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Abstract. Using fixed point method, we establish the generalized Hyers-Ulam
stability of higher ∗-derivations in non-Archimedean random C∗-algebras and Lie
higher ∗-derivations in non-Archimedean random Lie C∗-algebras associated to the
following Cauchy-Jensen additive functional equation:

f(
x+ y + z

2
) + f(

x− y + z

2
) = f(x) + f(z).
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1. Introduction and preliminaries

Let K denote a field and function (valuation absolute) | . | from K into [0,∞).
A non-Archimedean valuation is a function | . | that satisfies the strong triangle
inequality; namely, |x+y| ≤ max{|x|, |y|} ≤ |x|+ |y| for all x, y ∈ K. The associated
field K is referred to as a non-Archimedean field. Clearly, |1| = |−1| = 1 and |n| ≤ 1
for all n ∈ N. A trivial example of a non-Archimedean valuation is the function | . |
taking everything except 0 into 1 and |0| = 0. We always assume in addition that
| . | is nontrivial, i.e., there is a z ∈ K such that |z| 6= 0, 1.
Let X be a linear space over a field K with a non-Archimedean nontrivial valuation
| . |. A function ‖ . ‖ : X → [0,∞) is said to be a non-Archimedean norm if it
is a norm over K with the strong triangle inequality (ultrametric); namely, ‖x +
y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ X. Then (X, ‖ · ‖) is called a non-Archimedean
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normed space. In any such a space a sequence {xn}n∈N is Cauchy if and only if
{xn+1−xn}n∈N converges to zero. By a complete non–Archimedean space, we mean
one in which every Cauchy sequence is convergent.
For any nonzero rational number x, there exists a unique integer nx ∈ Z such that
x = a

bp
nx ,where a and b are integers non divisible by p. Then |x|p := p−nx defines

a non-Archimedean norm on Q. The completion of Q with respect to the metric
d(x, y) = |x− y|p is denoted by Qp, which is called the p-adic number field.
A non-Archimedean Banach algebra is a complete non-Archimedean algebra A which
satisfies ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A. For more detailed definitions of non-
Archimedean Banach algebras, we refer the reader to [6, 13].
If I is a non-Archimedean Banach algebra, then an involution on I is a mapping
t 7→ t∗ from I into I which satisfies

(i) t∗∗ = t for t ∈ I;

(ii) (αs+ βt)∗ = ᾱs∗ + β̄t∗;

(iii) (st)∗ = t∗s∗ for s, t ∈ I.

If, in addition, ‖t∗t‖ = ‖t‖2 for t ∈ I , then I is a non-Archimedean C∗-algebra.

The stability problem of functional equations was originated from a question of
Ulam [14] concerning the stability of group homomorphisms. Let (G1, ∗) be a group
and let (G2, �, d) be a metric group (a metric which is defined on a set with a group
property) with the metric d(·, ·). Given ε > 0, does there exist a δ(ε) > 0 such that
if a mapping h : G1 → G2 satisfies the inequality d(h(x ∗ y), h(x) � h(y)) < δ for
all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε
for all x ∈ G1? If the answer is affirmative, we would say that the equation of a
homomorphism H(x ∗ y) = H(x) �H(y) is stable (see also [9, 10]).
Let X be a nonempty set and d : X ×X → [0,∞] satisfying: d(x, y) = 0 if and only
if x = y, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) + d(y, z) (strong triangle inequality),
for all x, y, z ∈ X. Then (X, d) is called a generalized metric space. (X, d) is called
complete if every d-Cauchy sequence in X is d-convergent.
Using the strong triangle inequality in the proof of the main result of [5], we get to
the following result:

Theorem 1. [5] Let (Ω, d) be a complete generalized metric space and let F : Ω→ Ω
be a strictly contractive mapping with Lipschitz constant L ∈ (0, 1). Then, for a given
element x ∈ Ω, exactly one of the following assertions is true:
either
(1) d(Fnx,Fn+1x) =∞ for all n ≥ 0 or
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(2) there exists n0 such that d(Fnx,Fn+1x) <∞ for all n ≥ n0.
Actually, if (2) holds, then the sequence {Fnx} is convergent to a fixed point x∗ of
F and
(3) x∗ is the unique fixed point of F in Λ := {y ∈ Ω, d(Fn0x, y) <∞};
(4) d(y, x∗) ≤ d(y,Fy)

1−L for all y ∈ Λ.

In this paper we consider a mapping f : X → Y satisfying the following Cauchy-
Jensen functional equation

f(
x+ y + z

2
) + f(

x− y + z

2
) = f(x) + f(z) (1)

for all x, y, z ∈ X and establish the higher ∗-derivations in non-Archimedean ran-
dom C∗-algebras and Lie higher ∗-derivations in non-Archimedean random Lie C∗-
algebras for the functional equation (1).

2. Random spaces

In the section, we adopt the usual terminology, notations, and conventions of the
theory of random normed spaces as in [1, 2, 3, 4, 7, 11, 12]. Throughout this
paper, ∆+ is the space of distribution functions, that is, the space of all mappings
F : R ∪ {−∞,∞} → [0, 1] such that F is left-continuous and non-decreasing on R,
F (0) = 0 and F (+∞) = 1. D+ is a subset of ∆+ consisting of all functions F ∈ ∆+

for which l−F (+∞) = 1, where l−f(x) denotes the left limit of the function f at
the point x, that is, l−f(x) = limt→x− f(t) . The space ∆+ is partially ordered by
the usual point-wise ordering of functions, i.e., F ≤ G if and only if F (t) ≤ G(t) for
all t in R.

Definition 1. [11] A mapping T : [0, 1] × [0, 1] → [0, 1] is a continuous triangular
norm (briefly, a continuous t-norm) if T satisfies the following conditions:

(1) T is commutative and associative;

(2) T is continuous;

(3) T (a, 1) = a for all a ∈ [0, 1];

(4) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2. [12] A non-Archimedean random normed space (briefly, NA-RN-
space) is a triple (X,µ, T ), where X is a vector space, T is a continuous t-norm,
and µ is a mapping from X into D+ such that the following conditions hold:
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(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) µαx(t) = µx( t
|α|) for all x ∈ X, α 6= 0;

(RN3) µx+y(max{t, s}) ≥ T (µx(t), µy(s)).

It is easy to see that if (RN3) holds, then we have

(RN4) µx+y(t+ s) ≥ T (µx(t), µy(s)).

Definition 3. [8] A non-Archimedean random normed algebra (X,µ, T, T ′) is a
non-Archimedean random normed space (X,µ, T ) with an algebraic structure such
that

(RN5) µxy(t) ≥ T ′(µx(t), µy(t))

for all x, y ∈ X and all t > 0, in which T ′ is a continuous t-norm.

Definition 4. Let (X,µ, T ) and (Y, µ, T ) be non-Archimedean random normed al-
gebras.

(1) An R-linear mapping f : X → Y is called a homomorphism if
f(xy) = f(x)f(y) for all x, y ∈ X.

(2) An R-linear mapping f : X → X is called a derivation if f(xy) =
f(x)y + xf(y) for all x, y ∈ X.

Definition 5. Let (I, µ, T, T ′) be a non-Archimedean random Banach algebra, then
an involution on I is a mapping u 7→ u∗ from I into I which satisfies

(i) u∗∗ = u for u ∈ I;

(ii) (αu+ βv)∗ = ᾱu∗ + β̄v∗;

(iii) (uv)∗ = v∗u∗ for u, v ∈ I.

If, in addition, µu∗u(t) = T ′(µu(t), µu(t)) for u ∈ I and t > 0, then I is a non-
Archimedean random C∗-algebra.

Definition 6. Let (X,µ, T ) be an NA-RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every
ε > 0 and λ > 0, there exists a positive integer N such that µxn−x(ε) >
1− λ whenever n ≥ N .

(2) A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0
and λ > 0, there exists a positive integer N such that µxn−xn+1(ε) > 1−λ
whenever n ≥ N .

(3) An RN-space (X,µ, T ) is said to be complete if and only if every
Cauchy sequence in X is convergent to a point in X.
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3. Higher ∗-derivations in non-Archimedean random C∗-algebras

In this section, we will assume that A and B are two non-Archimedean random
Banach C∗-algebras with the norm µA and µB, respectively. For convenience, for
each n ∈ N0, we use the following abbreviations for each given mapping fn : A → B :

Dνfn(x, y, z) := νfn(
x+ y + z

2
) + νfn(

x− y + z

2
)− fn(νx)− fn(νz)

for all ν ∈ T1 := {λ ∈ C : |λ| = 1} and all x, y, z ∈ A.

Definition 7. Let N be the set of natural numbers. Form m ∈ N ∪ {0}, a sequence
H = {h0, h1, . . . , hm} (resp. H = {h0, h1, . . . , . . .}) of mappings from A into B is
called a higher ∗-derivation of rank m (resp. infinite rank) from A into B if
(i) fn(x∗) = (fn(x))∗, for all x ∈ A and for each n ∈ {0, 1, . . . ,m} (resp. n ∈ N0.)
(ii) fn(xy) =

∑n
i=0 fi(x)fn−i(y) holds for each n ∈ {0, 1, . . . ,m} (resp. n ∈ N0) and

all x, y ∈ A.

We are going to investigate the generalized Hyers-Ulam stability of higher ∗-
derivations in non-Archimedean random C∗-algebras for the functional equation
Dνfn(x, y, z) = 0.

Theorem 2. Let ϕ : A × A × A → and ψ : A × A → D+ be functions. Suppose
that F = {f0, f1, . . . , fn, . . .} be a sequence of mappings from A into B such that for
each n ∈ N0, fn(0) = 0,

µBDνfn(x,y,z)(t) ≥ ϕx,y,z(t), (2)

µBfn(x∗)−fn(x)∗(t) ≥ ϕx,0,0(t), (3)

µBfn(xy)−
∑n
i=0 fi(x)fn−i(y)

(t) ≥ ψx,y(t) (4)

for all ν ∈ T1 := {λ ∈ C; |λ| = 1}, all x, y, z ∈ A and all t > 0. Assume that |2| < 1
is far from zero and there exists an 0 ≤ L < 1 such that

ϕ2x,2y,2z(|2|Lt) ≥ ϕx,y,z(t), (5)

ψ2x,2y(|2|2Lt) ≥ ψx,y(t) (6)

for all x, y, z ∈ A and t > 0. Then there exists a unique higher ∗-derivation H =
{h0, h1, . . . , hn, . . .} of any rank from A into B such that for each n ∈ N0,

µBfn(x)−hn(x)(t) ≥ ϕx,2x,x
(
|2|(1− L)t

)
(7)

holds for all x ∈ A and t > 0.
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Proof. Fix n ∈ N0. Setting ν = 1 and replacing (x, y, z) by (x, 2x, x) in (2) implies

µBfn(2x)−2fn(x)(t) ≥ ϕx,2x,x(t) (8)

for all x ∈ A and t > 0.
Let Z be the set of all functions g : A → B. We define the metric d on Z as follows:

d(g, h) = inf
{
k ∈ (0,∞) : µBg(x)−h(x)(kt) > ϕx,2x,x(t),∀x ∈ A, t > 0

}
.

One has the operator J : Z → Z by (Jh)(x) := 1
2h(2x). Then J is a contraction

with Lipschitz constant L; in fact, for arbitrarily elements f, g ∈ Z, we have

d(f, g) < k ⇒ µBf(x)−g(x)(kt) > ϕx,2x,x(t)

⇒ µBf(2x)−g(2x)(kt) > ϕ2x,2(2x),2x(t)

⇒ µB1
2
f(2x)− 1

2
g(2x)

(kt) > ϕ2x,2(2x),2x(|2|t)

⇒ µB1
2
f(2x)− 1

2
g(2x)

(kLt) > ϕx,2x,x(t)⇒ d(Jf, Jg) < kL

for all x ∈ A and t > 0. Hence we see that

d(Jf, Jg) ≤ Ld(f, g).

On the other hand, by (8) we have

µBJfn(x)−fn(x)(
1

|2|
t) ≥ ϕx,2x,x(t)⇒ d(Jfn, fn) ≤ 1

|2|
<∞.

Therefore, it follows from Theorem (1) that there exists a mapping hn : A → B such
that hn is a fixed point of J that is hn(2x) = 2hn(x) for all x ∈ A. By Theorem (1)
limm→∞ d(Jmfn, fn) = 0 we conclude that

lim
m→∞

fn(2mx)

2m
= hn(x) (9)

for all x ∈ A. The mapping hn is a unique fixed point of J in the set Un = {g ∈
Z : d(fn, g) < ∞}. Thus, hn is a unique mapping such that there exists k ∈ (0,∞)
satisfying µBfn(x)−hn(x)(kt) > ϕx,2x,x(t) for all x ∈ A and t > 0.

Again, by Theorem (1), we have

d(fn, hn) ≤ 1

1− L
d(fn, Jfn) ≤ 1

|2|(1− L)
,

so
µBfn(x)−hn(x)(t) ≥ ϕx,2x,x

(
|2|(1− L)t

)
.

132



A. Ebadian, S. Zolfaghari, S. Ostadbashi – Higher ∗-derivations in . . .

This implies that the inequality (7) holds. Furthermore, it follows from (2), (5) and
(9) that

µBDνhn(x,y,z)(t) = lim
m→∞

µB1
2m

Dνfn(2mx,2my,2mz)
(t) ≥ lim

m→∞
ϕ2mx,2my,2mz(|2|mt)→ 1

for all x, y, z ∈ A and t > 0. So the mapping hn is additive. By a similar method
to the above, we have νhn(x) = hn(νx) for all ν ∈ T1 and all x ∈ A. Thus, one can
show that the mapping hn : A → B is C-linear for each n ∈ N0. Using (4), (6) and
(9), we get

µBhn(xy)−
∑n
i=0 hi(x)hn−i(y)

(t) = lim
m→∞

µBfn(22m(xy))−
∑n
i=0 fi(2

mx)fn−i(2my)
(|2|2mt)

≥ lim
m→∞

ψ2mx,2my(|2|2mt)→ 1

for all x, y ∈ A and t > 0. So, hn(xy) =
∑n

i=0 hi(x)hn−i(y) for all x, y ∈ A. By (3),

µB1
2m

fn(2mx∗)− 1
2m

fn(2mx)∗
(t) ≥ ϕ2mx,0,0(|2|mt)

for all x ∈ A and t > 0. Passing to the limit as m→∞, we get hn(x∗) = hn(x)∗ for
all x ∈ A. This completes the proof.

Corollary 3. Let p > 1, ξ be nonnegative real number and let F = {f0, f1, . . . , fn, . . .}
be a sequence of mappings from A into B such that for each n ∈ N0, fn(0) = 0,

µBDνfn(x,y,z)(t) ≥
t

t+ ξ
[
‖x‖pA + ‖y‖pA + ‖z‖pA

] ,
µBfn(x∗)−fn(x)∗(t) ≥

t

t+ ξ‖x‖pA
,

µBfn(xy)−
∑n
i=0 fi(x)fn−i(y)

(t) ≥ t

t+ ξ
[
‖x‖pA + ‖y‖pA

]
for all ν ∈ T1, all x, y, z ∈ A and all t > 0. Then there exists a unique higher
∗-derivation H = {h0, h1, . . . , hn, . . .} of any rank from A into B such that for each
n ∈ N0,

µBfn(x)−hn(x)(t) ≥

(
|2| − |2|p

)
t(

|2| − |2|p
)
t+ ξ

(
|2|+ |2|p

)
‖x‖pA

holds for all x ∈ A and t > 0.
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Proof. Put ϕx,y,z(t) = t

t+ξ

[
‖x‖pA+‖y‖

p
A+‖z‖

p
A

] , ψx,y(t) = t

t+ξ

[
‖x‖pA+‖y‖

p
A

] and let L =

|2|p−1 in the Theorem (2).
Then there exists a sequence H = {h0, h1, . . . , hn, . . .} with the required properties.

Similar to Theorem (2), we can prove the following theorem:

Theorem 4. Let ϕ : A×A×A → D+ and ψ : A×A → D+ be functions. Assume
that F = {f0, f1, . . . , fn, . . .} be a sequence of mappings from A into B such that for
each n ∈ N0, fn(0) = 0,

µBDνfn(x,y,z)(t) ≥ ϕx,y,z(t),

µBfn(x∗)−fn(x)∗(t) ≥ ϕx,0,0(t),

µBfn(xy)−
∑n
i=0 fi(x)fn−i(y)

(t) ≥ ψx,y(t)
(10)

for all ν ∈ T1, all x, y, z ∈ A and all t > 0. Suppose that |2| < 1 is far from zero and
there exists an 0 ≤ L < 1 such that

ϕx
2
, y
2
, z
2
(
L

|2|
t) ≥ ϕx,y,z(t), (11)

ψx
2
, y
2
(
L

|2|2
t) ≥ ψx,y(t) (12)

for all x, y, z ∈ A and t > 0. Then there exists a unique higher ∗-derivation H =
{h0, h1, . . . , hn, . . .} of any rank from A into B such that for each n ∈ N0,

µBfn(x)−hn(x)(t) ≥ ϕx,2x,x
( |2|(1− L)

L
t
)

(13)

holds for all x ∈ A and t > 0.

Proof. Fix n ∈ N0. Putting ν = 1 in (10). Let Z be the set of all functions g : A → B.
We define the metric d on Z as in the proof of Theorem (2). One has the operator
J : Z → Z by (Jh)(x) = 2h(x2 ) for all h ∈ Z. For arbitrarily elements f, g ∈ Z, we
have

d(f, g) < k ⇒ µBf(x)−g(x)(kt) > ϕx,2x,x(t)

⇒ µBf(x
2
)−g(x

2
)(kt) > ϕx

2
,x,x

2
(t)

⇒ µB2f(x
2
)−2g(x

2
)(kt) > ϕx

2
,x,x

2
(

1

|2|
t)

⇒ µB2f(x
2
)−2g(x

2
)(kLt) > ϕx,2x,x(t)⇒ d(Jf, Jg) < kL.
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Thus, J is a contraction with the Lipschitz constant L. Now, by Theorem (1) there
exists a unique mapping hn : A → B such that hn is a fixed point of J that is
2hn(x2 ) = hn(x) for all x ∈ A. By Theorem (1),

lim
m→∞

2mfn(
x

2m
) = hn(x)

for all x ∈ A. By Theorem (1), (8) and (11), we have

µBfn(x)−2fn(x2 )
(
L

|2|
t) ≥ ϕx,2x,x(t)⇒ d(fn, Jfn) ≤ L

|2|
<∞

for all x ∈ A and all t > 0. This implies that

d(fn, hn) ≤ 1

1− L
d(fn, Jfn) ≤ L

|2|(1− L)
,

that is

µBfn(x)−hn(x)(t) ≥ ϕx,2x,x
( |2|(1− L)

L
t
)

for all x ∈ A and all t > 0. The rest of the proof is similar to that of the proof of
Theorem (2).

The following corollary is similar to Corollary (3) for the case where 0 ≤ p < 1.

Corollary 5. Let 0 ≤ p < 1, ξ be nonnegative real number and let F = {f0, f1, . . . , fn, . . .}
be a sequence of mapping from A into B such that fn(0) = 0 and

µBDνfn(x,y,z)(t) ≥
t

t+ ξ
[
‖x‖pA + ‖y‖pA + ‖z‖pA

] ,
µBfn(x∗)−fn(x)∗(t) ≥

t

t+ ξ‖x‖pA
,

µBfn(xy)−
∑n
i=0 fi(x)fn−i(y)

(t) ≥ t

t+ ξ
[
‖x‖pA + ‖y‖pA

]
for all ν ∈ T1, all x, y, z ∈ A and all t > 0. Then there exists a unique higher
∗-derivation H = {h0, h1, . . . , hn, . . .} of any rank from A into B such that for each
n ∈ N0,

µBfn(x)−hn(x)(t) ≥

(
|2|p − |2|

)
t(

|2|p − |2|
)
t+ ξ

(
|2|+ |2|p

)
‖x‖pA

holds for all x ∈ A and t > 0.
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Proof. Let ϕx,y,z(t) = t

t+ξ

[
‖x‖pA+‖y‖

p
A+‖z‖

p
A

] , ψx,y(t) = t

t+ξ

[
‖x‖pA+‖y‖

p
A

] and let L =

|2|1−p in the Theorem (4).
Then there exists a sequence H = {h0, h1, . . . , hn, . . .} with the required properties.

4. Lie higher ∗-derivations in non-Archimedean random Lie
C∗-algebras

A non-Archimedean random C∗-algebra N , endowed with the Lie product [x, y] :=
xy−yx

2 on N , is called a non-Archimedean random Lie C∗-algebra.

Definition 8. Let A and B be non-Archimedean random Lie C∗-algebras. Let N be
the set of natural numbers. Form m ∈ N ∪ {0}, a sequence H = {h0, h1, . . . , hm}
(resp. H = {h0, h1, . . . , . . .}) of mappings from A into B is called a Lie higher ∗-
derivation of rank m (resp. infinite rank) from A into B if
(i) fn(x∗) = (fn(x))∗, for all x ∈ A and for each n ∈ {0, 1, . . . ,m} (resp. n ∈ N0.)
(ii) fn[x, y] =

∑n
i=0[fi(x), fn−i(y)] holds for each n ∈ {0, 1, . . . ,m} (resp. n ∈ N0)

and all x, y ∈ A.

In this section, assume that A is a non-Archimedean random Lie C∗-algebra
with norm µA and that B is a non-Archimedean random Lie C∗-algebra with norm
µB. We are going to investigate the generalized Hyers-Ulam stability of Lie higher
∗-derivations in non-Archimedean random Lie C∗-algebras for the functional equa-
tion Dνfn(x, y, z) = 0.

Theorem 6. Let ϕ : A×A×A → D+ and ψ : A×A → D+ be functions such that
(2) and (3) hold. Suppose that F = {f0, f1, . . . , fn, . . .} be a sequence of mappings
from A into B such that for each n ∈ N0, fn(0) = 0,

µBfn([x,y])−
∑n
i=0[fi(x),fn−i(y)]

(t) ≥ ψx,y(t) (14)

for all ν ∈ T1, all x, y, z ∈ A and all t > 0. Assume that |2| < 1 is far from zero and
there exists an 0 ≤ L < 1 and (5), (6) hold. Then there exists a unique Lie higher
∗-derivation H = {h0, h1, . . . , hn, . . .} of any rank from A into B such that for each
n ∈ N0, (7) holds.

Proof. By the same reasoning as in the proof of Theorem (2), there is a mapping
hn : A → B which is ∗-preserving for each n ∈ N0 and satisfy (7). The mapping
hn : A → B is given by

hn(x) = lim
m→∞

fn(2mx)

2m

136



A. Ebadian, S. Zolfaghari, S. Ostadbashi – Higher ∗-derivations in . . .

for all x ∈ A. By (6) and (14),

µBfn(22m[x,y])−
∑n
i=0[fi(2

mx),fn−i(2my)]
(|2|2mt)

≥ ψ2mx,2my(|2|2mt)→ 1 when m→∞

for all x, y ∈ A and all t > 0. Therefore,

hn[x, y] =

n∑
i=0

[hi(x), hn−i(y)]

for all x, y ∈ A. Thus H = {h0, h1, . . . , hn, . . .} is Lie higher ∗-derivation.

Corollary 7. Let p > 1, ξ be nonnegative real numbers and let F = {f0, f1, . . . , fn, . . .}
be a sequence of mappings from A into B such that for each n ∈ N0, fn(0) = 0,

µBDνfn(x,y,z)(t) ≥
t

t+ ξ
[
‖x‖pA + ‖y‖pA + ‖z‖pA

] ,
µBfn(x∗)−fn(x)∗(t) ≥

t

t+ ξ‖x‖pA
,

µBfn([x,y])−
∑n
i=0[fi(x),fn−i(y)]

(t) ≥ t

t+ ξ
[
‖x‖pA + ‖y‖pA

]
(15)

for all ν ∈ T1, all x, y, z ∈ A and all t > 0. Then there exists a unique Lie higher
∗-derivation H = {h0, h1, . . . , hn, . . .} of any rank from A into B such that for each
n ∈ N0,

µBfn(x)−hn(x)(t) ≥

(
|2| − |2|p

)
t(

|2| − |2|p
)
t+ ξ

(
|2|+ |2|p

)
‖x‖pA

for all x ∈ A and t > 0.

Proof. The proof follows from Theorem (6) by taking ϕx,y,z(t) = t

t+ξ

[
‖x‖pA+‖y‖

p
A+‖z‖

p
A

] ,
ψx,y(t) = t

t+ξ

[
‖x‖pA+‖y‖

p
A

] for all x, y, z ∈ A and t > 0. Then L = |2|p−1 and we get

the desired result.

Theorem 8. Let ϕ : A×A×A → D+ and ψ : A×A → D+ be functions such that
(2) and (3) hold. Suppose that F = {f0, f1, . . . , fn, . . .} be a sequence of mappings
from A into B satisfying fn(0) = 0, for each n ∈ N0, and (14). Assume that |2| < 1
is far from zero and there exists an 0 ≤ L < 1 and (11), (12) hold. Then there exists
a unique Lie higher ∗-derivation H = {h0, h1, . . . , hn, . . .} of any rank from A into
B such that for each n ∈ N0, (13) holds.
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Corollary 9. Let 0 ≤ p < 1, ξ be nonnegative real numbers and let F = {f0, f1, . . . , fn, . . .}
be a sequence of mappings from A into B such that satisfying fn(0) = 0, for
each n ∈ N0, and (15). Then there exists a unique Lie higher ∗-derivation H =
{h0, h1, . . . , hn, . . .} of any rank from A into B such that for each n ∈ N0,

µBfn(x)−hn(x)(t) ≥

(
|2|p − |2|

)
t(

|2|p − |2|
)
t+ ξ

(
|2|+ |2|p

)
‖x‖pA

for all x ∈ A and t > 0.

Proof. The proof follows from Theorem (8) by taking ϕx,y,z(t) = t

t+ξ

[
‖x‖pA+‖y‖

p
A+‖z‖

p
A

] ,
ψx,y(t) = t

t+ξ

[
‖x‖pA+‖y‖

p
A

] for all x, y ∈ A and t > 0. Then L = |2|1−p and we get the

desired result.
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