MINIMIZING POLYNOMIALS ON COMPACT SETS

V.T. Phan

AbStract. In this paper, the problem of minimizing a polymonial $g_{*}=\inf _{x \in S(F)} g(x)$ in the compact case is investigated. It is known that such problem is severely illposed. We use results of positive performed theorems of Putinar ([8]) and Schmüdgen ([9]) to solve it. A numerical example is given to illustrate the efficiency of the proposed method works.

2010 Mathematics Subject Classification: 30C45.
Keywords: global optimization, polynomials, sum of squares, semidefinite programming.

1. Introduction

Given a polynomial function $g \in \mathbb{R}[x]=\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ - the polynomial ring. Fix a finite subset $F=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subset \mathbb{R}[x]$. Denote

$$
S(F):=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

is the basic closed semialgebraic set generated by F. We consider the problem of minimizing a polymonial g on $S(F): g_{*}=\inf _{x \in S(F)} g(x)$.
Finding the optimal solution of the problem $\left({ }^{*}\right)$ is NP-hard problem (see [2], [4]). Based on the results of performing non-negative polynomials on the semi algebraic sets, some authors (eg, [1], [3], [7], ...) have developed a series of positive semidefinited programming ((SDP for short) (see [2], [4]) which their optimal values converge monotonically increasing to the optimum value of the problem $\left(^{*}\right)$. The idea traces back to work of Shor 1987 ([12]) and is further developed by Parrilo 2000 ([6]), by Lasserre 2001 ([1])and by Parrilo and Sturmfels 2003 ([7]).
In [1] Lasserre describes an extension of the method to minimizing a polynomial on an arbitrary basic closed semialgebraic set and uses a result due to Putinar ([8]) to prove that the method produces the exact minimum in the compact case. In the
general case it produces a lower bound for the minimum. However, the assumption that S is compact set is strict and not to be missed in the methods of Lasserre.
The purpose of this paper is to introdue the problem of minimizing a polymonial $g_{*}=\inf _{x \in S(F)} g(x)$ in the compact case. Uses results of positive performed theorems of Putinar ([8]) and Schmüdgen ([9]), we will build a series of positive semidefinited programming which their optimal values converge monotonically increasing to the optimum value g_{*}.

2. Preliminaries

Given a finite subset $F=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subset \mathbb{R}[x]$. Denote

$$
S(F):=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

is the basic closed semialgebraic set generated by F;

$$
M(F):=\left\{\sigma_{0}+\sigma_{1} f_{1}+\cdots+\sigma_{m} f_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}\right\}
$$

is the quadratic module in $\mathbb{R}[x]$;

$$
P(F):=\left\{\sum_{e \in\{0,1\}^{m}} \sigma_{e} f^{e} \mid \sigma_{e} \in \sum \mathbb{R}[x]^{2}, \forall e \in\{0,1\}^{m}\right\}
$$

is the preordering generated by F.
Property 1. $M(F)$ is the quadratic module, that is

$$
M(F)+M(F) \subset M(F), a^{2} M(F) \subset M(F), \forall a \in \mathbb{R}[x] \text { and } 1 \in M(F)
$$

Property 2. $P(F)$ is the preordering, that is

$$
P(F)+P(F) \subset P(F), P(F) \cdot P(F) \subset P(F) \text { and } a^{2} \in P(F), \forall a \in \mathbb{R}[x]
$$

Definition 1. $M(F)$ is archimedean if $\exists k \geq 1 \mid k-\sum_{i=1}^{n} x_{i}^{2} \in M(F)$.
Example 1. Take $n=1, F=\left\{-x^{2}\right\} \subset \mathbb{R}[x]$. We have

$$
M(F)=\left\{\sigma_{0}-\sigma_{1} x^{2} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}\right\}
$$

Take $k=1$. Then $k-x^{2}=1-x^{2} \in M(F)$. Thus $M(F)$ is archimedean.
V.T. Phan - Minimizing polynomials ...

Example 2. Take $n=2, F=\left\{x-\frac{1}{2}, y-\frac{1}{2}, 1-x y\right\} \subset \mathbb{R}[x, y]$. Then

$$
M(F)=\left\{\left.\sigma_{0}+\sigma_{1}\left(x-\frac{1}{2}\right)+\sigma_{2}\left(y-\frac{1}{2}\right)+\sigma_{3}(1-x y) \right\rvert\, \sigma_{i} \in \sum \mathbb{R}[x, y]^{2}\right\}
$$

We be alble to build quadratic module $Q \subset \mathbb{R}[x, y]$ ([4, Example 7.3.1]) which satisfies

$$
\left\{\begin{array}{l}
Q \cup-Q=\mathbb{R}[x, y], Q \cap-Q=\{0\}, \\
x-\frac{1}{2}, y-\frac{1}{2}, 1-x y \in Q,(\text { to } M(G) \subset Q), \\
k-\left(x^{2}+y^{2}\right) \notin Q, \forall k \in \mathbb{Z}, k \geq 1 .
\end{array}\right.
$$

Then $M(F) \subset Q, k-\left(x^{2}+y^{2}\right) \notin Q, \forall k \in \mathbb{Z}, k \geq 1$, and

$$
k-\left(x^{2}+y^{2}\right) \notin M(F), \forall k \in \mathbb{Z}, k \geq 1 .
$$

Thus $M(F)$ is not archimedean.
Theorem 1. ([g]) Suppose $S(F)$ is compact and $g \in \mathbb{R}[x]$. If $g>0$ on $S(F)$, then $g \in P(F)$.
Theorem 2. ([8]) Suppose $M(F)$ is archimedean and $g \in \mathbb{R}[x]$. If $g>0$ on $S(F)$, then $g \in M(F)$.

Remark 1. If $M(F)$ is archimedean, then $S(F)$ is compact.
The opposite of Remark 1 is not true. For example, we consider Example 2, we have

$$
S(F)=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x-\frac{1}{2} \geq 0\right., y-\frac{1}{2} \geq 0,1-x y \geq 0\right\}
$$

is compact, and

$$
M(F)=\left\{\left.\sigma_{0}+\sigma_{1}\left(x-\frac{1}{2}\right)+\sigma_{2}\left(y-\frac{1}{2}\right)+\sigma_{3}(1-x y) \right\rvert\, \sigma_{i} \in \sum \mathbb{R}[x, y]^{2}\right\}
$$

is not archimedean.

3. Semidefinited programming (SDP)

The problem SDP:

$$
\left\{\begin{array}{l}
\inf \sum_{i=1}^{n} c_{i} x_{i}, \tag{1}\\
G(x):=G_{0}+x_{1} G_{1}+\cdots+x_{n} G_{n} \succeq 0
\end{array}\right.
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$ and $G_{i} \in \operatorname{Sym}\left(\mathbb{R}^{d \times d}\right)$ is the symmetric matrix $(i=0, \ldots, n)$.

Remark 2. Problem (1) can not achieve min. This can be seen in the following example.

Example 3. Consider the problem SDP

$$
\left\{\begin{array}{l}
\inf x_{1}, \\
\left(\begin{array}{cc}
x_{1} & 1 \\
1 & x_{2}
\end{array}\right) \succeq 0 .
\end{array}\right.
$$

We have $n=d=2, c^{T} x=\left(\begin{array}{ll}1 & 0\end{array}\right)\binom{x_{1}}{x_{2}}$ and

$$
F(x)=\left(\begin{array}{cc}
x_{1} & 1 \\
1 & x_{2}
\end{array}\right)=\underbrace{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)}_{F_{0}}+x_{1} \underbrace{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)}_{F_{1}}+x_{2} \underbrace{\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)}_{F_{2}} .
$$

Consider the equation $\operatorname{det}\left(\begin{array}{cc}x_{1}-\lambda & 1 \\ 1 & x_{2}-\lambda\end{array}\right)=0, \lambda \in \mathbb{R}$. Reduced, we obtain

$$
\begin{equation*}
\lambda^{2}-\left(x_{1}+x_{2}\right) \lambda+x_{1} x_{2}-1=0 . \tag{2}
\end{equation*}
$$

The condition $G(x) \succeq 0$ is equivalent to eigenvalues of matric $G(x)$ is non negative. This is equivalent to Equation (2) has two non negative solutions, that is $S=\frac{-b}{a}=$ $x_{1}+x_{2} \geq 0$ and $P=\frac{c}{a}=x_{1} x_{2}-1 \geq 0$. Then $x_{1}>0, x_{2}>0$ and the objective function $c^{T} x=x_{1}$ can not achieve min on $\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}+x_{2} \geq 0, x_{1} x_{2}-1 \geq\right.$ $0\}$, and $p_{*}=0$.

The dual problem (DP for short) of (1) is

$$
\left\{\begin{array}{l}
\sup -\left\langle G_{0}, Z\right\rangle \tag{3}\\
\left\langle G_{i}, Z\right\rangle=c_{i}, i=1, \ldots, n \\
Z \succeq 0
\end{array}\right.
$$

Remark 3.

- SDP and DP are convex optimization problems. Using the polynomial algorithm to solve them.
- Opt - value $(S D P) \geq$ Opt - value ($D P$).

4. The case $M(F)$ is archimedean

For $g \in \mathbb{R}[x]$ and $S(F)$ is the basic closed semialgebraic set generated by F, we consider the problem

$$
g_{*}:=\inf \{g(x) \mid x \in S(F)\} .
$$

Remark 4. This is NP-hard problem. There is no efficient algorithm to solve it, unless the case g is linear, $S(F)$ is convex polyhedron, then using the simplex algorithm to solve it.

Remark 5. For $\gamma \in \mathbb{R}$, test $g-\gamma \geq 0$ on $S(F)$ is generally difficult. However, test $g-\gamma \in M(F)$ can do (using SDP).

Property 3. $\sup _{g-\gamma \in M(F)} \gamma \leq g_{*}$.
Fix a positive integer $N \geq \operatorname{deg} g$. Denote

$$
\begin{gather*}
M_{N}(F):=\left\{\sum_{i=0}^{m} \sigma_{i} g_{i} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i} g_{i}\right) \leq N, i=0, \ldots, m\right\} \\
\chi_{N}:=\left\{L: \mathbb{R}[x]_{N} \rightarrow \mathbb{R} \text { linear } \mid L(1)=1, \text { and } L \geq 0 \text { on } M_{N}(F)\right\}, \\
g_{+, N}:=\inf \left\{L(g) \mid L \in \chi_{N}\right\}, \tag{4}\\
g_{N}^{*}:=\sup \left\{\gamma \in \mathbb{R} \mid g-\gamma \in M_{N}(F)\right\} . \tag{5}
\end{gather*}
$$

Proposition 1. ([3])
(a) $g_{N}^{*} \leq g_{+, N} \leq g_{*}$.
(b) $g_{+, N} \leq g_{+, N+1} ; g_{N}^{*} \leq g_{N+1}^{*}$.
(c) If $M(F)$ is archimedean, then $\lim _{N \rightarrow \infty} g_{N}^{*}=g_{*}$. Hence $\lim _{N \rightarrow \infty} g_{+, N}=g_{*}$.

Proposition 2. Problem (4) is $S D P$.
Proof. Without loss generality, we assume $f_{i} \not \equiv 0$ and $\operatorname{deg} f_{i} \leq N, i=1, \ldots, m$. Because if $\operatorname{deg}\left(\sigma_{i} f_{i}\right) \leq N$ and $\operatorname{deg} f_{i}>N$, then $\sigma_{i}=0$, so $\sigma_{i} f_{i}=0$: not have any contribution to $M_{N}(F)$. We see $\mathbb{R}[x]_{N}$ generated by the basic set $\left\{x^{\alpha}| | \alpha \mid \leq N\right\}$, number of elements of that basic is C_{n+N}^{N}. We consider linear mapping

$$
L: \mathbb{R}[x]_{N} \longrightarrow \mathbb{R}, L(p)=L\left(\sum_{|\alpha| \leq N} p_{\alpha} x^{\alpha}\right)=\sum_{|\alpha| \leq N} p_{\alpha} L\left(x^{\alpha}\right) .
$$

Putting $y_{\alpha}=L\left(x^{\alpha}\right),|\alpha| \leq N$ then L corresponds to a vector $\left(y_{\alpha}\right),|\alpha| \leq N, y_{\alpha} \in \mathbb{R}$. We have $y_{0}=1$. $L \geq 0$ on $M_{N}(F)$ is equivalent to

$$
L\left(\sum_{i=0}^{m} \sigma_{i} f_{i}\right) \geq 0, \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i} f_{i}\right) \leq N
$$

or

$$
\sum_{i=0}^{m} L\left(\sigma_{i} f_{i}\right) \geq 0, \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i} f_{i}\right) \leq N
$$

or

$$
L\left(\sigma_{i} f_{i}\right) \geq 0, \forall i, \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i} f_{i}\right) \leq N
$$

or

$$
L\left(p^{2} f_{i}\right) \geq 0, p \in \mathbb{R}[x], \operatorname{deg} p \leq \frac{N-\operatorname{deg}\left(f_{i}\right)}{2}
$$

Test

$$
\operatorname{deg} p \leq \frac{N-\operatorname{deg} f_{i}}{2}
$$

Indeed, since $p^{2} f_{i} \in M_{N}(F)$ we have

$$
\operatorname{deg}\left(p^{2} f_{i}\right) \leq N
$$

or

$$
\operatorname{deg} p^{2}+\operatorname{deg} f_{i} \leq N
$$

or

$$
2 \operatorname{deg} p+\operatorname{deg} f_{i} \leq N,
$$

or

$$
\operatorname{deg} p \leq \frac{N-\operatorname{deg} f_{i}}{2}
$$

We write $g=\sum_{|\alpha| \leq N} g_{\alpha} x^{\alpha}$, thus

$$
L(g)=\sum_{|\alpha| \leq N} g_{\alpha} L\left(x^{\alpha}\right)=\sum_{|\alpha| \leq N} g_{\alpha} y_{\alpha}=g_{0}+\sum_{|\alpha| \leq N, \alpha \neq 0} g_{\alpha} y_{\alpha} .
$$

If $p=\sum_{\alpha} p_{\alpha} x^{\alpha}$, then $p^{2}=\sum_{\alpha, \beta} p_{\alpha} p_{\beta} x^{\alpha+\beta}$, therefore

$$
L\left(p^{2}\right)=\sum_{\alpha, \beta} p_{\alpha} p_{\beta} L\left(x^{\alpha+\beta}\right)=\sum_{\alpha, \beta} p_{\alpha} p_{\beta} y_{\alpha+\beta} .
$$

We write $f_{i}=\sum_{\gamma} f_{i \gamma} x^{\gamma}$. Similar to the above, we have

$$
\begin{gathered}
p^{2} f_{i}=\sum_{\alpha, \beta} p_{\alpha} p_{\beta} x^{\alpha+\beta} f_{i}=\sum_{\alpha, \beta, \gamma} p_{\alpha} p_{\beta} f_{i \gamma} x^{\alpha+\beta+\gamma} \\
\mathrm{v} L\left(p^{2} f_{i}\right)=\sum_{\alpha, \beta, \gamma} p_{\alpha} p_{\beta} f_{i \gamma} y_{\alpha+\beta+\gamma}=\sum_{\alpha, \beta}\left(\sum_{\gamma} f_{i \gamma} y_{\alpha+\beta+\gamma}\right) p_{\alpha} p_{\beta} . \text { Putting } \\
M\left(f_{i} * y\right)=\left(\sum_{\gamma} f_{i \gamma} y_{\alpha+\beta+\gamma}\right)_{\alpha, \beta} .
\end{gathered}
$$

Then, $M\left(f_{i} * y\right)$ is the matrix which size is $D_{i} \times D_{i}$, where

$$
D_{i}=\#\left\{\alpha| | \alpha \left\lvert\, \leq \frac{N-\operatorname{deg} f_{i}}{2}\right.\right\} .
$$

Note that $M(1 * y)=M(y)$. Then

$$
L\left(p^{2} f_{i}\right)=\sum_{\alpha, \beta}\left(\sum_{\gamma} f_{i \gamma} y_{\alpha+\beta+\gamma}\right) p_{\alpha} p_{\beta}=p^{T} M\left(f_{i} * y\right) p
$$

Therefore, condition $L\left(p^{2} f_{i}\right) \geq 0$ is equivalent to $p^{T} M\left(f_{i} * y\right) p \geq 0$. This is equivalent to $M\left(f_{i} * y\right) \succeq 0$. Thus

$$
L \in \chi_{N} \Leftrightarrow\left\{\begin{array} { l }
{ L (1) = 1 , } \\
{ L \geq 0 \text { on } M _ { N } (G) }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
y_{0}=1, \\
M\left(f_{i} * y\right) \succeq 0, i=0, \ldots, m .
\end{array}\right.\right.
$$

Putting $G(y):=\operatorname{diag}\left(M\left(f_{i} * y\right), \ldots, M\left(f_{i} * y\right)\right)$. The size of the matrix $G(y)$ is $\sum_{1=0}^{m} D_{i} \times \sum_{1=0}^{m} D_{i}$. Then,

$$
\left\{\begin{array} { l }
{ y _ { 0 } = 1 , } \\
{ M (f _ { i } * y) \succeq 0 , i = 0 , \ldots , m }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
y_{0}=1, \\
G(y) \succeq 0
\end{array}\right.\right.
$$

For $|\alpha| \leq N$, we define $e^{(\alpha)}:=\left(e_{\beta}^{(\alpha)}\right)$, where

$$
e_{\beta}^{(\alpha)}:= \begin{cases}0, & \text { if } \beta \neq \alpha \\ 1, & \text { if } \beta=\alpha\end{cases}
$$

So $\left\{e^{(\alpha)}, \alpha \neq 0\right\}$ is basic vector of freedom variables space $y=\left(y_{\alpha}\right),|\alpha| \leq N, \alpha \neq 0$, that is $y=\sum y_{\alpha} e^{(\alpha)}, \forall y=\left(y_{\alpha}\right),|\alpha| \leq N, \alpha \neq 0$. Then $G(y)=G_{0}+\sum_{|\alpha| \leq N, \alpha \neq 0} y_{\alpha} G^{\alpha}$, $G_{\alpha}:=G\left(e^{(\alpha)}\right)$, and

$$
\left\{\begin{array} { l }
{ y _ { 0 } = 1 , } \\
{ G (y) \succeq 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
y_{0}=1, \\
G_{0}+\sum_{|\alpha| \leq N, \alpha \neq 0} y_{\alpha} G^{\alpha} \succeq 0 .
\end{array}\right.\right.
$$

So $g_{+, N}:=\inf \left\{L(g) \mid L \in \chi_{N}\right\}=\inf \left\{g_{0}+\sum_{\alpha \neq 0} g_{\alpha} y_{\alpha}\right\}=g_{0}+\inf \sum_{\alpha \neq 0} g_{\alpha} y_{\alpha}$. We see that problem calculate $g_{+, N}$ with constrain $L \in \chi_{N}$ same as problem calculate $g_{0}+\inf \sum_{\alpha \neq 0} g_{\alpha} y_{\alpha}$ with constrain

$$
\left\{\begin{array}{l}
y_{0}=1, \\
G_{0}+\sum_{|\alpha| \leq N, \alpha \neq 0} y_{\alpha} G^{\alpha} \succeq 0,
\end{array}\right.
$$

or with constrain $G(y) \succeq 0$. Therefore Problem (4) is SDP.
Proposition 3. Problem (5) is duality of Problem (4).
Proof. Take $\gamma \in \mathbb{R}$ so that $g-\gamma=\sigma_{0}+\sigma_{1} f_{1}+\cdots+\sigma_{m} f_{m}$, where

$$
\sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg} \sigma_{i} \leq \frac{N-\operatorname{deg} f_{i}}{2}, i=0, \ldots, m
$$

For $\sigma_{i} \in \sum \mathbb{R}[x]^{2}$, there exists a positive semidefinite (PSD for short) matrix which size is $D_{i} \times D_{i}: A^{(i)}=\left(A_{\delta \beta}^{(i)}\right)_{\delta, \beta}$ so that $\sigma_{i}=\sum_{\delta, \beta} A_{\delta \beta}^{(i)} x^{\delta+\beta}$. Then

$$
g-\gamma=\sum_{i=0}^{m} \sigma_{i} f_{i}=\sum_{i=0}^{m} \sum_{\delta, \beta} A_{\delta \beta}^{(i)} x^{\delta+\beta} f_{i} .
$$

We write $f_{i}=\sum_{\gamma} f_{i \gamma} x^{\gamma}$. Then

$$
g-\gamma=\sum_{i=0}^{m} \sum_{\delta, \beta} \sum_{\gamma} A_{\delta \beta}^{(i)} f_{i \gamma} x^{\delta+\beta+\gamma} .
$$

For

$$
g=\sum_{\alpha} g_{\alpha} x^{\alpha}=g_{0}+\sum_{\alpha \neq 0} g_{\alpha} x^{\alpha}
$$

we have

$$
g_{0}+\sum_{\alpha \neq 0} g_{\alpha} x^{\alpha}-\gamma=\sum_{i=0}^{m} \sum_{\delta, \beta} \sum_{\gamma} A_{\delta \beta}^{(i)} f_{i \gamma} x^{\delta+\beta+\gamma},
$$

or

$$
g_{0}-\gamma+\sum_{\alpha \neq 0} f_{\alpha} x^{\alpha}=\sum_{i=0}^{m} \sum_{\delta, \beta} \sum_{\gamma} A_{\delta \beta}^{(i)} f_{i \gamma} x^{\delta+\beta+\gamma} .
$$

Identify coefficients two sides the above equation, we get

$$
\left\{\begin{array}{l}
g_{0}-\gamma=\sum_{i=0}^{m} A_{00}^{(i)} f_{i 0}=\left\langle G_{0}, A\right\rangle, \\
g_{\alpha}=\sum_{i=0}^{m} \sum_{\delta+\beta+\gamma=\alpha} A_{\delta \beta}^{(i)} f_{i \gamma}=\left\langle G_{\alpha}, A\right\rangle, \text { for } \alpha \neq 0,
\end{array}\right.
$$

where $A:=\operatorname{diag}\left(A^{(0)}, \ldots, A^{(m)}\right), G_{\alpha}:=G\left(e^{(\alpha)}\right)$. We have A is PSD and

$$
\begin{aligned}
g_{N}^{*} & =\sup \left\{\gamma \mid g-\gamma \in M_{N}(F)\right\} \\
& =\sup \left\{g_{0}-\left\langle G_{0}, A\right\rangle \mid A \succeq 0, g_{\alpha}=\left\langle G_{\alpha}, A\right\rangle, \alpha \neq 0\right\} \\
& =g_{0}+\sup \left\{-\left\langle G_{0}, A\right\rangle \mid A \succeq 0, g_{\alpha}=\left\langle G_{\alpha}, A\right\rangle, \alpha \neq 0\right\} .
\end{aligned}
$$

Thus, Problem (5) is duality of Problem (4).
Remark 6. Exist $g \in \mathbb{R}[x]$ such that $g^{s o s}<g_{*}$. For instance, we consider some the following examples.
Example 4. [5, 6.2].
(1) Take $g(x, y)=x^{4} y^{2}+x^{2} y^{4}+1-3 x^{2} y^{2} \in \mathbb{R}[x, y]$. Then

$$
g_{*}=0, g^{s o s}=-\infty .
$$

(2) Take $g(x, y)=x^{4}+x^{2}+y^{6}-3 x^{2} y^{2} \in \mathbb{R}[x, y]$. Then

$$
g_{*}=0, g^{s o s}=-729 / 4096
$$

Remark 7. Can happen case $g_{N}^{*} \neq g_{+, N}$. However, if $M(F) \cap-M(F)=\{0\}$, then $g_{N}^{*}=g_{+, N}$. (See [4, Proporition 10.5.1]).
Example 5. [2, Problem 4.6, 4.7] We consider the optimization problem

$$
\left\{\begin{array}{l}
\inf _{x} g(x):=-x_{1}-x_{2} \\
x_{2} \leq 2 x_{1}^{4}-8 x_{1}^{3}+8 x_{1}^{2}+2, \\
x_{2} \leq 4 x_{1}^{4}-32 x_{1}^{3}+88 x_{1}^{2}-96 x_{1}+36, \\
0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 4
\end{array}\right.
$$

Then $g_{4}^{*}=g_{*}=-5.5079$.
V.T. Phan - Minimizing polynomials ...

Example 6. [2, Problem 4.6, 4.7] We consider the optimization problem

$$
\left\{\begin{array}{l}
\inf _{x} g(x):=-12 x_{1}-7 x_{2}+x_{2}^{2} \\
-2 x_{1}^{4}+2-x_{2}=0 \\
0 \leq x_{1} \leq 2,0 \leq x_{2} \leq 3
\end{array}\right.
$$

Then $g_{5}^{*}=g_{*}=-16.73889$.

5. The case $M(F)$ is not archimedean

We have the same results as above if we replace the quadratic module $M_{N}(F)$ by the preordering

$$
P_{N}(F):=\left\{\sum_{e \in\{0,1\}^{m}} \sigma_{e} f^{e} \mid \sigma_{e} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg} \sigma_{e} f^{e} \leq N, e \in\{0,1\}^{m}\right\}
$$

We denote

$$
\begin{gather*}
\chi_{N}:=\left\{L: \mathbb{R}[x]_{N} \rightarrow \mathbb{R} \text { linear } \mid L(1)=1 \text { and } L \geq 0 \text { on } P_{N}(F)\right\}, \\
g_{+, N}:=\inf \left\{L(g) \mid L \in \chi_{N}\right\}, \tag{6}\\
g_{N}^{*}:=\sup \left\{\gamma \in \mathbb{R} \mid g-\gamma \in P_{N}(F)\right\} . \tag{7}
\end{gather*}
$$

Proposition 4.

(a) $g_{N}^{*} \leq g_{+, N} \leq g_{*}$.
(b) $g_{+, N} \leq g_{+, N+1} ; g_{N}^{*} \leq g_{N+1}^{*}$.
(c) If $S(F)$ is compact, then $\lim _{N \rightarrow \infty} g_{N}^{*}=g_{*}$. Hence $\lim _{N \rightarrow \infty} g_{+, N}=g_{*}$.

Proof. (a)We prove $g_{+, N} \leq g_{*}$. Taking arbitrary $a \in S(F)$, define

$$
L_{a}: \mathbb{R}[x]_{N} \rightarrow \mathbb{R}, L_{a}(q)=q(a) .
$$

We have $L_{a}(1)=1, L_{a}\left(\sum_{e \in\{0,1\}^{m}} \sigma_{e} f^{e}\right)=\sum_{e \in\{0,1\}^{m}} L_{a}\left(\sigma_{e} f^{e}\right)=\sum_{e \in\{0,1\}^{m}} \sigma_{e} f_{e}(a) \geq 0$. Then $L_{a} \in \chi_{N}$. Because

$$
g_{+, N}:=\inf \left\{L(g) \mid L \in \chi_{N}\right\},
$$

we get

$$
g_{+, N} \leq L_{a}(g)=g(a) .
$$

By $a \in S(F)$ is arbitrary, we have

$$
g_{+, N} \leq \inf _{a \in S(F)} g(a)=g_{*} .
$$

Next, we prove $g_{N}^{*} \leq g_{+, N}$. Take $\gamma \in \mathbb{R}$ such that $g-\gamma \in P_{N}(F)$ and $L \in \chi_{N}$ is arbitrary. We have

$$
0 \leq L(g-\gamma)=L(g)-L(\gamma)=L(g)-\gamma .
$$

Then $L(g \geq \gamma$. Therefore

$$
\inf \left\{L(g) \mid L \in \chi_{N}\right\} \geq \sup \left\{\gamma \in \mathbb{R} \mid g-\gamma \in P_{N}(F)\right\}
$$

that is $g_{+, N} \geq g_{N}^{*}$.
(b) We have $P_{N}(F) \subseteq P_{N+1}(F)$ and $\chi_{N+1} \subseteq \chi_{N}$. Take $\gamma \in \mathbb{R}$ such that

$$
g-\gamma \in P_{N}(F),
$$

we get $g-\gamma \in P_{N+1}(F)$. Thus $g_{N}^{*} \leq g_{N+1}^{*}$.
Next, we prove $g_{+, N} \leq g_{+, N+1}$. Take $L \in \chi_{N+1}$ is abitrary. Put

$$
L^{\prime}:=L_{\mid \mathbb{R}[x]_{N}},
$$

then $L^{\prime} \in \chi_{N}$ and $L^{\prime}(g)=L(g)$. Therefore

$$
\inf \left\{L(g) \mid L \in \chi_{N}\right\} \leq \inf \left\{L(g) \mid L \in \chi_{N+1}\right\},
$$

that is $g_{+, N} \leq g_{+, N+1}$.
(c) Take $\gamma \in \mathbb{R}, \gamma<g_{*}$. We have $g-\gamma>0$ on $S(G)$. From Theorem 1, we get

$$
g-\gamma \in P(F), \text { that is } g-\gamma=\sum_{e \in\{0,1\}^{m}} \sigma_{e} f^{e},
$$

where $\sigma_{e} \in \sum \mathbb{R}[x]^{2}$. Choose $N=\max \operatorname{deg}\left(\sigma_{e} f^{e}\right)$, then $g-\gamma \in P_{N}(F)$, so $\gamma \leq g_{N}^{*}$. Thus

$$
\gamma \leq g_{N}^{*} \leq g_{*}
$$

For $\gamma \uparrow g_{*}$, then $g_{N}^{*} \uparrow g_{*}$. From $g_{N}^{*} \xrightarrow{N \rightarrow \infty} g_{*}$ and $g_{N}^{*} \leq g_{+, N} \leq g_{*}$, we obtain $g_{+, N} \xrightarrow{N \rightarrow \infty} g_{*}$.

Proposition 5. Problem (6) is $S D P$.
Proof. Similar to the proof of Proposition 2.
Proposition 6. Problem (7) is duality of Problem (6).
Proof. Similar to the proof of Proposition 3.
Example 7. We consider problem

$$
\left\{\begin{array}{l}
\inf _{(x, y) \in S}(x, y)=x+y \\
S=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x \geq \frac{1}{2}\right., y \geq \frac{1}{2}, x y \leq 1\right\}
\end{array}\right.
$$

Then

$$
g_{2}^{*}=g_{*}=1 .
$$

Example 8. Problem

$$
\left\{\begin{array}{l}
\inf _{(x, y) \in S} g(x, y)=-x-y \\
S=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x \geq \frac{1}{2}\right., y \geq \frac{1}{2}, x y \leq 1\right\}
\end{array}\right.
$$

has

$$
g_{2}^{*}=g_{*}=-2,5 .
$$

6. Conclusion

The paper found out the problem of minimizing a polymonial $g_{*}=\inf _{x \in S(F)} g(x)$ in case $S(F)$ is compact, where $g \in \mathbb{R}[x]$ and $S(F)$ is the basic closed semialgebraic set generated by F.
The paper presented positive performed theorems:

- Putinar,
- Schmüdgen.

Using results of positive performed theorems of Putinar ([8]) and Schmüdgen ([9]), we can build a series of positive semidefinited programming which their optimal values converge monotonically increasing to the optimum value g_{*}. Finally, the numerical results show that the proposed method works effectively.
V.T. Phan - Minimizing polynomials ...

References

[1] J. B. Lassere, Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11, No. 3 (2001), 796-817. MR1814045. Zbl 1010.90061.
[2] M. Laurent, Sums of square, moment matrices and optimization over polynomials, Emerging applications of algebraic geometry, 157-270, IMA vol. Math.Appl, 149, Springer, Newyork, 2009. MR2500468.
[3] M. Marshall, Optimization of polynomial functions, Canadian Math. Bull., 46 (2003), 575-587. MR2011395. Zbl 1063.14071.
[4] M. Marshall, Positive polynomials and sums of squares, Mathematical Surveys and Monographs, AMS, 146, 2008. MR2383959.
[5] J. Nie, J. Demmel, and B. Sturmfels, Minimizing polynomials via sums of squares over the gradient ideal, Mathematical Programming Series A, 106, (2006), 587-606. MR2216797.
[6] P.A. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, Ph.D. thesis, California Institute of Technology, May 2000.
[7] P.A. Parrilo, and B. Sturmfels, Minimizing polynomial functions, DIMACS Series in Discrete Mathematices and Theoretical Computer Science, AMS, 60 (2003), 83-99. Zbl 1099.13516.
[8] M. Putinar, Positive polynomials on compact semialgebraic sets, Ind. Univ. Math. J. 43, No 3 (1993), 969-984.
[9] K. Schmüdgen, The K-moment problem for compact semialgebraic sets, Math. Ann. 289, No. 2 (1991), 203-206.
[10] M. Schweighofer, Optimization of polynomials on compact semialgebraic sets, SIAM J. Optim., 15 (3) (2005), 805-825. MR2142861. Zbl 1114.90098
[11] M. Schweighofer, Global optimization of polynomials using gradient tentacles and sums of squares, SIAM J. Optim., 17 (3) (2006), 920-942. Zbl 1118.13026.
[12] N.Z. Shor, An approach to obtaining global extremums in polynomial mathematical programming problems, Kibernetika, 5 (1987), 102-116.
[13] H.H. Vui, P.T. Son, Representations of positive polynomials and optimization on noncompact semialgebraic sets, SIAM J. Optim, 20 (6) (2010), 3082-3130. Zbl 1279.14071.
V.T. Phan

Faculty of Mathematics and Statistics, Ton Duc Thang University,
V.T. Phan - Minimizing polynomials ...

Ho Chi Minh City, Viet Nam
email: tripv@tdt.edu.vn

