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MINIMIZING POLYNOMIALS ON COMPACT SETS

V.T. Phan

Abstract. In this paper, the problem of minimizing a polymonial g∗ = inf
x∈S(F )

g(x)

in the compact case is investigated. It is known that such problem is severely ill-
posed. We use results of positive performed theorems of Putinar ([8]) and Schmüdgen
([9]) to solve it. A numerical example is given to illustrate the efficiency of the pro-
posed method works.
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1. Introduction

Given a polynomial function g ∈ R[x] = R[x1, x2, . . . , xn]− the polynomial ring. Fix
a finite subset F = {f1, f2, . . . , fm} ⊂ R[x]. Denote

S(F ) := {x ∈ Rn| fi(x) ≥ 0, i = 1, . . . ,m}

is the basic closed semialgebraic set generated by F. We consider the problem of
minimizing a polymonial g on S(F ) : g∗ = inf

x∈S(F )
g(x). (∗)

Finding the optimal solution of the problem (*) is NP-hard problem (see [2], [4]).
Based on the results of performing non-negative polynomials on the semi algebraic
sets, some authors (eg, [1], [3], [7], . . . ) have developed a series of positive semidefi-
nited programming ((SDP for short) (see [2], [4]) which their optimal values converge
monotonically increasing to the optimum value of the problem (*). The idea traces
back to work of Shor 1987 ([12]) and is further developed by Parrilo 2000 ([6]), by
Lasserre 2001 ([1])and by Parrilo and Sturmfels 2003 ([7]).
In [1] Lasserre describes an extension of the method to minimizing a polynomial on
an arbitrary basic closed semialgebraic set and uses a result due to Putinar ([8]) to
prove that the method produces the exact minimum in the compact case. In the
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general case it produces a lower bound for the minimum. However, the assumption
that S is compact set is strict and not to be missed in the methods of Lasserre.
The purpose of this paper is to introdue the problem of minimizing a polymonial
g∗ = inf

x∈S(F )
g(x) in the compact case. Uses results of positive performed theorems

of Putinar ([8]) and Schmüdgen ([9]), we will build a series of positive semidefinited
programming which their optimal values converge monotonically increasing to the
optimum value g∗.

2. Preliminaries

Given a finite subset F = {f1, f2, . . . , fm} ⊂ R[x]. Denote

S(F ) := {x ∈ Rn|fi(x) ≥ 0, i = 1, . . . ,m}

is the basic closed semialgebraic set generated by F ;

M(F ) :=
{
σ0 + σ1f1 + · · ·+ σmfm |σi ∈

∑
R[x]2

}
is the quadratic module in R[x];

P (F ) :=

 ∑
e∈{0,1}m

σef
e |σe ∈

∑
R[x]2, ∀e ∈ {0, 1}m


is the preordering generated by F.

Property 1. M(F ) is the quadratic module, that is

M(F ) +M(F ) ⊂M(F ), a2M(F ) ⊂M(F ), ∀a ∈ R[x] and 1 ∈M(F ).

Property 2. P (F ) is the preordering, that is

P (F ) + P (F ) ⊂ P (F ), P (F ).P (F ) ⊂ P (F ) and a2 ∈ P (F ),∀a ∈ R[x].

Definition 1. M(F ) is archimedean if ∃ k ≥ 1 | k −
n∑
i=1

x2i ∈M(F ).

Example 1. Take n = 1, F = {−x2} ⊂ R[x]. We have

M(F ) = {σ0 − σ1x2 |σi ∈
∑

R[x]2}.

Take k = 1. Then k − x2 = 1− x2 ∈M(F ). Thus M(F ) is archimedean.
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Example 2. Take n = 2, F = {x− 1
2 , y −

1
2 , 1− xy} ⊂ R[x, y]. Then

M(F ) =

{
σ0 + σ1(x−

1

2
) + σ2(y −

1

2
) + σ3(1− xy) |σi ∈

∑
R[x, y]2

}
.

We be alble to build quadratic module Q ⊂ R[x, y] ([4, Example 7.3.1]) which
satisfies 

Q ∪ −Q = R[x, y], Q ∩ −Q = {0},
x− 1

2 , y −
1
2 , 1− xy ∈ Q, ( to M(G) ⊂ Q),

k − (x2 + y2) 6∈ Q,∀k ∈ Z, k ≥ 1.

Then M(F ) ⊂ Q, k − (x2 + y2) 6∈ Q,∀k ∈ Z, k ≥ 1, and

k − (x2 + y2) 6∈M(F ),∀k ∈ Z, k ≥ 1.

Thus M(F ) is not archimedean.

Theorem 1. ([9]) Suppose S(F ) is compact and g ∈ R[x]. If g > 0 on S(F ), then
g ∈ P (F ).

Theorem 2. ([8]) Suppose M(F ) is archimedean and g ∈ R[x]. If g > 0 on S(F ),
then g ∈M(F ).

Remark 1. If M(F ) is archimedean, then S(F ) is compact.

The opposite of Remark 1 is not true. For example, we consider Example 2, we have

S(F ) = {(x, y) ∈ R2 |x− 1

2
≥ 0, y − 1

2
≥ 0, 1− xy ≥ 0}

is compact, and

M(F ) = {σ0 + σ1(x−
1

2
) + σ2(y −

1

2
) + σ3(1− xy) |σi ∈

∑
R[x, y]2}

is not archimedean.

3. Semidefinited programming (SDP)

The problem SDP:inf
n∑
i=1

cixi,

G(x) := G0 + x1G1 + · · ·+ xnGn � 0,
(1)

where x = (x1, . . . , xn) ∈ Rn, c = (c1, . . . , cn) ∈ Rn and Gi ∈ Sym(Rd×d) is the
symmetric matrix (i = 0, . . . , n).
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Remark 2. Problem (1) can not achieve min . This can be seen in the following
example.

Example 3. Consider the problem SDP
inf x1,(
x1 1

1 x2

)
� 0.

We have n = d = 2, cTx =
(
1 0

)(x1
x2

)
and

F (x) =

(
x1 1
1 x2

)
=

(
0 1
1 0

)
︸ ︷︷ ︸

F0

+x1

(
1 0
0 0

)
︸ ︷︷ ︸

F1

+x2

(
0 0
0 1

)
︸ ︷︷ ︸

F2

.

Consider the equation det

(
x1 − λ 1

1 x2 − λ

)
= 0, λ ∈ R. Reduced, we obtain

λ2 − (x1 + x2)λ+ x1x2 − 1 = 0. (2)

The condition G(x) � 0 is equivalent to eigenvalues of matric G(x) is non negative.
This is equivalent to Equation (2) has two non negative solutions, that is S = −b

a =
x1 + x2 ≥ 0 and P = c

a = x1x2 − 1 ≥ 0. Then x1 > 0, x2 > 0 and the objective
function cTx = x1 can not achieve min on {x = (x1, x2) ∈ R2 |x1+x2 ≥ 0, x1x2−1 ≥
0}, and p∗ = 0.

The dual problem (DP for short) of (1) is
sup −〈G0, Z〉,
〈Gi, Z〉 = ci, i = 1, . . . , n,

Z � 0.

(3)

Remark 3.

• SDP and DP are convex optimization problems. Using the polynomial algo-
rithm to solve them.

• Opt - value (SDP) ≥ Opt - value (DP).
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4. The case M(F ) is archimedean

For g ∈ R[x] and S(F ) is the basic closed semialgebraic set generated by F, we
consider the problem

g∗ := inf {g(x) |x ∈ S(F )} .

Remark 4. This is NP-hard problem. There is no efficient algorithm to solve
it, unless the case g is linear, S(F ) is convex polyhedron, then using the simplex
algorithm to solve it.

Remark 5. For γ ∈ R, test g − γ ≥ 0 on S(F ) is generally difficult. However, test
g − γ ∈M(F ) can do (using SDP).

Property 3. sup
g−γ∈M(F )

γ ≤ g∗.

Fix a positive integer N ≥ deg g. Denote

MN (F ) :=

{
m∑
i=0

σigi |σi ∈
∑

R[x]2,deg(σigi) ≤ N, i = 0, . . . ,m

}
,

χN := {L : R[x]N → R linear |L(1) = 1, and L ≥ 0 on MN (F )},

g+, N := inf{L(g) |L ∈ χN}, (4)

g∗N := sup{γ ∈ R | g − γ ∈MN (F )}. (5)

Proposition 1. ([3])
(a) g∗N ≤ g+, N ≤ g∗.

(b) g+, N ≤ g+, N+1; g
∗
N ≤ g∗N+1.

(c) If M(F ) is archimedean, then lim
N→∞

g∗N = g∗. Hence lim
N→∞

g+, N = g∗.

Proposition 2. Problem (4) is SDP.

Proof. Without loss generality, we assume fi 6≡ 0 and deg fi ≤ N, i = 1, . . . ,m.
Because if deg(σifi) ≤ N and deg fi > N, then σi = 0, so σifi = 0 : not have any
contribution to MN (F ). We see R[x]N generated by the basic set {xα | |α| ≤ N},
number of elements of that basic is CNn+N . We consider linear mapping

L : R[x]N −→ R, L(p) = L

 ∑
|α|≤N

pαx
α

 =
∑
|α|≤N

pαL(xα).
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Putting yα = L(xα), |α| ≤ N then L corresponds to a vector (yα), |α| ≤ N, yα ∈ R.
We have y0 = 1. L ≥ 0 on MN (F ) is equivalent to

L

(
m∑
i=0

σifi

)
≥ 0, σi ∈

∑
R[x]2,deg(σifi) ≤ N,

or
m∑
i=0

L(σifi) ≥ 0, σi ∈
∑

R[x]2,deg(σifi) ≤ N,

or
L(σifi) ≥ 0, ∀i, σi ∈

∑
R[x]2,deg(σifi) ≤ N,

or

L(p2fi) ≥ 0, p ∈ R[x], deg p ≤ N − deg(fi)

2
.

Test

deg p ≤ N − deg fi
2

.

Indeed, since p2fi ∈MN (F ) we have

deg(p2fi) ≤ N,

or
deg p2 + deg fi ≤ N,

or
2 deg p+ deg fi ≤ N,

or

deg p ≤ N − deg fi
2

.

We write g =
∑
|α|≤N

gαx
α, thus

L(g) =
∑
|α|≤N

gαL(xα) =
∑
|α|≤N

gαyα = g0 +
∑

|α|≤N,α6=0

gαyα.

If p =
∑
α
pαx

α, then p2 =
∑
α, β

pαpβx
α+β, therefore

L(p2) =
∑
α, β

pαpβL(xα+β) =
∑
α, β

pαpβyα+β.
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We write fi =
∑
γ
fiγx

γ . Similar to the above, we have

p2fi =
∑
α, β

pαpβx
α+βfi =

∑
α, β, γ

pαpβfiγx
α+β+γ

vL(p2fi) =
∑

α, β, γ

pαpβfiγyα+β+γ =
∑
α, β

(∑
γ
fiγyα+β+γ

)
pαpβ. Putting

M(fi ∗ y) =

(∑
γ

fiγyα+β+γ

)
α, β

.

Then, M(fi ∗ y) is the matrix which size is Di ×Di, where

Di = #{α | |α| ≤ N − deg fi
2

}.

Note that M(1 ∗ y) = M(y). Then

L(p2fi) =
∑
α, β

(∑
γ

fiγyα+β+γ

)
pαpβ = pTM(fi ∗ y)p.

Therefore, condition L(p2fi) ≥ 0 is equivalent to pTM(fi∗y)p ≥ 0. This is equivalent
to M(fi ∗ y) � 0. Thus

L ∈ χN ⇔

{
L(1) = 1,

L ≥ 0 on MN (G)
⇔

{
y0 = 1,

M(fi ∗ y) � 0, i = 0, . . . ,m.

Putting G(y) := diag(M(fi ∗ y), . . . ,M(fi ∗ y)). The size of the matrix G(y) is
m∑
1=0

Di ×
m∑
1=0

Di. Then,

{
y0 = 1,

M(fi ∗ y) � 0, i = 0, . . . ,m
⇔

{
y0 = 1,

G(y) � 0.

For |α| ≤ N, we define e(α) := (e
(α)
β ), where

e
(α)
β :=

{
0, if β 6= α

1, if β = α.

207



V.T. Phan – Minimizing polynomials . . .

So {e(α), α 6= 0} is basic vector of freedom variables space y = (yα), |α| ≤ N,α 6= 0,
that is y =

∑
yαe

(α),∀ y = (yα), |α| ≤ N,α 6= 0. Then G(y) = G0 +
∑

|α|≤N,α6=0

yαG
α,

Gα := G(e(α)), and{
y0 = 1,

G(y) � 0
⇔

y0 = 1,

G0 +
∑

|α|≤N,α6=0

yαG
α � 0.

So g+, N := inf {L(g)|L ∈ χN} = inf{g0 +
∑
α 6=0

gαyα} = g0 + inf
∑
α 6=0

gαyα. We see

that problem calculate g+, N with constrain L ∈ χN same as problem calculate
g0 + inf

∑
α 6=0

gαyα with constrain

y0 = 1,

G0 +
∑

|α|≤N,α6=0

yαG
α � 0,

or with constrain G(y) � 0. Therefore Problem (4) is SDP.

Proposition 3. Problem (5) is duality of Problem (4).

Proof. Take γ ∈ R so that g − γ = σ0 + σ1f1 + · · ·+ σmfm, where

σi ∈
∑

R[x]2,deg σi ≤
N − deg fi

2
, i = 0, . . . ,m.

For σi ∈
∑

R[x]2, there exists a positive semidefinite (PSD for short) matrix which

size is Di ×Di : A(i) = (A
(i)
δβ)δ, β so that σi =

∑
δ, β

A
(i)
δβx

δ+β. Then

g − γ =
m∑
i=0

σifi =
m∑
i=0

∑
δ, β

A
(i)
δβx

δ+βfi.

We write fi =
∑
γ
fiγx

γ . Then

g − γ =
m∑
i=0

∑
δ, β

∑
γ

A
(i)
δβfiγx

δ+β+γ .

For
g =

∑
α

gαx
α = g0 +

∑
α 6=0

gαx
α,
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we have

g0 +
∑
α 6=0

gαx
α − γ =

m∑
i=0

∑
δ, β

∑
γ

A
(i)
δβfiγx

δ+β+γ ,

or

g0 − γ +
∑
α 6=0

fαx
α =

m∑
i=0

∑
δ, β

∑
γ

A
(i)
δβfiγx

δ+β+γ .

Identify coefficients two sides the above equation, we get
g0 − γ =

m∑
i=0

A
(i)
00fi0 = 〈G0, A〉,

gα =
m∑
i=0

∑
δ+β+γ=α

A
(i)
δβfiγ = 〈Gα, A〉, for α 6= 0,

where A := diag(A(0), . . . , A(m)), Gα := G(e(α)). We have A is PSD and

g∗N = sup{γ | g − γ ∈MN (F )}
= sup{g0 − 〈G0, A〉|A � 0, gα = 〈Gα, A〉, α 6= 0}
= g0 + sup{−〈G0, A〉|A � 0, gα = 〈Gα, A〉, α 6= 0}.

Thus, Problem (5) is duality of Problem (4).

Remark 6. Exist g ∈ R[x] such that gsos < g∗. For instance, we consider some the
following examples.

Example 4. [5, 6.2].
(1) Take g(x, y) = x4y2 + x2y4 + 1− 3x2y2 ∈ R[x, y]. Then

g∗ = 0, gsos = −∞.

(2) Take g(x, y) = x4 + x2 + y6 − 3x2y2 ∈ R[x, y]. Then

g∗ = 0, gsos = −729/4096.

Remark 7. Can happen case g∗N 6= g+, N . However, if M(F )∩−M(F ) = {0}, then
g∗N = g+,N . (See [4, Proporition 10.5.1]).

Example 5. [2, Problem 4.6, 4.7] We consider the optimization problem
inf
x
g(x) := −x1 − x2,

x2 ≤ 2x41 − 8x31 + 8x21 + 2,

x2 ≤ 4x41 − 32x31 + 88x21 − 96x1 + 36,

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4.

Then g∗4 = g∗ = −5.5079.
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Example 6. [2, Problem 4.6, 4.7] We consider the optimization problem
inf
x
g(x) := −12x1 − 7x2 + x22,

−2x41 + 2− x2 = 0,

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3.

Then g∗5 = g∗ = −16.73889.

5. The case M(F ) is not archimedean

We have the same results as above if we replace the quadratic module MN (F ) by
the preordering

PN (F ) :=

 ∑
e∈{0,1}m

σef
e|σe ∈

∑
R[x]2, deg σef

e ≤ N, e ∈ {0, 1}m
 .

We denote

χN := {L : R[x]N → R linear |L(1) = 1 and L ≥ 0 on PN (F )},

g+, N := inf{L(g) |L ∈ χN}, (6)

g∗N := sup{γ ∈ R | g − γ ∈ PN (F )}. (7)

Proposition 4.
(a) g∗N ≤ g+, N ≤ g∗.

(b) g+, N ≤ g+, N+1; g
∗
N ≤ g∗N+1.

(c) If S(F ) is compact, then lim
N→∞

g∗N = g∗. Hence lim
N→∞

g+, N = g∗.

Proof. (a)We prove g+, N ≤ g∗. Taking arbitrary a ∈ S(F ), define

La : R[x]N → R, La(q) = q(a).

We have La(1) = 1, La

( ∑
e∈{0,1}m

σef
e

)
=

∑
e∈{0,1}m

La(σef
e) =

∑
e∈{0,1}m

σefe(a) ≥ 0.

Then La ∈ χN . Because

g+, N := inf{L(g)|L ∈ χN},
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we get
g+, N ≤ La(g) = g(a).

By a ∈ S(F ) is arbitrary, we have

g+, N ≤ inf
a∈S(F )

g(a) = g∗.

Next, we prove g∗N ≤ g+, N . Take γ ∈ R such that g − γ ∈ PN (F ) and L ∈ χN is
arbitrary. We have

0 ≤ L(g − γ) = L(g)− L(γ) = L(g)− γ.

Then L(g ≥ γ. Therefore

inf{L(g) |L ∈ χN} ≥ sup{γ ∈ R | g − γ ∈ PN (F )},

that is g+, N ≥ g∗N .

(b) We have PN (F ) ⊆ PN+1(F ) and χN+1 ⊆ χN . Take γ ∈ R such that

g − γ ∈ PN (F ),

we get g − γ ∈ PN+1(F ). Thus g∗N ≤ g∗N+1.

Next, we prove g+, N ≤ g+, N+1. Take L ∈ χN+1 is abitrary. Put

L′ := L|R[x]N ,

then L′ ∈ χN and L′(g) = L(g). Therefore

inf{L(g) |L ∈ χN} ≤ inf{L(g) |L ∈ χN+1},

that is g+, N ≤ g+, N+1.

(c) Take γ ∈ R, γ < g∗. We have g − γ > 0 on S(G). From Theorem 1, we get

g − γ ∈ P (F ), that is g − γ =
∑

e∈{0,1}m
σef

e,

where σe ∈
∑

R[x]2. Choose N = max deg(σef
e), then g − γ ∈ PN (F ), so γ ≤ g∗N .

Thus
γ ≤ g∗N ≤ g∗.

For γ ↑ g∗, then g∗N ↑ g∗. From g∗N
N→∞−−−−→ g∗ and g∗N ≤ g+, N ≤ g∗, we obtain

g+, N
N→∞−−−−→ g∗.
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Proposition 5. Problem (6) is SDP.

Proof. Similar to the proof of Proposition 2.

Proposition 6. Problem (7) is duality of Problem (6).

Proof. Similar to the proof of Proposition 3.

Example 7. We consider problem inf
(x,y)∈S

(x, y) = x+ y,

S = {(x, y) ∈ R2 |x ≥ 1
2 , y ≥

1
2 , xy ≤ 1}.

Then
g∗2 = g∗ = 1.

Example 8. Problem inf
(x,y)∈S

g(x, y) = −x− y,

S = {(x, y) ∈ R2 |x ≥ 1
2 , y ≥

1
2 , xy ≤ 1}

has
g∗2 = g∗ = −2, 5.

6. Conclusion

The paper found out the problem of minimizing a polymonial g∗ = inf
x∈S(F )

g(x) in

case S(F ) is compact, where g ∈ R[x] and S(F ) is the basic closed semialgebraic set
generated by F.
The paper presented positive performed theorems:
• Putinar,
• Schmüdgen.

Using results of positive performed theorems of Putinar ([8]) and Schmüdgen ([9]),
we can build a series of positive semidefinited programming which their optimal
values converge monotonically increasing to the optimum value g∗. Finally, the nu-
merical results show that the proposed method works effectively.
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[9] K. Schmüdgen, The K-moment problem for compact semialgebraic sets, Math.
Ann. 289, No. 2 (1991), 203-206.

[10] M. Schweighofer, Optimization of polynomials on compact semialgebraic sets,
SIAM J. Optim., 15 (3) (2005), 805-825. MR2142861. Zbl 1114.90098

[11] M. Schweighofer, Global optimization of polynomials using gradient tentacles
and sums of squares, SIAM J. Optim., 17 (3) (2006), 920-942. Zbl 1118.13026.

[12] N.Z. Shor, An approach to obtaining global extremums in polynomial mathe-
matical programming problems, Kibernetika, 5 (1987), 102-116.

[13] H.H. Vui, P.T. Son, Representations of positive polynomials and optimization
on noncompact semialgebraic sets, SIAM J. Optim, 20 (6) (2010), 3082-3130. Zbl
1279.14071.

V.T. Phan
Faculty of Mathematics and Statistics,
Ton Duc Thang University,

213



V.T. Phan – Minimizing polynomials . . .

Ho Chi Minh City, Viet Nam
email: tripv@tdt.edu.vn

214


	Introduction
	Preliminaries
	Semidefinited programming (SDP)
	The case M(F) is archimedean
	The case M(F) is not archimedean
	Conclusion

