HIGHER *-DERIVATIONS IN NON-ARCHIMEDEAN RANDOM C^{*}-ALGEBRAS AND LIE HIGHER $*$-DERIVATIONS IN NON-ARCHIMEDEAN RANDOM LIE C^{*}-ALGEBRAS

A. Ebadian, S. Zolfaghari, S. Ostadbashi

Abstract. Using fixed point method, we establish the generalized Hyers-Ulam stability of higher $*$-derivations in non-Archimedean random C^{*}-algebras and Lie higher $*$-derivations in non-Archimedean random Lie C^{*}-algebras associated to the following Cauchy-Jensen additive functional equation:

$$
f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)=f(x)+f(z)
$$

2010 Mathematics Subject Classification: Primary 39B52, 47H10, 46S50, 54E70, 39B72, 47H09.

Keywords: generalized Hyers-Ulam stability, fixed point, non-Archimedean random space, higher $*$-derivation in non-Archimedean random C^{*}-algebras, Lie higher *-derivation in non-Archimedean random Lie C^{*}-algebras.

1. Introduction and preliminaries

Let K denote a field and function (valuation absolute) $|$.$| from K$ into $[0, \infty)$. A non-Archimedean valuation is a function $|$.$| that satisfies the strong triangle$ inequality; namely, $|x+y| \leq \max \{|x|,|y|\} \leq|x|+|y|$ for all $x, y \in K$. The associated field K is referred to as a non-Archimedean field. Clearly, $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. A trivial example of a non-Archimedean valuation is the function \mid. taking everything except 0 into 1 and $|0|=0$. We always assume in addition that

Let X be a linear space over a field K with a non-Archimedean nontrivial valuation | . |. A function $\|\|:. X \rightarrow[0, \infty)$ is said to be a non-Archimedean norm if it is a norm over K with the strong triangle inequality (ultrametric); namely, $\| x+$ $y \| \leq \max \{\|x\|,\|y\|\}$ for all $x, y \in X$. Then $(X,\|\cdot\|)$ is called a non-Archimedean
normed space. In any such a space a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}_{n \in \mathbb{N}}$ converges to zero. By a complete non-Archimedean space, we mean one in which every Cauchy sequence is convergent.
For any nonzero rational number x, there exists a unique integer $n_{x} \in \mathbb{Z}$ such that $x=\frac{a}{b} p^{n_{x}}$, where a and b are integers non divisible by p. Then $|x|_{p}:=p^{-n_{x}}$ defines a non-Archimedean norm on \mathbb{Q}. The completion of \mathbb{Q} with respect to the metric $d(x, y)=|x-y|_{p}$ is denoted by \mathbb{Q}_{p}, which is called the p-adic number field.
A non-Archimedean Banach algebra is a complete non-Archimedean algebra A which satisfies $\|x y\| \leq\|x\|\|y\|$ for all $x, y \in A$. For more detailed definitions of nonArchimedean Banach algebras, we refer the reader to [6, 13].
If \mathcal{I} is a non-Archimedean Banach algebra, then an involution on \mathcal{I} is a mapping $t \mapsto t^{*}$ from \mathcal{I} into \mathcal{I} which satisfies
(i) $t^{* *}=t$ for $t \in \mathcal{I}$;
(ii) $(\alpha s+\beta t)^{*}=\bar{\alpha} s^{*}+\bar{\beta} t^{*} ;$
(iii) $(s t)^{*}=t^{*} s^{*}$ for $s, t \in \mathcal{I}$.

If, in addition, $\left\|t^{*} t\right\|=\|t\|^{2}$ for $t \in \mathcal{I}$, then \mathcal{I} is a non-Archimedean C^{*}-algebra.
The stability problem of functional equations was originated from a question of Ulam [14] concerning the stability of group homomorphisms. Let $\left(G_{1}, *\right)$ be a group and let $\left(G_{2}, \diamond, d\right)$ be a metric group (a metric which is defined on a set with a group property) with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta(\epsilon)>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x * y), h(x) \diamond h(y))<\delta$ for all $x, y \in G_{1}$, then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with $d(h(x), H(x))<\epsilon$ for all $x \in G_{1}$? If the answer is affirmative, we would say that the equation of a homomorphism $H(x * y)=H(x) \diamond H(y)$ is stable (see also [9, 10]).
Let X be a nonempty set and $d: X \times X \rightarrow[0, \infty]$ satisfying: $d(x, y)=0$ if and only if $x=y, d(x, y)=d(y, x)$ and $d(x, z) \leq d(x, y)+d(y, z)$ (strong triangle inequality), for all $x, y, z \in X$. Then (X, d) is called a generalized metric space. (X, d) is called complete if every d-Cauchy sequence in X is d-convergent.
Using the strong triangle inequality in the proof of the main result of [5], we get to the following result:

Theorem 1. [5] Let (Ω, d) be a complete generalized metric space and let $\mathcal{F}: \Omega \rightarrow \Omega$ be a strictly contractive mapping with Lipschitz constant $L \in(0,1)$. Then, for a given element $x \in \Omega$, exactly one of the following assertions is true:
either
(1) $d\left(\mathcal{F}^{n} x, \mathcal{F}^{n+1} x\right)=\infty$ for all $n \geq 0$ or
(2) there exists n_{0} such that $d\left(\mathcal{F}^{n} x, \mathcal{F}^{n+1} x\right)<\infty$ for all $n \geq n_{0}$.

Actually, if (2) holds, then the sequence $\left\{\mathcal{F}^{n} x\right\}$ is convergent to a fixed point x^{*} of \mathcal{F} and
(3) x^{*} is the unique fixed point of \mathcal{F} in $\Lambda:=\left\{y \in \Omega, d\left(\mathcal{F}^{n_{0}} x, y\right)<\infty\right\}$;
(4) $d\left(y, x^{*}\right) \leq \frac{d(y, \mathcal{F} y)}{1-L}$ for all $y \in \Lambda$.

In this paper we consider a mapping $f: X \rightarrow Y$ satisfying the following CauchyJensen functional equation

$$
\begin{equation*}
f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y+z}{2}\right)=f(x)+f(z) \tag{1}
\end{equation*}
$$

for all $x, y, z \in X$ and establish the higher $*$-derivations in non-Archimedean random C^{*}-algebras and Lie higher $*$-derivations in non-Archimedean random Lie C^{*} algebras for the functional equation (1).

2. Random spaces

In the section, we adopt the usual terminology, notations, and conventions of the theory of random normed spaces as in $[1,2,3,4,7,11,12]$. Throughout this paper, Δ^{+}is the space of distribution functions, that is, the space of all mappings $F: \mathbb{R} \cup\{-\infty, \infty\} \rightarrow[0,1]$ such that F is left-continuous and non-decreasing on \mathbb{R}, $F(0)=0$ and $F(+\infty)=1 . \mathcal{D}^{+}$is a subset of Δ^{+}consisting of all functions $F \in \Delta^{+}$ for which $l^{-} F(+\infty)=1$, where $l^{-} f(x)$ denotes the left limit of the function f at the point x, that is, $l^{-} f(x)=\lim _{t \rightarrow x^{-}} f(t)$. The space Δ^{+}is partially ordered by the usual point-wise ordering of functions, i.e., $F \leq G$ if and only if $F(t) \leq G(t)$ for all t in \mathbb{R}.

Definition 1. [11] A mapping $T:[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous triangular norm (briefly, a continuous t-norm) if T satisfies the following conditions:
(1) T is commutative and associative;
(2) T is continuous;
(3) $T(a, 1)=a$ for all $a \in[0,1]$;
(4) $T(a, b) \leq T(c, d)$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in[0,1]$.

Definition 2. [12] A non-Archimedean random normed space (briefly, NA-RNspace) is a triple (X, μ, T), where X is a vector space, T is a continuous t-norm, and μ is a mapping from X into \mathcal{D}^{+}such that the following conditions hold:
$(R N 1) \mu_{x}(t)=\varepsilon_{0}(t)$ for all $t>0$ if and only if $x=0$;
(RN2) $\mu_{\alpha x}(t)=\mu_{x}\left(\frac{t}{|\alpha|}\right)$ for all $x \in X, \alpha \neq 0$;
$(R N 3) \mu_{x+y}(\max \{t, s\}) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$.
It is easy to see that if (RN3) holds, then we have
$(R N 4) \mu_{x+y}(t+s) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$.
Definition 3. [8] A non-Archimedean random normed algebra (X, μ, T, T^{\prime}) is a non-Archimedean random normed space (X, μ, T) with an algebraic structure such that

$$
(R N 5) \mu_{x y}(t) \geq T^{\prime}\left(\mu_{x}(t), \mu_{y}(t)\right)
$$

for all $x, y \in X$ and all $t>0$, in which T^{\prime} is a continuous t-norm.
Definition 4. Let (X, μ, T) and (Y, μ, T) be non-Archimedean random normed algebras.
(1) An \mathbb{R}-linear mapping $f: X \rightarrow Y$ is called a homomorphism if $f(x y)=f(x) f(y)$ for all $x, y \in X$.
(2) An \mathbb{R}-linear mapping $f: X \rightarrow X$ is called a derivation if $f(x y)=$ $f(x) y+x f(y)$ for all $x, y \in X$.

Definition 5. Let $\left(\mathcal{I}, \mu, T, T^{\prime}\right)$ be a non-Archimedean random Banach algebra, then an involution on \mathcal{I} is a mapping $u \mapsto u^{*}$ from \mathcal{I} into \mathcal{I} which satisfies
(i) $u^{* *}=u$ for $u \in \mathcal{I}$;
(ii) $(\alpha u+\beta v)^{*}=\bar{\alpha} u^{*}+\bar{\beta} v^{*}$;
(iii) $(u v)^{*}=v^{*} u^{*}$ for $u, v \in \mathcal{I}$.

If, in addition, $\mu_{u^{*} u}(t)=T^{\prime}\left(\mu_{u}(t), \mu_{u}(t)\right)$ for $u \in \mathcal{I}$ and $t>0$, then \mathcal{I} is a nonArchimedean random C^{*}-algebra.

Definition 6. Let (X, μ, T) be an $N A-R N$-space.
(1) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to x in X if, for every $\epsilon>0$ and $\lambda>0$, there exists a positive integer N such that $\mu_{x_{n}-x}(\epsilon)>$ $1-\lambda$ whenever $n \geq N$.
(2) A sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence if, for every $\epsilon>0$ and $\lambda>0$, there exists a positive integer N such that $\mu_{x_{n}-x_{n+1}}(\epsilon)>1-\lambda$ whenever $n \geq N$.
(3) An $R N$-space (X, μ, T) is said to be complete if and only if every Cauchy sequence in X is convergent to a point in X.

3. Higher $*$-Derivations in non-Archimedean random C^{*}-algebras

In this section, we will assume that \mathcal{A} and \mathcal{B} are two non-Archimedean random Banach C^{*}-algebras with the norm $\mu^{\mathcal{A}}$ and $\mu^{\mathcal{B}}$, respectively. For convenience, for each $n \in \mathbb{N}_{0}$, we use the following abbreviations for each given mapping $f_{n}: \mathcal{A} \rightarrow \mathcal{B}$:

$$
D_{\nu} f_{n}(x, y, z):=\nu f_{n}\left(\frac{x+y+z}{2}\right)+\nu f_{n}\left(\frac{x-y+z}{2}\right)-f_{n}(\nu x)-f_{n}(\nu z)
$$

for all $\nu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and all $x, y, z \in \mathcal{A}$.
Definition 7. Let \mathbb{N} be the set of natural numbers. Form $m \in \mathbb{N} \cup\{0\}$, a sequence $H=\left\{h_{0}, h_{1}, \ldots, h_{m}\right\}$ (resp. $H=\left\{h_{0}, h_{1}, \ldots, \ldots\right\}$) of mappings from \mathcal{A} into \mathcal{B} is called a higher $*$-derivation of rank m (resp. infinite rank) from \mathcal{A} into \mathcal{B} if
(i) $f_{n}\left(x^{*}\right)=\left(f_{n}(x)\right)^{*}$, for all $x \in \mathcal{A}$ and for each $n \in\{0,1, \ldots, m\}$ (resp. $n \in \mathbb{N}_{0}$.)
(ii) $f_{n}(x y)=\sum_{i=0}^{n} f_{i}(x) f_{n-i}(y)$ holds for each $n \in\{0,1, \ldots, m\}$ (resp. $n \in \mathbb{N}_{0}$) and all $x, y \in \mathcal{A}$.

We are going to investigate the generalized Hyers-Ulam stability of higher *derivations in non-Archimedean random C^{*}-algebras for the functional equation $D_{\nu} f_{n}(x, y, z)=0$.

Theorem 2. Let $\varphi: \mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow$ and $\psi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{D}^{+}$be functions. Suppose that $F=\left\{f_{0}, f_{1}, \ldots, f_{n}, \ldots\right\}$ be a sequence of mappings from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}, f_{n}(0)=0$,

$$
\begin{gather*}
\mu_{D_{\nu} f_{n}(x, y, z)}^{\mathcal{B}}(t) \geq \varphi_{x, y, z}(t), \tag{2}\\
\mu_{f_{n}\left(x^{*}\right)-f_{n}(x)^{*}}^{\mathcal{B}}(t) \geq \varphi_{x, 0,0}(t), \tag{3}\\
\mu_{f_{n}(x y)-\sum_{i=0}^{n} f_{i}(x) f_{n-i}(y)}^{\mathcal{B}}(t) \geq \psi_{x, y}(t) \tag{4}
\end{gather*}
$$

for all $\nu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C} ;|\lambda|=1\}$, all $x, y, z \in \mathcal{A}$ and all $t>0$. Assume that $|2|<1$ is far from zero and there exists an $0 \leq L<1$ such that

$$
\begin{align*}
\varphi_{2 x, 2 y, 2 z}(|2| L t) & \geq \varphi_{x, y, z}(t), \tag{5}\\
\psi_{2 x, 2 y}\left(|2|^{2} L t\right) & \geq \psi_{x, y}(t) \tag{6}
\end{align*}
$$

for all $x, y, z \in \mathcal{A}$ and $t>0$. Then there exists a unique higher $*$-derivation $H=$ $\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ of any rank from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}$,

$$
\begin{equation*}
\mu_{f_{n}(x)-h_{n}(x)}^{\mathcal{B}}(t) \geq \varphi_{x, 2 x, x}(|2|(1-L) t) \tag{7}
\end{equation*}
$$

holds for all $x \in \mathcal{A}$ and $t>0$.

Proof. Fix $n \in \mathbb{N}_{0}$. Setting $\nu=1$ and replacing (x, y, z) by $(x, 2 x, x)$ in (2) implies

$$
\begin{equation*}
\mu_{f_{n}(2 x)-2 f_{n}(x)}^{\mathcal{B}}(t) \geq \varphi_{x, 2 x, x}(t) \tag{8}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and $t>0$.
Let \mathcal{Z} be the set of all functions $g: \mathcal{A} \rightarrow \mathcal{B}$. We define the metric d on \mathcal{Z} as follows:

$$
d(g, h)=\inf \left\{k \in(0, \infty): \mu_{g(x)-h(x)}^{\mathcal{B}}(k t)>\varphi_{x, 2 x, x}(t), \forall x \in \mathcal{A}, t>0\right\} .
$$

One has the operator $J: \mathcal{Z} \rightarrow \mathcal{Z}$ by $(J h)(x):=\frac{1}{2} h(2 x)$. Then J is a contraction with Lipschitz constant L; in fact, for arbitrarily elements $f, g \in \mathcal{Z}$, we have

$$
\begin{aligned}
d(f, g)<k & \Rightarrow \mu_{f(x)-g(x)}^{\mathcal{B}}(k t)>\varphi_{x, 2 x, x}(t) \\
& \Rightarrow \mu_{f(2 x)-g(2 x)}^{\mathcal{B}}(k t)>\varphi_{2 x, 2(2 x), 2 x}(t) \\
& \Rightarrow \mu_{\frac{1}{2} f(2 x)-\frac{1}{2} g(2 x)}^{\mathcal{B}}(k t)>\varphi_{2 x, 2(2 x), 2 x}(|2| t) \\
& \Rightarrow \mu_{\frac{1}{2} f(2 x)-\frac{1}{2} g(2 x)}^{\mathcal{B}}(k L t)>\varphi_{x, 2 x, x}(t) \Rightarrow d(J f, J g)<k L
\end{aligned}
$$

for all $x \in \mathcal{A}$ and $t>0$. Hence we see that

$$
d(J f, J g) \leq L d(f, g)
$$

On the other hand, by (8) we have

$$
\mu_{J f_{n}(x)-f_{n}(x)}^{\mathcal{B}}\left(\frac{1}{|2|} t\right) \geq \varphi_{x, 2 x, x}(t) \Rightarrow d\left(J f_{n}, f_{n}\right) \leq \frac{1}{|2|}<\infty
$$

Therefore, it follows from Theorem (1) that there exists a mapping $h_{n}: \mathcal{A} \rightarrow \mathcal{B}$ such that h_{n} is a fixed point of J that is $h_{n}(2 x)=2 h_{n}(x)$ for all $x \in \mathcal{A}$. By Theorem (1) $\lim _{m \rightarrow \infty} d\left(J^{m} f_{n}, f_{n}\right)=0$ we conclude that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{f_{n}\left(2^{m} x\right)}{2^{m}}=h_{n}(x) \tag{9}
\end{equation*}
$$

for all $x \in \mathcal{A}$. The mapping h_{n} is a unique fixed point of J in the set $\mathcal{U}_{n}=\{g \in$ $\left.\mathcal{Z}: d\left(f_{n}, g\right)<\infty\right\}$. Thus, h_{n} is a unique mapping such that there exists $k \in(0, \infty)$ satisfying $\mu_{f_{n}(x)-h_{n}(x)}^{\mathcal{B}}(k t)>\varphi_{x, 2 x, x}(t)$ for all $x \in \mathcal{A}$ and $t>0$.
Again, by Theorem (1), we have

$$
d\left(f_{n}, h_{n}\right) \leq \frac{1}{1-L} d\left(f_{n}, J f_{n}\right) \leq \frac{1}{|2|(1-L)},
$$

so

$$
\mu_{f_{n}(x)-h_{n}(x)}^{\mathcal{B}}(t) \geq \varphi_{x, 2 x, x}(|2|(1-L) t) .
$$

This implies that the inequality (7) holds. Furthermore, it follows from (2), (5) and (9) that

$$
\mu_{D_{\nu} h_{n}(x, y, z)}^{\mathcal{B}}(t)=\lim _{m \rightarrow \infty} \mu_{\frac{1}{2^{m}} D_{\nu} f_{n}\left(2^{m} x, 2^{m} y, 2^{m} z\right)}^{\mathcal{B}}(t) \geq \lim _{m \rightarrow \infty} \varphi_{2^{m} x, 2^{m} y, 2^{m} z}\left(|2|^{m} t\right) \rightarrow 1
$$

for all $x, y, z \in \mathcal{A}$ and $t>0$. So the mapping h_{n} is additive. By a similar method to the above, we have $\nu h_{n}(x)=h_{n}(\nu x)$ for all $\nu \in \mathbb{T}^{1}$ and all $x \in \mathcal{A}$. Thus, one can show that the mapping $h_{n}: \mathcal{A} \rightarrow \mathcal{B}$ is \mathbb{C}-linear for each $n \in \mathbb{N}_{0}$. Using (4), (6) and (9), we get

$$
\begin{aligned}
\mu_{h_{n}(x y)-\sum_{i=0}^{\mathcal{B}} h_{i}(x) h_{n-i}(y)}(t) & =\lim _{m \rightarrow \infty} \mu_{f_{n}\left(2^{2 m}(x y)\right)-\sum_{i=0}^{n} f_{i}\left(2^{m} x\right) f_{n-i}\left(2^{m} y\right)}^{\mathcal{B}}\left(|2|^{2 m} t\right) \\
& \geq \lim _{m \rightarrow \infty} \psi_{2^{m} x, 2^{m} y}\left(|2|^{2 m} t\right) \rightarrow 1
\end{aligned}
$$

for all $x, y \in \mathcal{A}$ and $t>0$. So, $h_{n}(x y)=\sum_{i=0}^{n} h_{i}(x) h_{n-i}(y)$ for all $x, y \in \mathcal{A}$. By (3),

$$
\mu_{\frac{1}{2^{m}} f_{n}\left(2^{m} x^{*}\right)-\frac{1}{2^{m}} f_{n}\left(2^{m} x\right)^{*}}^{\mathcal{B}}(t) \geq \varphi_{2^{m} x, 0,0}\left(|2|^{m} t\right)
$$

for all $x \in \mathcal{A}$ and $t>0$. Passing to the limit as $m \rightarrow \infty$, we get $h_{n}\left(x^{*}\right)=h_{n}(x)^{*}$ for all $x \in \mathcal{A}$. This completes the proof.

Corollary 3. Let $p>1, \xi$ be nonnegative real number and let $F=\left\{f_{0}, f_{1}, \ldots, f_{n}, \ldots\right\}$ be a sequence of mappings from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}, f_{n}(0)=0$,

$$
\begin{gathered}
\mu_{D_{\nu} f_{n}(x, y, z)}^{\mathcal{B}}(t) \geq \frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}+\|z\|_{\mathcal{A}}^{p}\right]}, \\
\mu_{f_{n}\left(x^{*}\right)-f_{n}(x)^{*}}^{\mathcal{B}}(t) \geq \frac{t}{t+\xi\|x\|_{\mathcal{A}}^{p}}, \\
\mu_{f_{n}(x y)-\sum_{i=0}^{n} f_{i}(x) f_{n-i}(y)}^{\mathcal{B}}(t) \geq \frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}\right]}
\end{gathered}
$$

for all $\nu \in \mathbb{T}^{1}$, all $x, y, z \in \mathcal{A}$ and all $t>0$. Then there exists a unique higher *-derivation $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ of any rank from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}$,

$$
\mu_{f_{n}(x)-h_{n}(x)}^{\mathcal{B}}(t) \geq \frac{\left(|2|-|2|^{p}\right) t}{\left(|2|-|2|^{p}\right) t+\xi\left(|2|+|2|^{p}\right)\|x\|_{\mathcal{A}}^{p}}
$$

holds for all $x \in \mathcal{A}$ and $t>0$.
A. Ebadian, S. Zolfaghari, S. Ostadbashi - Higher *-derivations in ...

Proof. Put $\varphi_{x, y, z}(t)=\frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}+\|z\|_{\mathcal{A}}^{p}\right]}, \psi_{x, y}(t)=\frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}\right]}$ and let $L=$ $|2|^{p-1}$ in the Theorem (2).
Then there exists a sequence $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ with the required properties.

Similar to Theorem (2), we can prove the following theorem:
Theorem 4. Let $\varphi: \mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{D}^{+}$and $\psi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{D}^{+}$be functions. Assume that $F=\left\{f_{0}, f_{1}, \ldots, f_{n}, \ldots\right\}$ be a sequence of mappings from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}, f_{n}(0)=0$,

$$
\begin{align*}
& \mu_{D_{\nu} f_{n}(x, y, z)^{\mathcal{B}}}^{\mathcal{B}}(t) \geq \varphi_{x, y, z}(t), \\
& \mu_{f_{n}\left(x^{*}\right)-f_{n}(x)^{*}}^{\mathcal{B}}(t) \geq \varphi_{x, 0,0}(t), \tag{10}\\
& \mu_{f_{n}(x y)-\sum_{i=0}^{\mathcal{B}} f_{i}(x) f_{n-i}(y)}(t) \geq \psi_{x, y}(t)
\end{align*}
$$

for all $\nu \in \mathbb{T}^{1}$, all $x, y, z \in \mathcal{A}$ and all $t>0$. Suppose that $|2|<1$ is far from zero and there exists an $0 \leq L<1$ such that

$$
\begin{align*}
\varphi_{\frac{x}{2}, \frac{y}{2}, \frac{z}{2}}\left(\frac{L}{|2|} t\right) & \geq \varphi_{x, y, z}(t), \tag{11}\\
\psi_{\frac{x}{2}, \frac{y}{2}}\left(\frac{L}{|2|^{2}} t\right) & \geq \psi_{x, y}(t) \tag{12}
\end{align*}
$$

for all $x, y, z \in \mathcal{A}$ and $t>0$. Then there exists a unique higher $*$-derivation $H=$ $\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ of any rank from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}$,

$$
\begin{equation*}
\mu_{f_{n}(x)-h_{n}(x)}^{\mathcal{B}}(t) \geq \varphi_{x, 2 x, x}\left(\frac{|2|(1-L)}{L} t\right) \tag{13}
\end{equation*}
$$

holds for all $x \in \mathcal{A}$ and $t>0$.
Proof. Fix $n \in \mathbb{N}_{0}$. Putting $\nu=1$ in (10). Let \mathcal{Z} be the set of all functions $g: \mathcal{A} \rightarrow \mathcal{B}$. We define the metric d on \mathcal{Z} as in the proof of Theorem (2). One has the operator $J: \mathcal{Z} \rightarrow \mathcal{Z}$ by $(J h)(x)=2 h\left(\frac{x}{2}\right)$ for all $h \in \mathcal{Z}$. For arbitrarily elements $f, g \in \mathcal{Z}$, we have

$$
\begin{aligned}
d(f, g)<k & \Rightarrow \mu_{f(x)-g(x)}^{\mathcal{B}}(k t)>\varphi_{x, 2 x, x}(t) \\
& \Rightarrow \mu_{f\left(\frac{x}{2}\right)-g\left(\frac{x}{2}\right)}^{\mathcal{B}}(k t)>\varphi_{\frac{x}{2}, x, \frac{x}{2}}(t) \\
& \Rightarrow \mu_{2 f\left(\frac{x}{2}\right)-2 g\left(\frac{x}{2}\right)}^{\mathcal{B}}(k t)>\varphi_{\frac{x}{2}, x, \frac{x}{2}}\left(\frac{1}{|2|} t\right) \\
& \Rightarrow \mu_{2 f\left(\frac{x}{2}\right)-2 g\left(\frac{x}{2}\right)}^{\mathcal{B}}(k L t)>\varphi_{x, 2 x, x}(t) \Rightarrow d(J f, J g)<k L
\end{aligned}
$$

Thus, J is a contraction with the Lipschitz constant L. Now, by Theorem (1) there exists a unique mapping $h_{n}: \mathcal{A} \rightarrow \mathcal{B}$ such that h_{n} is a fixed point of J that is $2 h_{n}\left(\frac{x}{2}\right)=h_{n}(x)$ for all $x \in \mathcal{A}$. By Theorem (1),

$$
\lim _{m \rightarrow \infty} 2^{m} f_{n}\left(\frac{x}{2^{m}}\right)=h_{n}(x)
$$

for all $x \in \mathcal{A}$. By Theorem (1), (8) and (11), we have

$$
\mu_{f_{n}(x)-2 f_{n}\left(\frac{x}{2}\right)}^{\mathcal{B}}\left(\frac{L}{|2|} t\right) \geq \varphi_{x, 2 x, x}(t) \Rightarrow d\left(f_{n}, J f_{n}\right) \leq \frac{L}{|2|}<\infty
$$

for all $x \in \mathcal{A}$ and all $t>0$. This implies that

$$
d\left(f_{n}, h_{n}\right) \leq \frac{1}{1-L} d\left(f_{n}, J f_{n}\right) \leq \frac{L}{|2|(1-L)},
$$

that is

$$
\mu_{f_{n}(x)-h_{n}(x)}^{\mathcal{B}}(t) \geq \varphi_{x, 2 x, x}\left(\frac{|2|(1-L)}{L} t\right)
$$

for all $x \in \mathcal{A}$ and all $t>0$. The rest of the proof is similar to that of the proof of Theorem (2).

The following corollary is similar to Corollary (3) for the case where $0 \leq p<1$.
Corollary 5. Let $0 \leq p<1, \xi$ be nonnegative real number and let $F=\left\{f_{0}, f_{1}, \ldots, f_{n}, \ldots\right\}$ be a sequence of mapping from \mathcal{A} into \mathcal{B} such that $f_{n}(0)=0$ and

$$
\begin{gathered}
\mu_{D_{\nu} f_{n}(x, y, z)}^{\mathcal{B}}(t) \geq \frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}+\|z\|_{\mathcal{A}}^{p}\right]}, \\
\mu_{f_{n}\left(x^{*}\right)-f_{n}(x)^{*}}^{\mathcal{B}}(t) \geq \frac{t}{t+\xi\|x\|_{\mathcal{A}}^{p}}, \\
\mu_{f_{n}(x y)-\sum_{i=0}^{n} f_{i}(x) f_{n-i}(y)}^{\mathcal{B}}(t) \geq \frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}\right]}
\end{gathered}
$$

for all $\nu \in \mathbb{T}^{1}$, all $x, y, z \in \mathcal{A}$ and all $t>0$. Then there exists a unique higher *-derivation $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ of any rank from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}$,

$$
\mu_{f_{n}(x)-h_{n}(x)}^{\mathcal{B}}(t) \geq \frac{\left(|2|^{p}-|2|\right) t}{\left(|2|^{p}-|2|\right) t+\xi\left(|2|+|2|^{p}\right)\|x\|_{\mathcal{A}}^{p}}
$$

holds for all $x \in \mathcal{A}$ and $t>0$.

Proof. Let $\varphi_{x, y, z}(t)=\frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}+\|z\|_{\mathcal{A}}^{p}\right]}, \psi_{x, y}(t)=\frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}\right]}$ and let $L=$ $|2|^{1-p}$ in the Theorem (4).
Then there exists a sequence $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ with the required properties.

4. Lie higher *-Derivations in non-Archimedean random Lie C^{*}-algebras

A non-Archimedean random C^{*}-algebra \mathcal{N}, endowed with the Lie product $[x, y]:=$ $\frac{x y-y x}{2}$ on \mathcal{N}, is called a non-Archimedean random Lie C^{*}-algebra.
Definition 8. Let \mathcal{A} and \mathcal{B} be non-Archimedean random Lie C^{*}-algebras. Let \mathbb{N} be the set of natural numbers. Form $m \in \mathbb{N} \cup\{0\}$, a sequence $H=\left\{h_{0}, h_{1}, \ldots, h_{m}\right\}$ (resp. $H=\left\{h_{0}, h_{1}, \ldots, \ldots\right\}$) of mappings from \mathcal{A} into \mathcal{B} is called a Lie higher $*-$ derivation of rank m (resp. infinite rank) from \mathcal{A} into \mathcal{B} if
(i) $f_{n}\left(x^{*}\right)=\left(f_{n}(x)\right)^{*}$, for all $x \in \mathcal{A}$ and for each $n \in\{0,1, \ldots, m\}$ (resp. $n \in \mathbb{N}_{0}$.)
(ii) $f_{n}[x, y]=\sum_{i=0}^{n}\left[f_{i}(x), f_{n-i}(y)\right]$ holds for each $n \in\{0,1, \ldots, m\}$ (resp. $n \in \mathbb{N}_{0}$) and all $x, y \in \mathcal{A}$.

In this section, assume that \mathcal{A} is a non-Archimedean random Lie C^{*}-algebra with norm $\mu^{\mathcal{A}}$ and that \mathcal{B} is a non-Archimedean random Lie C^{*}-algebra with norm $\mu^{\mathcal{B}}$. We are going to investigate the generalized Hyers-Ulam stability of Lie higher *-derivations in non-Archimedean random Lie C^{*}-algebras for the functional equation $D_{\nu} f_{n}(x, y, z)=0$.

Theorem 6. Let $\varphi: \mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{D}^{+}$and $\psi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{D}^{+}$be functions such that (2) and (3) hold. Suppose that $F=\left\{f_{0}, f_{1}, \ldots, f_{n}, \ldots\right\}$ be a sequence of mappings from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}, f_{n}(0)=0$,

$$
\begin{equation*}
\mu_{f_{n}([x, y])-\sum_{i=0}^{n}\left[f_{i}(x), f_{n-i}(y)\right]}(t) \geq \psi_{x, y}(t) \tag{14}
\end{equation*}
$$

for all $\nu \in \mathbb{T}^{1}$, all $x, y, z \in \mathcal{A}$ and all $t>0$. Assume that $|2|<1$ is far from zero and there exists an $0 \leq L<1$ and (5), (6) hold. Then there exists a unique Lie higher *-derivation $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ of any rank from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}$, (7) holds.
Proof. By the same reasoning as in the proof of Theorem (2), there is a mapping $h_{n}: \mathcal{A} \rightarrow \mathcal{B}$ which is $*$-preserving for each $n \in \mathbb{N}_{0}$ and satisfy (7). The mapping $h_{n}: \mathcal{A} \rightarrow \mathcal{B}$ is given by

$$
h_{n}(x)=\lim _{m \rightarrow \infty} \frac{f_{n}\left(2^{m} x\right)}{2^{m}}
$$

for all $x \in \mathcal{A}$. By (6) and (14),

$$
\begin{aligned}
& \mu_{f_{n}\left(2^{2 m}[x, y]\right)-\sum_{i=0}^{n}\left[f_{i}\left(2^{m} x\right), f_{n-i}\left(2^{m} y\right)\right]}\left(|2|^{2 m} t\right) \\
& \geq \psi_{2^{m} x, 2^{m} y} y\left(|2|^{2 m} t\right) \rightarrow 1 \quad \text { when } m \rightarrow \infty
\end{aligned}
$$

for all $x, y \in \mathcal{A}$ and all $t>0$. Therefore,

$$
h_{n}[x, y]=\sum_{i=0}^{n}\left[h_{i}(x), h_{n-i}(y)\right]
$$

for all $x, y \in \mathcal{A}$. Thus $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ is Lie higher $*$-derivation.
Corollary 7. Let $p>1, \xi$ be nonnegative real numbers and let $F=\left\{f_{0}, f_{1}, \ldots, f_{n}, \ldots\right\}$ be a sequence of mappings from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}, f_{n}(0)=0$,

$$
\begin{align*}
& \mu_{D_{\nu} f_{n}(x, y, z)}^{\mathcal{B}}(t) \geq \frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}+\|z\|_{\mathcal{A}}^{p}\right]}, \\
& \mu_{f_{n}\left(x^{*}\right)-f_{n}(x)^{*}}^{\mathcal{B}}(t) \geq \frac{t}{t+\xi\|x\|_{\mathcal{A}}^{p}}, \tag{15}\\
& \mu_{f_{n}([x, y])-\sum_{i=0}^{n}\left[f_{i}(x), f_{n-i}(y)\right]}^{\mathcal{B}}(t) \geq \frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}\right]}
\end{align*}
$$

for all $\nu \in \mathbb{T}^{1}$, all $x, y, z \in \mathcal{A}$ and all $t>0$. Then there exists a unique Lie higher *-derivation $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ of any rank from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}$,

$$
\mu_{f_{n}(x)-h_{n}(x)}^{\mathcal{B}}(t) \geq \frac{\left(|2|-|2|^{p}\right) t}{\left(|2|-|2|^{p}\right) t+\xi\left(|2|+|2|^{p}\right)\|x\|_{\mathcal{A}}^{p}}
$$

for all $x \in \mathcal{A}$ and $t>0$.
Proof. The proof follows from Theorem (6) by taking $\varphi_{x, y, z}(t)=\frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}+\|z\|_{\mathcal{A}}^{p}\right]}$, $\psi_{x, y}(t)=\frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}\right]}$ for all $x, y, z \in \mathcal{A}$ and $t>0$. Then $L=|2|^{p-1}$ and we get the desired result.

Theorem 8. Let $\varphi: \mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{D}^{+}$and $\psi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{D}^{+}$be functions such that (2) and (3) hold. Suppose that $F=\left\{f_{0}, f_{1}, \ldots, f_{n}, \ldots\right\}$ be a sequence of mappings from \mathcal{A} into \mathcal{B} satisfying $f_{n}(0)=0$, for each $n \in \mathbb{N}_{0}$, and (14). Assume that $|2|<1$ is far from zero and there exists an $0 \leq L<1$ and (11), (12) hold. Then there exists a unique Lie higher $*$-derivation $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ of any rank from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}$, (13) holds.

Corollary 9. Let $0 \leq p<1, \xi$ be nonnegative real numbers and let $F=\left\{f_{0}, f_{1}, \ldots, f_{n}, \ldots\right\}$ be a sequence of mappings from \mathcal{A} into \mathcal{B} such that satisfying $f_{n}(0)=0$, for each $n \in \mathbb{N}_{0}$, and (15). Then there exists a unique Lie higher $*$-derivation $H=$ $\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ of any rank from \mathcal{A} into \mathcal{B} such that for each $n \in \mathbb{N}_{0}$,

$$
\mu_{f_{n}(x)-h_{n}(x)}^{\mathcal{B}}(t) \geq \frac{\left(|2|^{p}-|2|\right) t}{\left(|2|^{p}-|2|\right) t+\xi\left(|2|+|2|^{p}\right)\|x\|_{\mathcal{A}}^{p}}
$$

for all $x \in \mathcal{A}$ and $t>0$.
Proof. The proof follows from Theorem (8) by taking $\varphi_{x, y, z}(t)=\frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}+\|z\|_{\mathcal{A}}^{p}\right]}$, $\psi_{x, y}(t)=\frac{t}{t+\xi\left[\|x\|_{\mathcal{A}}^{p}+\|y\|_{\mathcal{A}}^{p}\right]}$ for all $x, y \in \mathcal{A}$ and $t>0$. Then $L=|2|^{1-p}$ and we get the desired result.

References

[1] H. Azadi Kenary, SY. Jang, C. Park, A fixed point approach to the Hyers-Ulam stability of a functional equation in various normed spaces, Fixed Point Theory Appl. 2011, 67 (2011).
[2] H. Azadi Kenary, H. Rezaei, S. Talebzadeh, C. Park, Stability for the Jensen equation in C^{*}-algebras: a fixed point alternative approach, Adv. Differ. Equ. 2012, 17 (2012).
[3] S. S. Chang, Y. J. Cho, S. M. Kang, Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers, Inc., New York. (2001).
[4] YJ. Cho, R. Saadati, J. Vahidi, Approximation of homomorphisms and derivations on non-Archimedean Lie C*-algebras via fixed point method, Discrete Dyn. Nat. Soc, 2012, Article ID 373904 (2012).
[5] J. B. Diaz, B. Margolis, A fixed point theorem of the alternative for the contractions on generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309.
[6] M. Eshaghi Gordji, Z. Alizadeh, Stability and superstability of ring homomorphisms on non-Archimedean Banach algebras, Abstr. Appl. Anal, 2011, Article ID 123656 (2011), doi: 10.1155/2011/123656.
[7] D. Mihet, D. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, Journal of Mathematical Analysis and Applications. 343, 1 (2008), 567-572.
[8] A. K. Mirmostafaee, Perturbation of generalized derivations in fuzzy Menger normed algebras, Fuzzy Sets Syst. 195 (2012), 109-117.
[9] JM. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130.
[10] TM. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297-300.
[11] A. N. Šerstnev, On the notion of a random normed space (in Russian), Doklady Akademii Nauk SSSR. 149 (2) (1963), 280-283.
[12] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Elsevier, North Holand / New York. (1983).
[13] N. Shilkret, Non-Archimedean Banach algebras, PhD thesis, Polytechnic University, ProQuest LLC. (1968).
[14] SM. Ulam, A Collection of the Mathematical Problems, Interscience, New York. (1960).

Ali Ebadian
Department of mathematics, Payame Noor university,
Tehran, Iran.
email: ebadian.ali@gmail.com
Somaye Zolfaghari (corresponding author)
Department of Mathematics, Urmia University, P. O. Box 165, Urmia, Iran.
email: somaye.zolfaghari@gmail.com
Saed Ostadbashi
Department of Mathematics, Urmia University,
P. O. Box 165, Urmia, Iran.
email: saedostadbashi@yahoo.com.

