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CONVERGENCE OF WAVELET GALERKIN METHOD FOR
FREDHOLM INTEGRAL EQUATION OF THE FIRST KIND

K. Maleknejad and N. Aghazadeh

Abstract. In this work, we study about Fredholm integral equation of the
first kind which is one of the most important ill-posed problems. There are several
methods such as projection methods, regularization method and moment method for
solving integral equations of the first kind. In this paper, we use Galerkin method as
one of the projection methods with wavelet basis to discretize the equation. In this
process, solution of Fredholm integral equation is found by solving the generated
system of equations. Convergence of the method and a bound for condition number
of the system is also presented.
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1. Introduction

Fredholm integral equation of the first kind is one of the ill-posed problems which
is appeared in many engineering fields. Consider the following Fredholm integral
equation of the first kind:∫ b

a
k(s, t)f(t)dt = g(s), −∞ < a ≤ s ≤ b <∞

where k(s, t) and g(s) are known functions and f(t) is an unknown function to be
determined. We suppose that the equation has a solution in L2[a, b]. If we define
an operator K as following

K(f(t)) =

∫ b

a
k(s, t)f(t)dt, K : X → Y,

where X,Y are normed spaces, then we have the following definition:
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Definition 1. Let K : X → Y be an operator from a normed space X into a normed
space Y , the equation

K(f) = g (1)

is called well posed if K is onto, one-to-one and the inverse operator K−1 : Y → X
is continuous. Otherwise the equation is called ill posed [4].

According to this definition we may distinguish three type of ill posedness [3]:

1. If K is not onto, then (1) is not solvable for all g ∈ Y . (non existence)

2. If K is not one-to-one, then (1) may have more than one solution. (non unique-
ness)

3. If K−1 exist but is not continuous, then the solution f of (1) dose not depend
continuously on the data g. (instability)

Discussion on stability of solution of the Fredholm integral equation of the first kind
needs to determine the inverse of integral operator, but this is impossible in many
cases, so that we prefer to discuss on convergence of numerical methods instead of
stability of them. In this paper, we present a theorem about convergence of Galerkin
method with wavelet basis for integral equation of the first kind.

2. Discreatization by Galerkin Method

Consider the first kind Fredholm integral equation of the form∫ b

a
k(s, t)f(t)dt = g(s), −∞ < a ≤ s ≤ b <∞. (2)

For numerical solving of (2) we should choose a finite dimensional family of functions
which the exact solution can be estimated by them. Methods that use this strategy
are called projection methods, because the exact solution of equation is projected to
a finite dimensional space. One of the most famous projection methods, is Galerkin
method.

For introducing this method we write the equation (1) in the operator form

Kf = g.

We choose a sequence of finite dimensional subspaces Xn ⊂ L2[a, b] for n ≥ 1,
with Xn having dimension dn.
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Assume that Xn has a basis {φ1, φ2, ..., φd} with d ≡ dn for notational simplicity
and fn is a function belongs to Xn, so that we can write it as fn(t) =

∑d
j=1 cjφj(t).

By substituting in (2) we have

rn(s) =

∫ b

a
k(s, t)fn(t)dt− g(s)

=

∫ b

a
k(s, t)

d∑
j=1

cjφj(t)dt− g(s), a ≤ s ≤ b

where rn is called the residual when using f ≈ fn. In the operator form we have

rn = Kfn − g.

In Galerkin method, require rn to satisfy

(rn, φi) = 0, i = 1, ..., d,

which (·, ·) shows the inner product (x, y) =
∫ b
a x(t)y(t)dt for L2[a, b].

This yields the linear system

d∑
j=1

cj(Kφj , φi) = (g, φi), i = 1, 2, ..., d. (3)

Now we should discuss about solution of the above system. For this result we
define orthogonal projection operator as Pnf =

∑d
i=1(f, ψi)ψi where {ψ1, ψ2, ..., ψd}

is an orthonormal basis that can be create by using Gram-Schmidt process from
elementary basis {φ1, φ2, ..., φd}.

By using Pnf we will have the following problem

‖f − Pnf‖ = min
z∈Xn

‖f − z‖. (4)

If we show that the above problem has unique solution and this solution is Pnf
then the system of linear (3) have unique solution. Since Pnf is an orthogonal
projection operator, so we have

‖f‖2 = ‖f − Pnf‖2 + ‖Pnf‖2

((I − Pn)f, Png) = 0, ∀f, g ∈ L2(R)

‖f − z‖2 = ‖f − Pnf‖2 + ‖Pnf − z‖2 z ∈ Xn

from the latest result we can conclude that (4) has a unique solution and the solution
is Pnf . (See [1] for more details.)
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3. Wavelet basis

The basic construction of wavelet basis is based on scaling function φ. The basis are
generated by the scaling function φ(t) as

φjk(t) = 2−j/2φ(2−jt− k), t ∈ R, j, k ∈ Z

where j, k are scaling and shifting parameters, respectively. The scaling function is
satisfied the following equation

φ(t) =

n1∑
n=n0

anφ(2t− n), (5)

This equation is called refinement equation where [n0, n1] is the support of the
scaling function φ(t). So when the scaling function has compact support then there
is a finite number of nonzero an. Then, the mother wavelet basis of L2(R) space
defined as

ψjk(t) = 2−j/2ψ(2−jt− k), t ∈ R, j, k ∈ Z

where j, k are scaling and shifting parameters. For mother wavelet basis we have
the following refinement equation

ψ(t) =
∑
n

(−1)na1−nφ(2t− n)

where the ans are the coefficient in (5). For every f ∈ L2(R) there is a unique
expansion

f(t) =
∑
j,k∈Z

(f, ψjk)ψjk(t)

which converges in the L2-norm (see [2] for more details).

4. Convergence of Galerkin method by wavelets

Here we introduce a theorem and a lemma to show the convergence of the method.

Theorem 1. Consider the integral equation of the first kind∫ b

a
k(s, t)f(t)dt = g(s), −∞ < a ≤ s ≤ b <∞

assume that k(s, t) is continuous on the square [a, b]2,and that the solution of the
equation belong to Cα[a, b] for some α > 1

2 , (Cα is Holder continuous space of order
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α), also assume that the scaling function φ is Holder continuous of order r > α and
assume that the support of φ is [N1, N2] (N1, N2 ∈ Z) also assume that for a positive
integer J , SJ is a set of all integers where φ−Jk is nonzero. Now by using projection
operator PnumJ (f)(t) =

∑
k∈SJ

αnumJk φ−Jk(t) and Galerkin method we have system of
linear equation AJX = bJ where

AJ =

[∫ b

a

∫ b

a
k(s, t)φ−Jk(t)φ−Jk′(s)dtds

]
k,k′∈SJ

bJ =

[∫ b

a
g(s)φ−Jk′(s)ds

]
k′∈SJ

XT = [αnumJk ]k∈SJ

if A is invertible, then

sup
t∈[a,b]

∣∣∣∣f(t)−
∑
k∈SJ

αnumJk φ−Jk(t)

∣∣∣∣ ≤ c2−Jα(1 + 2J‖A−1J ‖∞
)
.

Proof. Let f(t) ' PnumJ (f)(t) =
∑

k∈SJ
αnumJk φ−Jk(t) and

PJ(f)(t) =
∑
k∈SJ

αJkφ−Jk(t).

Now, if we substitute the approximation of f(t) with wavelet basis in the integral
equation, then the right hand side of integral equation is exchanged by a new function
that we denote it by ĝ(s), such that,

g(s) =

∫ b

a
k(s, t)PnumJ (f)(t)dt (6)

ĝ(s) =

∫ b

a
k(s, t)PJ(f)(t)dt. (7)

If we solve (6), we determine the {αnumJk , k ∈ SJ} by

(αnumJk )k∈SJ
= A−1J

([∫ b

a
g(s)φ−Jk(s)ds

]
k∈SJ

)

and if we solve (7); we determine the {αJk, k ∈ SJ} by

(αJk)k∈SJ
= A−1J

([∫ b

a
ĝ(s)φ−Jk(s)ds

])
k∈SJ

.
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Consequently we have

sup
k∈SJ

|αJk − αnumJk | ≤ ‖A−1J ‖∞ sup
k∈SJ

∣∣∣∣∫ b

a

(
ĝ(s)− g(s)

)
φ−Jk(s)ds

∣∣∣∣
≤ ‖A−1J ‖∞ sup

s∈[a,b]
|ĝ(s)− g(s)| sup

k∈SJ ,s∈[a,b]
|φ−Jk(s)| · (b− a)(8)

The scaling function φ has compact support, so φ is bounded, and

sup
k∈SJ ,s∈[a,b]

|φ−Jk(s)| = sup
k∈SJ ,s∈[a,b]

|2J/2φ(2Js− k)| ≤ 2J/2M1.

Now, with substituting the above bound in the (8) we have:

sup
k∈SJ

|αJk − αnumJk | ≤ ‖A−1J ‖∞2J/2M1(b− a) sup
s∈[a,b]

|ĝ(s)− g(s)|. (9)

For finding a bound for sups∈[a,b] |ĝ(s)−g(s)|, we need to estimate the ĝ(s). For this

we have g(s) =
∫ b
a k(s, t)f(t)dt, so that∫ b

a
k(s, t) [f(t)− PJ(f)(t)] dt+

∫ b

a
k(s, t)PJ(f)(t)dt = g(s),

∫ b

a
k(s, t)PJ(f)(t)dt = g(s)−

∫ b

a
k(s, t) [f(t)− PJ(f)(t)] dt,

ĝ(s) = g(s)−
∫ b

a
k(s, t) (f(t)− PJ(f)(t)) dt,

then

sup
s∈[a,b]

|ĝ(s)− g(s)| = sup
s∈[a,b]

∣∣∣ ∫ b

a
k(s, t) (f(t)− PJ(f)(t)) dt

∣∣∣
≤ (b− a) sup

s,t∈[a,b]

(∣∣k(s, t)| · |f(t)− PJ(f)(t)
∣∣),

Let M = sups,t∈[a,b] |k(s, t)| and from [5] we have |f(t)− PJ(f)(t)| ≤ cf2−Jα, then

sup
s,t∈[a,b]

|ĝ(s)− g(s)| ≤Mcf (b− a)2−Jα = M2(b− a)2−Jα,

and with substituting this bound in the inequality (9), we have

sup
k∈SJ

|αJk − αnumJk | ≤ ‖A−1J ‖∞M1M2(b− a)22(1/2−α)J .

136



K. Maleknejad and N. Aghazadeh – Galerkin Method for Integral Equation . . .

Also we need to determine a bound for |PJ(f)(t)− PnumJ (f)(t)|, hence we have:

|PJ(f)(t)− PnumJ (f)(t)| =

∣∣∣∣∣∣
∑
k∈SJ

(αJk − αnumJk )φ−Jk(t)

∣∣∣∣∣∣
≤ ‖αJk − αnumJk ‖∞ sup

t∈[a,b]

∑
k∈SJ

|φ−Jk(t)|

≤ ‖αJk − αnumJk ‖∞2J/2 sup
t∈[a,b]

∑
k∈SJ

|φ(2J t− k)|

= ‖αJk − αnumJk ‖∞2J/2(N2 −N1 + 1)M1

Now, with using this inequalities the result of the theorem can be determined. So

‖f(t)− PnumJ (f)(t)‖∞ ≤ ‖f(t)− PJ(f)(t)‖∞ + ‖PJ(f)(t)− PnumJ (f)(t)‖∞
≤ cf2−Jα + ‖A−1J ‖∞M

2
1M2(b− a)22−J(α−1)(N2 −N1 + 1).

Then

‖f(t)− PnumJ (f)(t)‖ ≤ 2−Jα
(
cf +M2

1M2(b− a)2(N2 −N1 + 1)2J‖A−1J ‖∞
)

where C = max{cf ,M2
1M2(b− a)2(N2 −N1 + 1)}. Hence ‖f(t)− PnumJ (f)(t)‖∞ ≤

C2−Jα{1 + 2J‖A−1J ‖∞} and the proof is completed.

The only weak point of this theorem is that the error bound of the scheme
contains ‖A−1J ‖∞, hence, in the following lemma by using an extra condition we will
found a bound for ‖A−1J ‖∞ and condition number of AJ .

Lemma 2. Consider the previous theorem and assume that there exists J ′ > J such
that

‖2−J ′AJ − ISJ
‖ = MJ ′ < 1

where ‖ ·‖ is the maximum norm of rows and ISJ
is an identity matrix of order |SJ |.

Then ‖A−1J ‖ ≤
2−J′

1−MJ′
and also

cond(AJ) ≤ 2(J−J
′)

1−MJ ′
.

Proof. First we determine a bound for ‖A−1J ‖, let

‖BJ ′‖ = ‖2−J ′AJ − ISJ
‖ = MJ ′ < 1,
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from geometric series theorem (see e.g. [1]) we have

‖(I +BJ ′)
−1‖ ≤ 1

1− ‖BJ ′‖
,

and from

‖(ISJ
+BJ ′)

−1‖ = ‖(ISJ
+ 2−J

′
AJ − ISJ

)−1‖
= 2J

′‖A−1J ‖

≤ 1

1− ‖BJ ′‖

we have

‖A−1J ‖ ≤
2−J

′

1−MJ ′
.

Now, we need a bound for ‖AJ‖.

‖AJ‖ = max
k′∈SJ

∑
k∈SJ

∣∣∣∣∣
∫ b

a

∫ b

a

k(s, t)φ−Jk(s)φ−Jk′(t)dsdt

∣∣∣∣∣
=

(∫ b

a

∫ b

a

|k(s, t)|2dsdt

) 1
2

max
k′∈SJ

(∫ b

a

|φ−Jk′(t)|2dt

) 1
2 ∑
k∈SJ

(∫ b

a

|φ−Jk(s)|2ds

) 1
2

(10)

Since k(s, t) is continuous on the square [a, b]2, then

M1 =

(∫ b

a

∫ b

a
|k(s, t)|2dsdt

)1/2

(11)

is finite. Consequently,

max
k′∈SJ

(∫ b

a
|φ−Jk′(t)|2dt

)1/2

≤ (b− a)1/2

[
sup
t∈[a,b]

(∣∣2J/2φ(2J t− k′)
∣∣2)]1/2

≤ (b− a)1/22J/2
(

sup
t∈[a,b]

|φ(t)|2
)1/2

≤ 2J/2M2 (12)
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∑
k∈SJ

(∫ b

a
|φ−Jk(s)|2ds

)1/2

≤
∑
k∈SJ

(
(b− a)1/2

(
sup
s∈[a,b]

|φ−Jk(s)|2
)1/2)

= (b− a)1/2
∑
k∈SJ

[
sup
s∈[a,b]

(∣∣2J/2φ(2Js− k)
∣∣2)]1/2

= (b− a)1/22J/2(N2 −N1 + 1)
(

sup
s∈[a,b]

|φ(s)|2
)1/2

= 2J/2M3 (13)

with substituting (11),(12) and (13) in (10), we have

‖AJ‖ ≤ 2JM1M2M3 = 2JM,

hence,

cond(AJ) = ‖AJ‖ · ‖A−1J ‖ ≤M
2(J−J

′)

1−MJ ′

and the proof is completed.

5. Conclusion

In this paper, first we presented Galerkin method, then by using wavelet basis which
were satisfied in the conditions of Theorem 1 we convert the integral equation of
the first kind to a linear system of equation. From Theorem 1 the convergence of
this method was granted and condition number of system of linear equations was
estimated by Lemma 1.
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