1) has infinitely many weak solutions.

Let us define the energy functional J : X := W 1
0LΦ(Ω)→ R by the formula

J (u) = M̂
(∫

Ω
Φ(|∇u|)dx

)
−
∫

Ω
F (x, u)dx

=M(u)−F(u), u ∈ X,
(7)
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where

M(u) = M̂
(∫

Ω
Φ(|∇u|)dx

)
, M̂(t) :=

∫ t

0
M(s)ds,

F(u) =

∫
Ω
F (x, u)dx, F (x, t) =

∫ t

0
f(x, s)ds.

(8)

By Proposition 1 and the continuous embeddings obtained from the hypotheses
(M0), (F0), some standard arguments assure that the functional J is well-defined
on X and J ∈ C1(X) with the derivative given by

J ′(u)(v) = M
(∫

Ω
Φ(|∇u|)dx

)∫
Ω
a(|∇u|)∇u · ∇vdx−

∫
Ω
f(x, u)vdx

for all u, v ∈ X. Thus, weak solutions of problem (1) are exact the critical points of
the functional J .

In order to prove Theorem 2, we shall use the following result, which was intro-
duced by Clark, see [10].

Proposition 2. Let J ∈ C1(Y,R) be a functional satisfying the (PS) condition.
Furthermore, let us suppose that

(i) J is bounded from below and even;

(ii) There is a compact set K ∈ R such that γ(K) = k and supx∈K J(x) < J(0).

Then J possesses at least k pairs of distinct critical points, and their corresponding
critical values are less than J(0).

Lemma 3. Suppose that (M0), (F0) and (E1) are satisfied. Then we have that the
following assertions hold:

(i) The functional J given by formula (7) is coercive and bounded from below.

(ii) The functional J is weakly lower semi-continuous.

Proof. (i) By the condition (M0) and Proposition 1, for any u ∈ X with ‖u‖ > 1 we
have

J (u) = M̂
(∫

Ω
Φ(|∇u|)dx

)
−
∫

Ω
F (x, u)dx

≥ m0

α1

(∫
Ω

Φ(|∇u|)dx
)α1

− C2

r−

∫
Ω
|u|r(x)dx

≥ m0

α1
‖u‖α1ϕ0 − C2

r−
cr

+‖u‖r+
.

(9)
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Since r+ < α1ϕ0, relation (9) shows that the functional J is coercive and bounded
from below.

(ii) Let {um} ⊂ X be a sequence that converges weakly to u in X. Then, from
the proof of [22, Lemma 4.3] we deduce that the functional

u 7→
∫

Ω
Φ(|∇u|)dx

is weakly lower semi-continuous, i.e.,∫
Ω

Φ(|∇u|)dx ≤ lim inf
m→∞

∫
Ω

Φ(|∇um|)dx. (10)

Combining (10) with the continuity and monotonicity of the function ψ : R+ →
R, t 7→ ψ(t) = M̂(t), we get

lim inf
m→∞

M(um) = lim inf
m→∞

M̂
(∫

Ω
Φ(|∇um|)dx

)
≥ M̂

(
lim inf
m→∞

∫
Ω

Φ(|∇um|)dx
)

≥ M̂
(∫

Ω
Φ(|∇u|)dx

)
=M(u).

(11)

On the other hand, by (E1), the space X is compactly embedded in the space
Lr(x)(Ω). For this reason, using (F0) and the Hölder inequality (see [9, 15]) we have

|F(um)−F(u)|

≤
∫

Ω
|F (x, um)− F (x, u)|dx

=

∫
Ω
|f(x, u+ θm(um − u))||um − u|dx

≤ C2

∫
Ω
|u+ θm(um − u)|r(x)−1|um − u|dx

≤ C2‖|u+ θm(um − u)|r(x)−1‖
L

r(x)
r(x)−1 (Ω)

‖um − u‖Lr(x)(Ω), 0 < θm < 1,

which tends to 0 as m→∞. Hence,

lim
m→∞

F(um) = F(u). (12)

From (11), (12) and the definition of J , the lemma is proved.
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Lemma 4. Suppose that (M0), (F0) and (E1) are satisfied. Then the functional J
satisfies the (PS) condition.

Proof. Let {um} ⊂ X be a sequence such that

J (um)→ c > 0, J ′(um)→ 0 in X∗, (13)

where X∗ is the dual space of X.
Since the functional J is coercive, it follows from (13) that the sequence {um} is

bounded in X. On the other hand, by conditions (5) and (6), the Banach space X is
reflexive. Thus, there exists u ∈ X such that passing to a subsequence, still denoted
by {um}, it converges weakly to u in X. Therefore, {um} converges strongly to u in
Lr(x)(Ω). Using the Hölder inequality we deduce that∣∣∣F ′(um)(um − u)

∣∣∣
=
∣∣∣ ∫

Ω
f(x, um)(um − u)dx

∣∣∣
≤ C2

∫
Ω
|um|r(x)−1|um − u|dx

≤ c2‖|um|r(x)−1‖
L

r(x)
r(x)−1 (Ω)

‖um − u‖Lr(x)(Ω),

(14)

which tends to 0 as m→∞.
On the other hand, by (13), we have

lim
m→∞

J ′(um)(um − u) = 0. (15)

From (14) and (15) and the definition of the functional J ′, we get

lim
m→∞

M′(um)(um − u) = 0. (16)

Using Proposition 1, since {um} is bounded in X, passing to a subsequence, if
necessary, we may assume that∫

Ω
Φ(|∇um|)dx→ t1 ≥ 0 as m→∞.

If t1 = 0 then {um} converges strongly to u = 0 in X and the proof is finished. If
t1 > 0 then since the function M is continuous, we get

M
(∫

Ω
Φ(|∇um|)dx

)
→M(t1) as m→∞.
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Thus, by (M0), for sufficiently large m, we have

M
(∫

Ω
Φ(|∇um|)dx

)
≥ C4 > 0. (17)

From (16), (17), it follows that

lim
m→∞

∫
Ω
a(|∇um|)∇um · (∇um −∇u)dx = 0.

Thus, using [21, Lemma 5], {um} converges strongly to u in X and the functional
J satisfies the Palais-Smale condition.

Proof of Theorem 2. Firstly, if the conditions (M0), (F0) and (E1) are satisfied then
it follows from Lemma 3 that problem (1) admits a weak solution as a global mini-
mizer of the functional J .

We now consider the case when the additional condition (F1) is satisifed. It is
clear that J is even. Set (see [5])

Rk = {E ⊂ R : γ(E) ≥ k} ,
ck = inf

E∈Rk

sup
u∈E
J (u), k = 1, 2, ...,

then we have
−∞ < c1 ≤ c2 ≤ ... ≤ ck ≤ ck+1 ≤ ...

Now, we will show that ck < 0 for every k ∈ N. From (5) and (6), X is a reflexive
and separable Banach space. For any k ∈ N, we can choose a k-dimensional linear
subspace Xk of X such that Xk ⊂ C∞0 (Ω). As the norms on Xk are equivalent,
there exists rk ∈ (0, 1) such that u ∈ Xk with ‖uk‖ ≤ rk implies that ‖u‖L∞(Ω) ≤ δ.

Set S
(k)
rk = {u ∈ Xk : ‖u‖ = rk}. By the compactness of S

(k)
rk and the condition

(F0), there exists a constant ηk > 0 such that∫
Ω
F (x, u)dx ≥ C1

q+

∫
Ω
|u|q(x)dx ≥ ηk for all u ∈ S(k)

rk
. (18)

From (18), using again (M0) and (F0), for u ∈ S(k)
rk and t ∈ (0, 1), we have

J (tu) = M̂
(∫

Ω
Φ(|∇tu|)dx

)
−
∫

Ω
F (x, tu)dx

≤ m2

α2

(∫
Ω

Φ(|∇tu|)dx
)α2

− C1

q+

∫
Ω
|tu|q(x)dx

≤ m2

α2
‖tu‖ϕ0α2 − C1

q+

∫
Ω
|tu|q(x)dx

≤ m2

α2
tϕ0α2rϕ0α2

k − tq+
ηk.

(19)
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Because q+ < r− ≤ r+ < ϕ0α1 ≤ ϕ0α2, we can find tk ∈ (0, 1) and εk > 0 such that

J (tku) ≤ −εk for all u ∈ S(k)
rk , that is, J (u) ≤ −εk < 0 for all u ∈ S(k)

rk .

It is clear that γ(S
(k)
tkrk

) = k, so ck ≤ −εk < 0. Finally, by Lemmas 3 and 4 and
above results, we can apply Proposition 2 in order to deduce that the functional J
admits at least k pairs of distinct critical points, and since k is arbitrary, we obtain
infinitely many critical points of J . The proof is completed.

Theorem 5. Suppose that the conditions (M0), (F0) and

(E2) r+ < ϕ0

are satisfied. Then problem (1) has a weak solution. In addition, if the condition
(F1) is satisfied then problem (1) has a sequence of weak solutions {±uk : k = 1, 2, ...}
such that J (±uk) < 0.

Proof. Since r+ < ϕ0 < ϕ0α1, using (M0), (F0), and the similar argument as in the
proof of Lemma 3, we can show the coerciveness of J and that J is weak lower
semi-continuous, so J attains it minimum on X, that is, problem (1) has a weak
solution. Moreover, by help of coerciveness, we know that J satisfies (PS) condition
on X (see Lemma 4), and from (F1), J is even.

In the rest of the proof, since we develope the same arguments which we used in
the proof of the Theorem 2, we omit the details. Therefore, if we follow the similar
steps as we did in (18) and (19), and consider the fact that q+ < r− < ϕ0 < α2ϕ0,
we can find tk ∈ (0, 1) and εk > 0 such that

J(u) ≤ −εk < 0 for all u ∈ S(k)
tkrk

.

Obviously, γ(S
(k)
tkrk

) = k, so ck ≤ −εk < 0. By Krasnoselskii’s genus, each ck is a
critical value of J , hence there is a sequence of weak solutions {±uk : k = 1, 2, ...}
such that J(±uk) < 0.
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