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ON CERTAIN INDUCED SUBGRAPHS OF PALEY GRAPHS
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Abstract. Since the advent of Ramsey theory in the 1930’s, Paley Graphs have
played an important role in the determination of lower bounds for diagonal Ramsey
numbers due to their randomness. The construction of Paley graphs (whose vertices
are identified with a finite field Fq) leads to several natural induced subgraphs worth
considering. In this paper, we consider the subgraphs induced on the squares F×2q and
the subgraphs induced on F×q −F×2q . We describe their basic properties, demonstrate
their utility in simplifying the determination of the clique/independence numbers
for Paley graphs, and address the determination of their diameters.
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1. Introduction

Originally defined by Sachs in 1962 [17], the randomness of Paley graphs make
them particularly useful in the determination of lower bounds of diagonal Ramsey
numbers. To define such graphs, let q = pf ≡ 1 (mod 4) be a prime power and
suppose that χ2 : F×q −→ C× is the quadratic character of F×q . Denote by F×2q the
kernel of χ2 (the squares in F×q ). Then the Paley graph G(q) is defined as having
vertex set V (G(q)) = Fq and edge set

E(G(q)) = {ab | a− b ∈ F×2q }.

Note that the assumption q ≡ 1 (mod 4) guarantees that −1 ∈ F×2q , so that

χ2(a− b) = χ2(b− a).

The self-complementary graph G(q) is regular and is easily seen to have size q(q−1)
4 .

In this article, we focus on certain naturally occurring induced subgraphs of
Paley graphs that may also prove useful in Ramsey theory. Namely, consider the
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subgraphs induced by F×2q and F×q − F×2q , which we denote by G2(q) and G̃2(q),
respectively. Section 2 describes the main properties of the subgraphs in question,
including the relationship between their clique/independence numbers and that of
G(q). Of course, the usefulness of these subgraphs in Ramsey theory is dependent
upon our ability to compute their clique numbers. In general, this is a very difficult
problem, so in Sections 3 and 4 our efforts will focus on a precise enumeration of tri-

angles (K3-subgraphs) in G2(q) and G̃2(q) when p ≡ 1 (mod 4) (not just q = pf ≡ 1
(mod 4)). The computation will require us to venture into the realm of hypergeo-

metric functions over finite fields. Our treatment of G2(q) and G̃2(q) will conclude
with section 5, where we consider the diameter of these subgraphs, providing an

upper bound in the case of G2(q), and an exact evaluation in the case of G̃2(q).

2. The Subgraphs G2(q) and G̃2(q)

Since χ2 : F×q −→ C× is a character of order 2, it follows that the graphs G2(q)

and G̃2(q) both have order (q− 1)/2. In order to determine their sizes, consider the
following expression:

(1 + χ2(n)) =

{
2 if n ∈ F×2q
0 if n 6∈ F×2q .

(1)

Although we could compute the sizes directly with character sums involving appro-
priate combinations of the above expression, instead we will first use a character
sum to show that these graphs are regular.

If a is any vertex in G2(q), then the degree of a, denoted deg(a), is given by

deg(a) =
1

4

∑
b∈F×

q

b6=a

(1 + χ2(b))(1 + χ2(a− b)).

Expanding the expression on the right gives four separate sums that can be evaluated
using the orthogonality relation ∑

g∈G
χ(g) = 0, (2)
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which holds for any nontrivial character χ of a finite group G. We obtain∑
b∈F×

q

b6=a

1 = q − 2,

∑
b∈F×

q

b6=a

χ2(b) = −χ2(a) = −1,

∑
b∈F×

q

b6=a

χ2(a− b) = −χ2(a) = −1,

∑
b∈F×

q

b6=a

χ2(a)χ2(a− b) =
∑
b∈F×

q

b 6=a

χ2(1− ba−1) since χ2(a) = χ2(a
−1)

= −χ2(1) = −1.

Thus, the degree of a in G2(q) is given by (q−5)/4 and since this answer is indepen-
dent of the choice of vertex a, it follows that G2(q) is regular. Hence, the subgraph
G2(q) has size

|E(G2(q))| =
(q − 1)(q − 5)

16
.

In a similar manner, we can compute the degree of any vertex a in G̃2(p) with
the sum

deg(a) =
1

4

∑
b∈F×

q

b6=a

(1− χ2(b))(1 + χ2(a− b)).

As before, the result is independent of the choice of vertex and is given by (q−1)/4.

Hence, G̃2(p) is also regular and has size

|E(G̃2(p))| =
(q − 1)2

16
.

Thus, we have proved the following theorem.

Theorem 1. The graphs G2(p) and G̃2(p) are both regular, having sizes

|E(G2(q))| =
(q − 1)(q − 5)

16
and |E(G̃2(p))| =

(q − 1)2

16
.
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Now we wish to demonstrate the utility of G2(q) and G̃2(q) in Ramsey theory,
but we must first establish some notations. For a graph G, let ω(G) denote its
clique number (order of a maximal complete subgraph), α(G) denotes its indepen-
dence number (cardinality of a maximal independent vertex set), Kn(G) denotes
the number of Kn-subgraphs of G, and In(G) denotes the number of n-element
independent vertex sets. We will prove the following theorem.

Theorem 2. For n ≥ 2, the graphs G(q), G2(q), and G̃2(q) satisfy

Kn+1(G(q)) =
q

n+ 1
Kn(G2(q)) and In+1(G(q)) =

q

n+ 1
In(G̃2(q)).

Proof. To prove the first equation, we note that there is a one-to-one correspondence
between Kn-subgraphs of G2(q) and the Kn+1-subgraphs of G(q) that contain the
vertex 0. Namely, the Kn-subgraph (a1, a2, . . . , an) of G2(q) corresponds to the
Kn+1-subgraph (0, a1, a2, . . . , an) of G(q) containing the vertex 0. Now the affine
transformation f(x) = x+ a on the vertices of G(q) defines an automorphism, from
which we see the number of Kn+1-subgraphs of G(q) containing the vertex a is also
equal to Kn(G2(q)). As we consider each one of the q affine transformations of this
form, we note that each Kn+1-subgraph gets counted n + 1 times (once for each
vertex), resulting in

Kn+1(G(q)) =
q

n+ 1
Kn(G2(q)).

The second equation is obtained in a similar manner, so we leave leave the details
to the reader.

From the fact that G(q) is self-complementary, we note that

Kn(G(q)) = In(G(q)).

Thus, we obtain the following corollary as an immediate consequence of theorem 2.

Corollary 3. The graphs G(q), G2(q), and G̃2(q) satisfy

ω(G2(q)) + 1 = ω(G(q)) = α(G(q)) = α(G̃2(q)) + 1.

As the determination of clique numbers and independence numbers of graphs
is quite difficult in general, the subgraphs we have considered allow us to reduce
the problem to graphs with smaller order. Given the ubiquitous role Paley graphs
have played in the determination of lower bounds of diagonal Ramsey numbers, it
is likely our induced subgraphs can further assist in this process. In the next two

sections, our focus will be the determination of K3(G2(q)), K3(G̃2(q)), I3(G2(q)),

and I3(G̃2(q)).
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3. Hypergeometric Functions and Character Sums

As part of the enumeration of triangles and 3-element independent vertex sets in

G2(q) and G̃2(q), we must first concentrate our efforts on a character sum evaluation
that arises as a special value of certain hypergeometric functions over Fq. We will
see in the next section the role this character sum will play in computing K3(G2(q))

and K3(G̃2(q)). Following along the lines of classical hypergeometric series, Greene
[10] was the first to develop the hypergeometric functions n+1Fn over Fq and to show
that they satisfy many analogous transformations to their classical counterparts. In

order to define these functions, let A,B ∈ F̂×q (the character group of F×q ) and let
J(A,B) be the Jacobi sum

J(A,B) :=
∑
x∈F×

q

x 6=1

A(x)B(1− x).

Also, define the binomial coefficient(
A
B

)
:=

B(−1)

q
J(A,B).

Then if x ∈ Fq and A0, A1, . . . , An, B1, . . . , Bn ∈ F̂×q , the hypergeometric function

n+1Fn is defined by

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣x) :=
q

q − 1

∑
χ∈F̂×

q

(
A0χ
χ

)(
A1χ
B1χ

)
· · ·
(
Anχ
Bnχ

)
χ(x).

Besides the connections these functions share with classical hypergeometric se-
ries, many authors have investigated them for their arithmetical properties as well
as their ties to elliptic curves and modular forms (eg., see [5], [7], [8], [9], [14], [15],
and [16]). Our interest in hypergeometric functions comes from their connection
with the character sum

I(t; p) :=
∑

x,y∈F×
p

x 6=−1,−ty
y 6=−1

χ2(x)χ2(x+ 1)χ2(y)χ2(y + 1)χ2(x+ ty),

where χ2 : F×p −→ C× is the Legendre symbol modulo p. In 1981, Evans, Pulham,
and Sheehan [6] conjectured that

I(1; p) = χ2(2)(4x2 − p)
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when p ≡ 1, 3 (mod 8) and p = x2 + 2y2 for x, y ∈ Z. The conjecture was proven by
Greene and Stanton [11] in 1986 by evaluating the hypergeometric function 3F2(−1)
for every prime p. Fundamental to their work was the realization that

I(t; p) = p2 3F2

(
χ2, χ2, χ2

ε, ε

∣∣∣∣− t)
(cf. Proposition 2.10, [11]). We will need the following lemma, which generalizes
the evaluation of I(t; p) to prime powers q = pf , whenever p ≡ 1 (mod 4).

Lemma 4. If q = pf , where p ≡ 1 (mod 4) is a prime and if χ2 : F×q −→ C× is the
quadratic character on F×q , then∑

a,b,c∈F×
q

a6=b,c
b6=c

χ2(a)χ2(b)χ2(c)χ2(a− b)χ2(b− c)χ2(a− c) = (q − 1)
(
π2f + π2f

)
,

where π is a primary prime above p in Z[i].

Proof. Letting

S :=
∑

a,b,c∈F×
q

a6=b,c
b 6=c

χ2(a)χ2(b)χ2(c)χ2(a− b)χ2(b− c)χ2(a− c),

begin by making the substitution x = ac−1 and y = bc−1 (and using the fact that
χ2(c) = χ2(c

−1)), yielding

S =
∑

x,y,c∈F×
q

x 6=y,1
y 6=1

χ2(x)χ2(y)χ2(x− y)χ2(y − 1)χ2(x− 1).

Then S =
∑
c∈F×

q

C = (q − 1)C, where

C :=
∑

x,y∈F×
q

x6=y,1
y 6=1

χ2(x)χ2(y)χ2(x− y)χ2(x− 1)χ2(y − 1).

The sum C is a generalization of the character sum evaluated in [6] and we follow
their approach, utilizing a substitution originally implemented by D. Lehmer and E.
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Lehmer [13]. Replacing x by x+ 1 and y by y + 1, we have

C =
∑

x,y∈F×
q

x 6=y,−1
y 6=−1

χ2(x+ 1)χ2(y + 1)χ2(x− y)χ2(x)χ2(y)

=
∑

x,y∈F×
q

x6=y,−1
y 6=−1

χ2((x+ 1)y−1)χ2((y + 1)x−1)χ2(x− y).

Before we implement the Lehmers’ substitution, we must split the sum based upon
whether or not the values of x and y satisfy x + y = −1. When this condition is
met, the contribution of these terms to the overall sum is given by∑

y∈F×
q

y 6=−1,−2−1

χ2(−2y − 1) = −2.

So we have

C = −2 +
∑

x,y∈F×
q

x 6=y,−1,−y−1
y 6=−1

χ2((x+ 1)y−1)χ2((y + 1)x−1)χ2(x− y).

Now we make the substitution t = (x + 1)y−1 and u = (y + 1)x−1 (so that x =
(t+ 1)(ut− 1)−1 and y = (u+ 1)(ut− 1)−1) to obtain

C = −2 +
∑

t,u∈F×
q

t6=−1,u,u−1

u6=−1

χ2(t)χ2(u)χ2(u− t)χ2(ut− 1).

Corresponding to the terms we removed from the previous sum, we now reinsert the
terms for which t = −1 or u = −1. Both of these conditions are still not allowed to
occur simultaneously, but it is easily checked that each case results in a contribution
of −1 to the sum so that we have

C =
∑

t,u∈F×
q

t6=u,u−1

χ2(t)χ2(u)χ2(u− t)χ2(ut− 1).

Replacing t with tu−1, the sum becomes

C =
∑
t∈F×

q

t6=1

χ2(t)χ2(1− t)
∑
u∈F×

q

u2 6=t

χ2(u)χ2(u
2 − t).
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The inner sum φ2(−t) :=
∑
χ2(u)χ2(u

2− t) is a generalization of a Jacobsthal sum
(which is usually just defined over F×p ). We will describe φ2(−t) in terms of Jacobi
sums following the approach used in Theorem 6.1.14 of [1]. Let χ4 : F×q −→ C× be
a quartic character so that χ2

4 = χ2. Then

φ2(−t) =
∑
u∈F×

q

u2 6=t

χ2(u)χ2(u
2 − t)

=
∑
u∈F×

q

u2 6=t

χ4(u
2)χ2

4(u
2 − t)

=
∑
v∈F×

q

v 6=t

χ4(v)χ2
4(v − t)

(
1 + χ2

4(v)
)
.

Replacing v with tv gives

φ2(−t) = χ3
4(t)

∑
v∈F×

q

v 6=1

χ4(v)χ3
4(1− v)

(
1 + χ2

4(tv)
)

= χ3
4(t)

∑
v∈F×

q

v 6=1

χ4(v)χ2
4(1− v) + χ4(t)

∑
v∈F×

q

v 6=1

χ3
4(v)χ2

4(1− v)

= χ3
4(t)J(χ4, χ

2
4) + χ4(t)J(χ3

4, χ
2
4).

Thus, the sum S becomes

S = (q − 1)(J(χ4, χ
2
4)

2 + J(χ3
4, χ

2
4)

2).

Our result for S is independent of the choice of quartic character since both the
Jacobi sum J(χ4, χ

2
4) and its conjugate are present. Without loss of generality,

suppose that χ4 =
( ·
π

)
4
◦NFq/Fp

, where
( ·
π

)
4

is the quartic residue character for π,
where π is a primary prime above p in Z[i]. By the work of Davenport and Hasse
[4],

J(χ4, χ
2
4) = −(−J((·/π)4, (·/π)24))

f .

Finally, by Proposition2 9.9.1 and 9.9.4 of [12], we find that

J((·/π)4, (·/π)24)) = (−1/π)4J((·/π)4, (·/π4)) = −π,

completing the proof of the lemma.
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4. Enumeration of Triangles

In order to determine the number of triangles in G2(q) and G̃2(q) (denoted T (G2(q))

and T (G̃2(q)), respectively), we once again exploit the values of the expression (1)
and use character sums (cf. [3]). To simplify notation, define

C(a) := 1 + χ2(a) and C(a) := 1− χ2(a).

We see that

K3(G2(q)) =
1

384

∑
a,b,c∈F×

q

a6=b,c
b 6=c

C(a)C(b)C(c)C(a− b)C(b− c)C(c− a)

and

K3(G̃2(q)) =
1

384

∑
a,b,c∈F×

q

a6=b,c
b 6=c

C(a)C(b)C(c)C(a− b)C(b− c)C(c− a).

From these sums, we obtain the following theorem.

Theorem 5. If q = pf and p ≡ 1 (mod 4), then the number of triangles in G2(q)

and G̃2(q) are given by

K3(G2(q)) =
q − 1

384
((q − 2)(q − 3)− 15(q − 5) + 2Re(π2f ))

and

K3(G̃2(q)) =
q − 1

384
((q − 2)(q − 3)− 3(q − 1)− 2Re(π2f )),

where π is a primary prime above p in Z[i].

Proof. Expanding the products in each of the above sums yields 64 character sums
of the form ∑

a,b,c∈F×
q

a6=b,c
b6=c

χα1
2 (a)χα2

2 (b)χα3
2 (c)χα4

2 (a− b)χα5
2 (b− c)χα6

2 (c− a),

where αi ∈ {0, 1}. Although we omit most of the technical details of the compu-
tations of the 64 sums, we state the results based upon the number of nonidentity
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terms in each sum (that is, the number of αi = 1). The only sum containing 0
nonidentity terms is ∑

a,b,c∈F×
q

a6=b,c
b 6=c

1 = (q − 1)(q − 2)(q − 3).

From the orthogonality relation (2), it is easily checked that all of the sums contain-
ing only 1 nonidentity term sum to 0. Continuing in this manner, of the 15 sums
which contain exactly 2 nonidentity terms, 12 sum to −(q − 1)(q − 3) and 3 sum
to 2(q − 1). The sums containing exactly 3 nonidentity terms all sum to 0 while
for those containing exactly 4 nonidentity terms, 12 sum to 2(q − 1) and 3 sum to
−(q − 1)(q − 3). The sums containing exactly 5 nonidentity terms all sum to 0 and
the case in which all of the nonidentity terms appear falls back to the sum evaluated
in Lemma 4. The theorem follows from these evaluations along with careful regard

to signs in the case of G̃2(q).

This result along with Theorem 2 implies the following corollary, which is a
generalized version of Theorem 1 in Evans, Pulham and Sheehan’s paper [6]. Their
result provides an enumeration of K4-subgraphs in G(p), and although their answer
appears different from ours, one can verify that the two solutions agree.

Corollary 6. The number of complete subgraphs of order 4 in the Paley graph G(q),
where q = pf and p ≡ 1 (mod 4), is given by

K4(G(q)) =
q(q − 1)

1536
((q − 2)(q − 3)− 15(q − 5) + 2Re(π2f )),

where π is a primary prime above p in Z[i].

Using a similar approach to the one used in Theorem 5, we may determine the

number of independent sets of order 3 in G2(q) and G̃2(q) using the sums

I3(G2(q)) =
1

384

∑
a,b,c∈F×

q

a6=b,c
b 6=c

C(a)C(b)C(c)C(a− b)C(b− c)C(c− a)

and

I3(G̃2(q)) =
1

384

∑
a,b,c∈F×

q

a6=b,c
b 6=c

C(a)C(b)C(c)C(a− b)C(b− c)C(c− a).

This gives us the following theorem.
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Theorem 7. The number of independent sets of order 3 in G2(q) and G̃2(q), where
q = pf and p ≡ 1 (mod 4), are given by

I3(G2(q)) =
q − 1

384
((q − 2)(q − 3)− 3(q − 1)− 2Re(π2f ))

and

I3(G̃2(q)) =
q − 1

384
((q − 2)(q − 3)− 15(q − 5) + 2Re(π2f )),

where π is a primary prime above p in Z[i].

Of course, the self-complementary nature of Paley graphs means that

Kn(G(q)) = In(G(q)),

so we do not need to appeal to the previous theorem to determine

I4(G(q)) =
q(q − 1)

1536
((q − 2)(q − 3)− 15(p− 5) + 2Re(π2f ))

where q = pf and π is a primary prime above p in Z[i].

5. Distance in G2(q) and G̃2(q)

Now we conclude our analysis of G2(q) and G̃2(q) by considering their diameters.
Recall that the diameter of a graph G is the maximum of all distances d(u, v)
where u and v are vertices in G. It is a straight-forward exercise to prove that
diam(G(q)) = 2. We’ll begin by considering G2(q).

Theorem 8. If q ≡ 1 (mod 4) is a power of a prime with q > 9, then the induced
subgraph G2(q) has diameter

diam(G2(q)) ≤ 3.

Proof. For q = 5 and q = 9, it is easily verified that G2(q) is disconnected, and
hence, the diameters of these graphs are infinite. Now assume q > 9 and suppose
that a, b ∈ F×2q are two vertices with distance d(a, b) > 2 (including the possibility
that a and b are in different connected components of G2(q)). Let N(a) (respectively
N(b)) be the set of all vertices that are adjacent to a (respectively, b). We have
already noted that N(a) and N(b) each have cardinality q−5

4 . Since we are assuming
d(a, b) > 2, we see that N(a) ∩N(b) = ∅. Note also that

N(a) ∪ {a} ∪N(b) ∪ {b} = V (G2(q)).
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If any member of N(a) is adjacent to any member of N(b), then d(a, b) = 3. Oth-
erwise, we find that both N(a)∪ {a} and N(b)∪ {b} are isomorphic to K(q−1)/4. In
this case, the clique number ω(G(q)) of G(q) satisfies

ω(G(q)) ≥ q − 1

4
.

However, it is well-known (for example, see [2]) that

ω(G(q)) ≤ √q.

So, the only way that two vertices in G2(q) can have a distance of more than 3 is if
q satisfies

q − 1

4
≤ √q.

This can only happen for values of q ≤ 17. The remaining values of q that we have
neglected are q = 13 and q = 17. By constructing the corresponding graphs, one
can check directly that diam(G2(13)) = 3 and diam(G2(17)) = 2.

Although we have not proved it here, numerical evidence suggests that

diam(G2(q)) = 2

whenever q > 13. However, in the case of the graph G̃2(q), we can be more precise
about the determination of diameters.

Theorem 9. If q ≡ 1 (mod 4) is a power of a prime with q > 5, then the induced

subgraph G̃2(q) has diameter 2.

Proof. It is easily observed that diam(G̃2(5)) = 1 and that G̃2(q) is not complete

when q > 5, hence diam(G̃2(q)) > 1. Let a, b ∈ F×q −F×2q be nonadjacent vertices in

G̃2(q). We have already seen that a (and b) is adjacent to (q − 1)/2 vertices. Since

2

(
q − 1

4

)
>
q − 5

4
,

it follows that a and b must have at least one neighbor in common. Thus, d(a, b) =
2.

62



R. Atanasov, M. Budden, J. Lambert, K. Murphy, A. Penland – Subgraphs . . .

6. Conclusion

Our results which connect the clique and independence numbers of G2(q) and G̃2(q)
with that of the Paley graph G(q) may serve as a useful tool in Ramsey theory.
Although these graphs are “natural” subgraphs of G(q) to consider, additional as-
sumptions allow other subgraphs to be considered as well. For example, if one
assumes q ≡ 1 (mod m), then one may consider the subgraph of G(q) induced on
the mth power residues in F×p . Such graphs may also prove useful, but computations
similar to those contained here will be significantly more difficult. We reserve such
subgraphs for future inquiry.
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