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1. introduction

In this article, we study the existence and multiplicity of nontrivial weak solution
for the following problem{

−div
(
(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u

)
= f (x, u) in Ω,

u = 0 on ∂Ω,
(1)

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain, pi (x) ∈ C
(
Ω
)

with 1 <
pi (x) < N , for any x ∈ C

(
Ω
)

and for i = 1, 2 and f : Ω×R→ R is a Carathéodory
function satisfying some certain conditions.

Recently, an increasing attention has been paid to the study of differential equa-
tions and variational problems with p(x)-growth condition. The main interest in
studying such problems arises from the presence of the p(x)-Laplacian operator

p(x)−Laplace operator ∆p(x) (u) = −div
(
|∇u|p(x)−2∇u

)
. The p(x)−Laplace oper-

ator is a generalization of p−Laplace operator ∆p (u) = −div
(
|∇u|p−2∇u

)
obtained

in the case when p(x) ≡ p (a constant). The p (x)-Laplacian possesses more com-
plicated structure than the p-Laplace operator; for example, it is not homogeneous.
This fact implies some diffculties; for example, we can not use the Lagrange Mul-
tiplier Theorem and the theory of Sobolev spaces in many problems involving this
operator.
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Furthermore, some of the nonlinear problems including the p (x)-Laplace op-
erator are very attractive because those problems can be used to model dynamical
phenomenons that stem from the study of electrorheological fluids or elastic mechan-
ics [1, 9, 15, 23, 26]. Problems with variable exponent growth conditions also appear
in the mathematical modelling of stationary thermo-rheological viscous flows of non-
Newtonian fluids, in the mathematical description of the processes filtration of an
ideal barotropic gas through a porous medium and image processing [2, 3, 4, 7, 22].
In recent years, the similar problems of the form (1) have been studied by many
authors using various methods [5, 8, 13, 14, 19, 21].

In [20], the author studied the problem (1) when the nonlinearity is f (x, u) =
±(−λ|u|m(x)−2 + |u|q(x)−2), by using the Z2-Symmetric Mountain Pass theorem and
variational methods, and they showed existence of infinitely many weak solutions
for any λ > 0 and nontrivial weak solutions for the cases when λ is large enough.

In [17], the authors dealt with the problem (1) and showed infinitely many weak
solution by the help of the Mountain Pass theorem and Fountain theorem where the
nonlinearity f : Ω× R→ R satisfies Carathéodory condition.

In [18], the authors studied the following nonlinear Neumann problem{
−4p1(x)u−4p2(x)u+ |u|p1(x)−2u+ |u|p2(x)−2u = λf (u, υ) in Ω,

|∇u|p1(x)−2 ∂u
∂η + |∇u|p2(x)−2 ∂u

∂η = µg (x, u) on ∂Ω,
(2)

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain, pi (x) ∈ C
(
Ω
)

with pi (x) > 1,
for any x ∈ C

(
Ω
)

and for i = 1, 2; λ, µ ∈ R such that λ2+µ2 6= 0. By using Mountain
Pass theorem, Fountain theorem and dual Fountain theorem, the authors proved the
existence weak of solutions for problem (2).

This paper is organized as follows. In Section 2, we present some necessary
and preliminary knowledge of the variable exponent Lebesgue-Sobolev spaces and
the weighted variable exponent Lebesgue space. In Section 3, using the variational
method, we show the existence of infinitely many weak solutions of problem (1).

2. preliminaries

We recall in what follows some definitions and basic properties of variable exponent

Lebesgue-Sobolev spaces, Lp(x) (Ω), W 1,p(x) (Ω), W
1,p(x)
0 (Ω) and L

p(x)
c(x) (Ω), where Ω

is an open subset of RN . Furhermore, we give the properties of the (p1(x), p2(x))-
Laplace operator. In this context, we refer to [12, 16, 25] for the fundamental
properties of these spaces.

Set
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C+

(
Ω
)

= {p : p ∈ C
(
Ω
)
,min p (x) > 1,∀x ∈ Ω}.

For any p (x) ∈ C+

(
Ω
)
, we denote

1 < p− := min
x∈Ω

p (x) ≤ p (x) ≤ p+ := max
x∈Ω

p (x) <∞.

Let p (x) ∈ C+

(
Ω
)
. We define the variable exponent Lebesgue space by

Lp(x) (Ω) =

u | u : Ω→ R is measurable,

∫
Ω

|u (x)| p(x) dx <∞

 ,

then Lp(x) (Ω) endowed with the norm

|u|p(x) = inf

λ > 0 :

∫
Ω

∣∣∣∣u (x)

λ

∣∣∣∣p(x)

dx ≤ 1

 ,

becomes a Banach space.

Proposition 1. [12, 16] If p ∈ C
(
Ω
)
, the conjugate space of Lp(x) (Ω) is Lp

′(x) (Ω),

where 1
p′(x) + 1

p(x) = 1. For any u ∈ Lp(x) (Ω) and v ∈ Lp′(x) (Ω), we have∣∣∣∣∣∣
∫
Ω

uvdx

∣∣∣∣∣∣ ≤ (
1

p−
+

1

(p−)′
) |u|p(x) |v|p′(x) .

The modular of Lp(x) (Ω) space, which is the mapping ρp(x) (u) : Lp(x) (Ω) → R
is defined by

ρp(x) (u) =

∫
Ω

|u (x)|p(x) dx, ∀u ∈ Lp(x) (Ω) .

Proposition 2. [12, 16] If u, un ∈ Lp(x) (Ω), n = 1, 2, ... then the following state-
ments are equivalent:

(i) lim
n→∞

|un − u|p(x) = 0,

(ii) lim
n→∞

ρp(x)(un − u) = 0,

(iii) un → u in measure in Ω and lim
n→∞

ρp(x)(un) = ρp(x) (u) .
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Proposition 3. [12, 16] If u, un ∈ Lp(x) (Ω) , n = 1, 2, ..., we have

(i) |u|p(x) < 1 (= 1;> 1)⇔ ρp(x) (u) < 1 (= 1;> 1) ,

(ii) |u|p(x) > 1 =⇒ |u|p
−

p(x) ≤ ρp(x) (u) ≤ |u|p
+

p(x),

(iii) |u|p(x) < 1 =⇒ |u|p
+

p(x) ≤ ρp(x) (u) ≤ |u|p
−

p(x),

(iv) lim
n→∞

|un|p(x) = 0⇔ lim
n→∞

ρp(x)(un) = 0;

(v) lim
n→∞

|un|p(x) →∞⇔ lim
n→∞

ρp(x)(un)→∞.

The variable exponent Sobolev space W 1,p(x) (Ω) is defined by

W 1,p(x) (Ω) = {u ∈ Lp(x) (Ω) : |∇u| ∈ Lp(x) (Ω)},

with the norm

‖u‖1,p(x) = |u|p(x) + |∇u|p(x), ∀u ∈W 1,p(x) (Ω) .

The space W
1,p(x)
0 (Ω) is denoted by the closure of C∞0 (Ω) in W 1,p(x) (Ω) with

respect to the norm ‖u‖1,p(x). We can define an equivalent norm

‖u‖1,p(x) = |∇u|p(x),

for all u ∈ W
1,p(x)
0 (Ω). Since Poincaré inequality holds [13], i.e. there exists a

positive constant C > 0 such that

|u|p(x) ≤ C|∇u|p(x), ∀u ∈W
1,p(x)
0 (Ω) .

We also consider the weighted variable exponent Lebesgue space L
p(x)
c(x) (Ω). Let

c : RN → R be a measurable real function such that c (x) > 0 a.e. x ∈ Ω . We define

L
p(x)
c(x) (Ω) =

u | u : Ω→ R is measurable,

∫
Ω

c (x) |u (x)| p(x) dx <∞, c (x) > 0

 ,
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with the norm norm

|u|
L
p(x)
c(x)

(Ω)
:= |u|c(x),p(x) = inf

λ > 0 :

∫
Ω

c (x)

∣∣∣∣u (x)

λ

∣∣∣∣ p(x)

dx ≤ 1

 ,

then L
p(x)
c(x) (Ω) is a Banach space which has similar properties with the usual variable

exponent Lebesgue spaces. The modular of this space is ρ(c(x),p(x)) (u) : L
p(x)
c(x) (Ω)→

R defined by

ρ(c(x),p(x)) (u) =

∫
Ω

c (x) |u (x)|p(x) dx.

Proposition 4. [16] If p+ <∞ and un ∈ Lp(x)
c(x) (Ω) , n = 1, 2, ... we have

(i) lim
n→∞

|un|(c(x),p(x)) = 0⇔ lim
n→∞

ρ(c(x),p(x))(un) = 0,

(ii) |un|(c(x),p(x)) →∞⇔ ρ(c(x),p(x))(un)→∞.

Proposition 5. [12, 16] (i)If p− > 1 and p+ < ∞ then, the spaces Lp(x) (Ω),

W 1,p(x) (Ω), W
1,p(x)
0 (Ω) and L

p(x)
c(x) (Ω) are separable and reflexive Banach spaces;

(ii) Assume that the boundary of Ω possesses the cone property and p (x) ∈
C+

(
Ω
)
. If q (x) ∈ C+

(
Ω
)

and q (x) < p∗ (x) = Np(x)
N−p(x) , for all x ∈ Ω, then there

is compact and continuous embedding

W
1,p(x)
0 (Ω) ↪→ Lq(x) (Ω) ,

also there is a constant c > 0 such that

|u|q(x) ≤ c‖u‖,

for all u ∈W 1,p(x)
0 (Ω).

Proposition 6. [10] Let p (x) and q (x) be measurable functions such that p (x) ∈
L∞ (Ω) and 1 ≤ p (x) q (x) ≤ ∞ for a.e. x ∈ Ω. Let u ∈ Lq(x) (Ω) , u 6= 0. Then

(i) |u|p(x)q(x) ≤ 1 =⇒ |u|p
+

p(x)q(x) ≤
∣∣∣|u|p(x)

∣∣∣
q(x)
≤ |u|p

−

p(x)q(x) ,

(ii) |u|p(x)q(x) ≥ 1 =⇒ |u|p
−

p(x)q(x) ≤
∣∣∣|u|p(x)

∣∣∣
q(x)
≤ |u|p

+

p(x)q(x) .
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In particular, if p (x) = p is constant then ||u|p|pq(x) = |u|ppq(x).

We give the properties of the (p1 (x) , p2 (x))-Laplace operator

−(4p1(x) +4p2(x))u := −div
(
|∇u|p1(x)−2∇u

)
− div

(
|∇u|p1(x)−2∇u

)
We consider the following functional,

Λ (u) =

∫
Ω

1

p1 (x)
|∇u|p1(x) dx+

∫
Ω

1

p2 (x)
|∇u|p2(x) dx, for all u ∈ X,

where X := W
1,p1(x)
0 (Ω) ∩W 1,p2(x)

0 (Ω) with its norm given by

‖u‖ := ‖u‖p1(x) + ‖u‖p2(x)

for all u ∈ X. We denote

pM (x) = max{p1 (x) , p2 (x)}, pm (x) = max{p1 (x) , p2 (x)}, for all u ∈ X,

It is easy to see that pM, pm ∈ C+

(
Ω
)
.

Remark 1. (i) (X, ‖u‖) is a separable and reflexive Banach spaces.
(ii) If q (x) ∈ C+

(
Ω
)

such that q (x) < p∗M (x) for any x ∈ Ω, we have X :=

W
1,p1(x)
0 (Ω) ∩W 1,p2(x)

0 (Ω) = W
1,pM(x)
0 (Ω) ↪→ Lq(x) (Ω) the embedding is continuous

and compact.

3. The main results

In this paper, we consider the problem (1) in the particular case

f (x, u) = m (x) |u|r(x)−2 u+ n (x) |u|s(x)−2 u

where r (x) , s (x) , pM (x) , pm (x) ∈ C+

(
Ω
)

with

r− ≤ r+ < p−m < p+
M < s− ≤ s+ < s∗ (x) , for any x ∈ Ω (3)

and the following conditions hold:
(M) m ∈ Lβ(x) (Ω) and β ∈ C+

(
Ω
)

such that Np(x)
Np(x)−r(x)(N−p(x)) < β (x) <

p(x)
p(x)−r(x)) for all x ∈ Ω.

(N) n ∈ Lα(x) (Ω) and α ∈ C+

(
Ω
)

such that p(x)
p(x)−s(x) < α (x) < Np(x)

Np(x)−s(x)(N−p(x))
for all x ∈ Ω.

Define the energy functional I : X → R associated with (1) by
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I (u) =

∫
Ω

1

p1 (x)
|∇u|p1(x) dx+

∫
Ω

1

p2 (x)
|∇u|p2(x) dx

−
∫
Ω

m (x)

r (x)
|∇u|r(x) dx−

∫
Ω

n (x)

s (x)
|∇u|s(x) dx,

where

Λ (u) =

∫
Ω

1

p1 (x)
|∇u|p1(x) dx+

∫
Ω

1

p2 (x)
|∇u|p2(x) dx,

and

J (u) =

∫
Ω

m (x)

r (x)
|∇u|r(x) dx−

∫
Ω

n (x)

s (x)
|∇u|s(x) dx.

It is obvious that Λ ∈ C1 (X,R). Denote L = Λ′ : X → X∗, then

〈L (u) , υ〉 =

∫
Ω

|∇u|p1(x)−2∇u∇υdx+

∫
Ω

|∇u|p2(x)−2∇u∇υdx, for all u, υ ∈ X,

in which 〈., .〉 is the dual pair between X and X∗. Furthermore, J ∈ C1 (X,R) and

〈J ′ (u) , υ〉 =

∫
Ω

m (x) |u|r(x)−2 uυdx+

∫
Ω

n (x) |u|s(x)−2 uυdx, for all u, υ ∈ X.

We say that u ∈ X is a weak solution of (1) if∫
Ω

|∇u|p1(x)−2∇u∇υdx+

∫
Ω

|∇u|p2(x)−2∇u∇υdx

=

∫
Ω

m (x) |u|r(x)−2 uυdx+

∫
Ω

n (x) |u|s(x)−2 uυdx,

for all υ ∈ X.

Theorem 1. Suppose that conditions (3), (M) and (N) are satisfied. Then the
problem (1) has at least two nontrivial weak solutions in X.
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Theorem 2. Suppose that conditions (3), (M) and (N) are satisfied and the fol-
lowing condition;

(M1)Xis a Banach space, I ∈ C1 (X,R) is an even functional,

Then the problem (1) has infinitely many nontrivial weak solutions in X.

Lemma 3. (Mountain-Pass lemma) [24] Let X be a Banach space and I ∈
C1 (X,R) satisfies the Palais-Smale condition. Assume that I (0) = 0 and there
exists a positive real number ρ aand u ∈ X such that

(i) ‖u‖ > ρ, I (u) ≤ I (0) ,

(ii) α = inf{I (u) : u ∈ X, ‖u‖ = ρ} > 0.

Put G = {φ ∈ C ([0, 1], X) : φ (0) = 0, φ (1) = u}. Set β = inf{max I (φ ([0, 1])) :
φ ∈ G}. Then, β ≥ α and β is a critical value of I.

Lemma 4. (Symmetric Mountain-Pass lemma) [24] Let X be an infinite
dimensional real Banach space and let I ∈ C1 (X,R) be even, satisfying the Palais-
Smale condition and I (0) = 0. Suppose that

(i) There exist two positive real numbers α and ρ such that

inf
u∈∂Bρ

I (u) ≥ α > 0,

where Bρ is open ball in X of radius ρ centered at the origin and ∂Bρ is its boundary.
(ii) For each finite dimensional linear subspace X1 ⊂ X, the set

{u ∈ X1 : I (u) ≥ 0},

is bounded. Then, I has an unbounded sequence of critical values.

Lemma 5. [13]
(i) L : X → X∗ is a continuous, bounded and strictly monotone operator,
(ii) L is a mapping of type (S+), namely,

un ⇀ u in X and lim
n→∞

〈L′ (un) , un − u〉 ≤ 0 implies un → u in X,

(iii) L : X → X∗ is a homeomorphism.

Lemma 6. Assume that the conditions (3), (M) and (N) are satisfied.
(i) L is weakly lower semi-continuous from X to R,
(ii) I (u) = 0,
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(iii) There exist two positive real numbers ρ and α such that

inf{I (u) : u ∈ X, ‖u‖ = ρ} > 0,

(iv) There exists ψ ∈ X such that ψ ≥ 0, ψ 6= 0 and I (tψ) < 0, for t > 0 small
enough,

(v) There exists u ∈ X such that ‖u‖ > ρ, I (u) ≤ 0,
(vi) The set

G = {ϕ ∈ C ([0, 1], X) : ϕ (0) = 0, ϕ (1) = u},

is not empty,
(vii) I satisfies Palais-Smale condition on X i.e. there exists a sequence {un} ⊂

X which satisfies the properties;

I (un)→ c and I ′ (un)→ 0 in X∗ as n→∞,

possesses a convergent subsequence in X.

Proof. (i) Let {un} ⊂ X be a sequence such that un ⇀ u in X. Using Lemma 5, we
have

Λ ≤ lim
n→∞

inf Λ (un) . (4)

Furthermore, from Remark 1 (ii), the conditions (3), (M) and (N) the embedding

(a)X ↪→ L
r(x)
m(x) (Ω) and X ↪→ L

s(x)
n(x) (Ω) ,

are compact, see [[25],Theorems 2.7, 2.8]. Then, there exist two positive constants
c1 and c2 such that∫

Ω

m (x) |u|r(x) ≤ c1

(
‖u‖r− + ‖u‖r−

)
(5)

and ∫
Ω

n (x) |u|s(x) ≤ c2

(
‖u‖s− + ‖u‖s−

)
(6)

for all x ∈ X. On the other hand, there are follows that

(b)un → u in L
r(x)
m(x) (Ω) and un → u in L

s(x)
n(x) (Ω) .
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This fact together with the above inequality (6) implies

I (u) ≤ lim
n→∞

inf I (un) .

Thus, I is weakly lower semi continuous.
(ii) This comes from the definition of I.
(iii) we can write the following inequality from the definition of I,

I (u) ≥ 1

p+
M

∫
Ω

(|∇u|p1(x)+|∇u|p2(x))dx− 1

r−

∫
Ω

m (x) |∇u|r(x) dx− 1

s−

∫
Ω

n (x) |∇u|s(x) dx.

Let ‖u‖ < 1. Using together with inequality (5) and (6), we have

I (u) ≥ 1

p+
M

(
‖u‖p

+
1

p1(x) + ‖u‖p
+
2

p2(x)

)
− c3

r−
‖u‖r− − c4

s−
‖u‖s−

≥ c5

p+
M

‖u‖p
+
M − c3

r−
‖u‖r− − c4

s−
‖u‖s−

=

(
c5

p+
M

− c3

r−
‖u‖r−−p

+
M − c4

s−
‖u‖s−−p

+
M

)
‖u‖p

+
M .

Let us define the function γ : [0, 1]→ R by

γ (t) =
c5

p+
M

− c3

r−
tr
−−p+M − c4

s−
tr
−−p+M .

Since γ is positive in a neighbourhood of the origin, for example, for a fixed

t0 ∈

(
0,

(
r−

c3p
+
M

) 1

r−−p+
M

)
,

the conclusion of the lemma follows at once.
(iv) Let ψ ∈ C∞0 (Ω) , ψ ≥ 0, ψ 6= 0 and t sufficiently small. Moreover, we obtain

the following inequality

I (tψ) ≤ 1

p−m
tp

+
M

∫
Ω

(|∇ψ|p1(x) + |∇ψ|p2(x))dx

− t
r−

r−

∫
Ω

m (x) |ψ|r(x) dx− ts
−

s−

∫
Ω

n (x) |ψ|s(x) dx.
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Since r− < p+
M < s−, we conclude that I (tψ) < 0.

(v) If choose t > 1 sufficiently large and use assumptions of Lemma 6, we obtain
from (iv) that I (u) ≤ 0.

(vi) If we consider the function ϕ ∈ C ([0, 1], X) defined by ϕ (t) = tu for every
t ∈ [0, 1], it is clear that ϕ ∈ G and G 6= ∅.

(vii) Assume that {un} ⊂ X is a sequence which satisfies the following properties:

I (un)→ c and I ′ (un)→ 0 in X∗ as n→∞, (7)

where X∗ is dual space of X and c is a positive constant. We prove that {un}
possesses a convergent subsequence. First, we show that {un} is bounded in X.
We assume by contradiction ‖un‖ → ∞ as n → ∞. By using relation (7), and
considering ‖un‖ > 1, for n large enough, we obtain

c ≥ I (un)− 1

s−
〈I ′ (un) , un〉

= Λ (un)− J (un)− 1

s−

∫
Ω

|∇un|p1(x) dx− 1

s−

∫
Ω

|∇un|p2(x) dx

+
1

s−

∫
Ω

m (x) |un|r(x) dx+
1

s−

∫
Ω

n (x) |un|s(x) dx

≥ c6

(
1

p+
M

− 1

s−

)(
‖un‖

p−1
p1(x) + ‖un‖

p−2
p2(x)

)

−
(

1

r−
− 1

s−

)∫
Ω

m (x) |un|r(x) dx.

Moreover, by (4), we can write

c+

(
1

r−
− 1

s−

)
‖un‖r

+ ≥ c6

(
1

p+
M

− 1

s−

)
‖un‖p

−
m .

Since r+ < p−m and p+
M < s−, the sequence {un} is bounded in X. Therefore,

there exists a subsequence, again denoted by {un}, and u ∈ X such that un ⇀ u in
X. By using relation (7), the embedding (a) and (b), we can write

〈I ′ (un)− I ′ (u) , un − u〉 → 0 as n→∞.

On the other hand, we have
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∫
Ω

(
|∇un|p1(x)−2∇un − |∇u|p1(x)−2∇u

)
(∇un −∇u) dx (8)

+

∫
Ω

(
|∇un|p2(x)−2∇un − |∇u|p2(x)−2∇u

)
(∇un −∇u) dx

= 〈I ′ (un) , un − u〉+

∫
Ω

(
m (x) |un|r(x)−2 un −m (x) |u|r(x)−2 u

)
(un − u) dx

+

∫
Ω

(
n (x) |un|s(x)−2 un − n (x) |u|s(x)−2 u

)
(un − u) dx,

Using {un} converges strongly to u in L
r(x)
m(x) (Ω), Proposition 1, Proposition 5 and

Proposition 6, we have∣∣∣∣∣∣
∫
Ω

(
m (x) |un|r(x)−2 un −m (x) |u|r(x)−2 u

)
(un − u) dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
Ω

m (x) |un|r(x)−2 un (un − u) dx

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
Ω

m (x) |u|r(x)−2 u (un − u) dx

∣∣∣∣∣∣
≤ c7|m|β(x)||un|r(x)−1|θ(x)|un − u|m(x),r(x)

+c8|m|β(x)||u|r(x)−1|θ(x)|un − u|m(x),r(x)

≤ c9‖un‖|un − u|m(x),r(x) + c10‖u‖|un − u|m(x),r(x),

where θ ∈ C+

(
Ω
)

such that 1
β(x) + 1

θ(x) + 1
r(x) = 1. Since |un − u|m(x),r(x) → 0 as

n→∞, using Proposition 4, it follows that

lim
n→∞

∫
Ω

(
m (x) |un|r(x)−2 un −m (x) |u|r(x)−2 u

)
(un − u) dx = 0. (9)

With similar arguments we can obtain that
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lim
n→∞

∫
Ω

(
n (x) |un|s(x)−2 un − n (x) |u|s(x)−2 u

)
(un − u) dx = 0. (10)

Moreover, by using relation (8), (9) and (10), we get∫
Ω

(
|∇un|p1(x)−2∇un − |∇u|p1(x)−2∇u

)
(∇un −∇u) dx

+

∫
Ω

(
|∇un|p2(x)−2∇un − |∇u|p2(x)−2∇u

)
(∇un −∇u) dx = 0.

On the other hand, by using Lemma 5, we have

lim
n→∞

∫
Ω

|∇un −∇u|p1(x) dx+ lim
n→∞

∫
Ω

|∇un −∇u|p2(x) dx = 0,

and using the following inequality

|∇un|p1(x) + |∇un|p2(x) ≥ |∇un|pM (x) , for all x ∈ Ω,

We get lim
n→∞

∫
Ω

|∇un −∇u|pM (x) dx = 0. It follows that ‖un − u‖pM (x) → ∞ as

n→∞. The proof of Lemma 6 is complete.

4. proofs

Proof of Theorem 1. By Lemma 3 and Lemma 6, we deduce the existence of
u1 ∈ X as a nontrivial weak solution of (1). Now, we will prove that there exists a
second weak solution u2 ∈ X such that u1 6= u2

By Lemma 6, it follows that there exists on the boundary of the ball centered at
the origin and of the ρ in X, denoted Bρ ⊂ X, such that

inf
∂Bρ(0)

I > 0.

On the other hand, from Lemma 6 (iv), there exists ϕ ∈ X such that I (tϕ) < 0
for all t > 0 small enough. Moreover, we write for all u ∈ X

I (u) ≥ c5

p+
M

‖u‖p
+
M − c3

r−
‖u‖r− − c4

s−
‖u‖s− ,

it follows that
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−∞ < c := inf
Bρ(0)

I < 0.

So, we get

0 < ε < inf
∂Bρ(0)

I − inf
Bρ(0)

I.

Applying Ekelands variational principle [11] to the functional I : Bρ(0) → R,

we can find uε ∈ Bρ(0) such that uε ∈ Bρ (0). Now, we define Φ : Bρ(0) → R by
Φ (u) = I (u) + ε‖u − uε‖. It is clear that uε is a minimum point of Φ, and this
implies that ‖I ′ (uε) ‖ ≤ ε. So, we deduce that there exists a sequence {un} ⊂ Bρ(0)
such that I (un) → c and I ′ (un) → 0. Using the fact that I satisfies Palais-Smale
condition on X, we conclude that {un} converges strongly to u2 in X. Thus, u2 is
a weak solution for (1) and considering the relation 0 > c = I (u2), it follows that
u2 is nontrivial.

Moreover, it is clear that u1 6= u2 since

I (u1) = c > 0 > c = I (u2)

The proof is complete.

Proof of Theorem 2. In view of (M1), I is even. So, in order to apply Lemma
4, it is enough to deduce that condition of Lemma 4 (ii) is holds. By Proposition 3
(ii), we can write

I (un) ≤ c11

p−m

∫
Ω

(
|∇un|p1(x) + |∇un|p2(x)

)
dx− 1

s+

∫
Ω

n (x) |un|s(x) dx

≤ c11

p−m
‖un‖p

+
M − 1

s+

∫
Ω

n (x) |un|s(x) dx

Let u ∈ X be arbitrary but fixed. Set Ω = Ω< ∪ Ω≥, where Ω< := {x ∈ Ω :
|u (x)| < 1} and Ω≥ := Ω�{x ∈ Ω : |u (x)| < 1}. Then, we know

I (un) ≤ c11

p−m
‖un‖p

+
M − 1

s+

∫
Ω�{x∈Ω:|u(x)|<1

n (x) |un|s(x) dx

≤ c11

p−m
‖u‖p

+
M − 1

s+

∫
Ω

n (x) |un|s
−
dx+

1

s+

∫
{x∈Ω:|u(x)|<1}

n (x) |un|s
−
dx.
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On the other hand, we can find a positive constant c12 such that∫
{x∈Ω:|u(x)|<1}

n (x) |un|s
−
dx ≤ c12.

Then

I (un) ≤ c11

p−m
‖un‖p

+
M − 1

s+

∫
Ω

n (x) |un|s
−
dx+ c12,

for all u ∈ X. The functional |.|n(x),s− : X → R defined by

|u|n(x),s− =

∫
Ω

n (x) |u|s
−
dx

 1
s−

is a norm in X. Since X1 is a finite dimensional subspace of X, the norms |.|n(x),s−

and ‖.‖ are equivalent. Thus, there exists a positive constant c13 such that

‖u‖ ≤ c13 |u|n(x),s− ,

for all u ∈ X1. So, we obtain

I (un) ≤ c11

p−m
‖un‖p

+
M − c13

s+
‖un‖s

−
+ c12,

for all u ∈ X1. Since p+
M < s−, {u ∈ X : I (u) ≥ 0 is bounded. Therefore, I has

an unbounded sequence of critical values in X. Consequently, I possesses infinitely
many critical points in X.
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