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1. Introduction

The most famous theories about modal logic are based on the model built by Saul
Kripke which, in a restricted sense, refers to necessity and possibility.

The semantics of modal logics consists of a non-empty set G, whose elements
are called possible worlds, a binary relation R between the elements of G called
accessibility relation and a labeling function which describes every situation. Modal
logic makes use of the modal operators � (necessary) and ♦ (possible), see, e.g., [3].

Definition 1 ([3]). A Kripke model is a tuple (S,R,L) where S is a set of states
(possible worlds), R an accessibility (transition) relation with R ⊆ S × S such that
∀s1 ∈ S ∃s2 ∈ S with (s1, s2) ∈ R and L : S → 2AP a labeling function such that
∀s ∈ S, L(s) represents all the atomic propositions true in s and AP is the set of
atomic propositions.

2. Transition systems

Transition systems are concepts used in computer science. They consist of states
and transitions among them. The set of states can be countable or uncountable,
and so can the set of transitions.

Definition 2 ([1]). Formally, a transition system ST is a triple (S,A,→), where S
is a set of states, A a set of actions and →⊆ S ×A× S is the transition relation.
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For example, we can consider a warm drinks vending machine, which sells coffee
or tea.

S = {payment, tea, selection, coffee} ,

A = {take tea, ρ, take coffee, insert coin} .

We can consider the transition system ST, a tuple (S,A,→, P, L) where S is a set
of states, A a set of actions,→⊆ S×A×S is a transition relation, P a set of atomic
propositions and L : S → 2P a label function.

To a transition system we can associate a set of atomic propositions which depend
on the properties taken into account. Thus we can obtain a variety of choices which
a logical analysis is able to predict. From the point of view of transition mechanisms,
the choice is arbitrary.

3. Undeterminism

What is important for modeling transition systems is the undeterminism, which is
more than a theoretical concept. It allows for freedom in modeling the computation
systems. Intuitively, a transition system begins with an initial state and evolves to
another state according to the accessibility relation. If from one state there can be
more transitions, then the choice of the next state is undeterministic. That is, the
result of the selection is not a priori known, therefore one can draw no conclusion
regarding the probability with which a certain transition is chosen. The same aspect
is met also in the case when there is not only one state, but a set of initial states, in
which case the undeterministic factor plays a role. The analysis of these choices is
useful in modeling conflict situations which may appear in case of processes executed
in parallel, but also in modeling unknown interfaces (see [2]).

However, it is useful to take into account the observable, deterministic behavior,
related to various observable notions. In this way, the determinism agrees with the
executable actions which are observable, or it is related to labels and relies only
on the atomic propositions which take place and are observable. To simplify, the
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atomic propositions of the system are statements on which the binary operation
yes/no acts. If the names of the actions are not relevant, as transition represents an
internal process, we can use symbols, or even omit them in certain cases.

4. Labeled graphs

Definition 3 ([4]). A labeled graph is a tuple LG = (S,E, T, f) where S is a finite
set of elements representing the vertices of LG, E is a set of elements used to label
the edges of the graph, T is a set of binary relations on S and f : E → T a surjective
function.

Remark 1. In the graphical representation of this structure, the vertices are drawn
as boxes which contain their names. An edge from xi ∈ S to xj ∈ S is labeled by
a ∈ E if and only if (xi, xj) ∈ f(a).

Example 1. Consider

• S = {x1, x2, x3, x4} ;

• L = {a, b, c} ;

• T = {ρ1, ρ2, ρ3} ;

• ρ1 = {(x1, x4), (x3, x4)} ;

• ρ2 = {(x2, x1), (x2, x3)} ;

• ρ3 = {(x4, x2)} ;
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• f(a) = ρ1;

• f(b) = ρ2;

• f(c) = ρ3.

5. Labeled graphs and transition systems

We notice the following:

1. A labeled graph can be interpreted as a transition system.

2. The states of ST are the vertices of the graph.

3. The actions of ST can be associated with the labels of the graph.

We define the labeled graph associated to a transition system, and denote this
by LG(ST ), to be a tuple (S,E, T, f), where S is the set of states, E the set of
actions, T the set of atomic propositions and f : E → T a surjective function.

Let LG1(ST ) = (S1, E1, T1, f1) and LG2(ST ) = (S2, E2, T2, f2) two labeled
graphs associated to a transition system. Consider the function

g : S1 → S2

and define
g : 2S1×S1 → 2S2×S2

by
g(∅) = ∅

and

g(R) = {(x1, x2) ∈ S2 × S2 : ∃(a1, a2) ∈ R with g(ai) = xi for i = 1, 2} .

Definition 4. We say that LG1 is included in LG2, and denote this by LG1 ⊆ LG2,
if the following conditions hold:

1. E1 ⊆ E2;

2. there is an injective function g : S1 → S2 for which

g(f1(a) ⊆ f2(a) ∀a ∈ E1.

Proposition 1. The inclusion relation previously defined is reflexive and transitive.
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Proof. It is clear that LG ⊆ LG, therefore the relation is reflexive.
We assume now LG1 ⊆ LG2 and LG2 ⊆ LG3 and prove that LG1 ⊆ LG3. Since

LG1 ⊆ LG2, there is an injective function g1 : S1 → S2 so that

g1(f1(a)) ⊆ f2(a) ∀a ∈ E1.

In a similar way, there is an injective function g2 : S2 → S3 so that

g2(f2(a)) ⊆ f3(a) ∀a ∈ E2.

Clearly, from E1 ⊆ E2 and E2 ⊆ E3 we get E1 ⊆ E3. It means that we can define
an injective function g3 : S1 → S3 by g3 = g2 ◦ g1 such that

g2(g1(a)) ⊆ g2(f2(a)) ∀a ∈ E1.

But g2(f2(a)) ⊆ f3(a)⇒ g2(g1(f1(a))) ⊆ f3(a), therefore

g3(f1(a)) ⊆ f3(a) ∀a ∈ L1,

hence LG1 ⊆ LG3.

Definition 5. If LG1 ⊆ LG2 and LG2 ⊆ LG1 we say that LG1 and LG2 are
isomorphic and denote this by LG1 ∼ LG2.

6. Conclusions

Modal logic studies reasonings which imply the use of the terms “necessary” and
“possible”. In a broader sense, modal logic covers a family of logics with a set of
norms and a variety of different symbols. Representing them through labeled graphs
allows for a graphical representation which is useful in the theoretical analysis of their
properties.
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