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MINIMIZING POLYNOMIALS ON NONCOMPACT SETS

P.V. Tri, T.V.Q. Sy

Abstract. In this paper, the problem of minimizing a polymonial g∗ = inf
x∈S(F )

g(x)

in the noncompact case is investigated. It is known that such problem is severely
ill-posed. This paper studies the representation of a non-negative polynomial g on a
noncompact semi-algebraic set S modulo its KKT (Karush-Kuhn-Tucker) ideal. We
use results of Demmel, Nie, Powers ([1]) and Nie, Demmel, Sturmfels ([6]) to solve
it. A numerical example is given to illustrate the efficiency of the proposed method
works.
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1. Introduction

Given a polynomial function g ∈ R[x] = R[x1, x2, . . . , xn]− the polynomial ring.
Fix a finite subset F = {f1, f2, . . . , fm} ⊂ R[x]. Denote

S(F ) := {x ∈ Rn| fi(x) ≥ 0, i = 1, . . . ,m}

is the basic closed semialgebraic set generated by F. We consider the problem of
minimizing a polymonial g on S(F ) : g∗ = inf

x∈S(F )
g(x). (∗)

Finding the optimal solution of the problem (*) is NP-hard problem (see [3],
[5]). Based on the results of performing non-negative polynomials on the semi al-
gebraic sets, some authors (eg, [2], [4], [8], . . . ) have developed a series of positive
semidefinited programming ((SDP for short) (see [3], [5]) which their optimal values
converge monotonically increasing to the optimum value of the problem (*). The
idea traces back to work of Shor 1987 ([13]) and is further developed by Parrilo 2000
([7]), by Lasserre 2001 ([2])and by Parrilo and Sturmfels 2003 ([8]).

We consider the general case: S(F ) = Rn.
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The purpose of this paper is to introdue the problem of minimizing a polymonial
g∗ = inf

x∈S(F )
g(x) in the noncompact case. Uses results of positive performed theorems

of Nie, Demmel, Sturmfels and Powers, we will build a series of positive semidefinited
programming which their optimal values converge monotonically increasing to the
optimum value g∗.

2. Preliminaries

Given the polynomial ring R[x] = R[x1, x2, . . . , xn].

Definition 1. M ⊂ R[x] is called the quadratic module if

M +M ⊂M, a2M ⊂M,∀a ∈ R[x] and 1 ∈M.

Definition 2. P ⊂ R[x] is called the preordering if

P + P ⊂ P, P.P ⊂ P and a2 ∈ P,∀a ∈ R[x].

Given a finite subset F = {f1, f2, . . . , fm} ⊂ R[x]. Denote

S(F ) := {x ∈ Rn|fi(x) ≥ 0, i = 1, . . . ,m}

is the basic closed semialgebraic set generated by F ;

M(F ) :=
{
σ0 + σ1f1 + · · ·+ σmfm |σi ∈

∑
R[x]2

}
is the quadratic module in R[x];

P (F ) :=

 ∑
e∈{0,1}m

σef
e |σe ∈

∑
R[x]2, ∀e ∈ {0, 1}m


is the preordering generated by F.

Definition 3. M(F ) is archimedean if ∃ k ≥ 1 | k −
n∑
i=1

x2i ∈M(F ).

Example 1. Take n = 1, F = {−x2} ⊂ R[x]. We have

M(F ) = {σ0 − σ1x2 |σi ∈
∑

R[x]2}.

Take k = 1. Then k − x2 = 1− x2 ∈M(F ). Thus M(F ) is archimedean.
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Example 2. Take n = 2, F = {x− 1
2 , y −

1
2 , 1− xy} ⊂ R[x, y]. Then

M(F ) =

{
σ0 + σ1(x−

1

2
) + σ2(y −

1

2
) + σ3(1− xy) |σi ∈

∑
R[x, y]2

}
.

We be alble to build quadratic module Q ⊂ R[x, y] ([5, Example 7.3.1]) which
satisfies 

Q ∪ −Q = R[x, y], Q ∩ −Q = {0},
x− 1

2 , y −
1
2 , 1− xy ∈ Q, ( to M(G) ⊂ Q),

k − (x2 + y2) 6∈ Q,∀k ∈ Z, k ≥ 1.

Then M(F ) ⊂ Q, k − (x2 + y2) 6∈ Q,∀k ∈ Z, k ≥ 1, and

k − (x2 + y2) 6∈M(F ),∀k ∈ Z, k ≥ 1.

Thus M(F ) is not archimedean.

Theorem 1. ([10]) Suppose S(F ) is compact and g ∈ R[x]. If g > 0 on S(F ), then
g ∈ P (F ).

Theorem 2. ([9]) Suppose M(F ) is archimedean and g ∈ R[x]. If g > 0 on S(F ),
then g ∈M(F ).

Remark 1. If M(F ) is archimedean, then S(F ) is compact.

The opposite of Remark 1 is not true. For example, we consider Example 2, we have

S(F ) = {(x, y) ∈ R2 |x− 1

2
≥ 0, y − 1

2
≥ 0, 1− xy ≥ 0}

is compact, and

M(F ) = {σ0 + σ1(x−
1

2
) + σ2(y −

1

2
) + σ3(1− xy) |σi ∈

∑
R[x, y]2}

is not archimedean.

3. Semidefinited programming (SDP)

The problem SDP:inf
n∑
i=1

cixi,

G(x) := G0 + x1G1 + · · ·+ xnGn � 0,
(1)

where x = (x1, . . . , xn) ∈ Rn, c = (c1, . . . , cn) ∈ Rn and Gi ∈ Sym(Rd×d) is the
symmetric matrix (i = 0, . . . , n).
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Remark 2. Problem (1) can not achieve min . This can be seen in the following
example.

Example 3. Consider the problem SDP
p∗ := inf x1,(
x1 1

1 x2

)
� 0.

We have n = d = 2, cTx =
(
1 0

)(x1
x2

)
and

F (x) =

(
x1 1
1 x2

)
=

(
0 1
1 0

)
︸ ︷︷ ︸

F0

+x1

(
1 0
0 0

)
︸ ︷︷ ︸

F1

+x2

(
0 0
0 1

)
︸ ︷︷ ︸

F2

.

Consider the equation det

(
x1 − λ 1

1 x2 − λ

)
= 0, λ ∈ R. Reduced, we obtain

λ2 − (x1 + x2)λ+ x1x2 − 1 = 0. (2)

The condition G(x) � 0 is equivalent to eigenvalues of matric G(x) is non negative.
This is equivalent to Equation (2) has two non negative solutions, that is S = −b

a =
x1 + x2 ≥ 0 and P = c

a = x1x2 − 1 ≥ 0. Then x1 > 0, x2 > 0 and the objective
function cTx = x1 can not achieve min on {x = (x1, x2) ∈ R2 |x1+x2 ≥ 0, x1x2−1 ≥
0}, and p∗ = 0.

The dual problem (DP for short) of (1) is
sup −〈G0, Z〉,
〈Gi, Z〉 = ci, i = 1, . . . , n,

Z � 0.

(3)

Remark 3.

• SDP and DP are convex optimization problems. Using the polynomial algo-
rithm to solve them.

• Opt - value (SDP) ≥ Opt - value (DP).
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4. The case M(F ) is archimedean

For g ∈ R[x] and S(F ) is the basic closed semialgebraic set generated by F, we
consider the problem

g∗ := inf {g(x) |x ∈ S(F )} .

Remark 4. This is NP-hard problem. There is no efficient algorithm to solve
it, unless the case g is linear, S(F ) is convex polyhedron, then using the simplex
algorithm to solve it.

Remark 5. For γ ∈ R, test g − γ ≥ 0 on S(F ) is generally difficult. However, test
g − γ ∈M(F ) can do (using SDP).

Corollary 3. sup
g−γ∈M(F )

γ ≤ g∗.

Fix a positive integer N ≥ deg g. Denote

MN (F ) :=

{
m∑
i=0

σigi |σi ∈
∑

R[x]2,deg(σigi) ≤ N, i = 0, . . . ,m

}
,

χN := {L : R[x]N → R linear |L(1) = 1, and L ≥ 0 on MN (F )},

g+, N := inf{L(g) |L ∈ χN}, (4)

g∗N := sup{γ ∈ R | g − γ ∈MN (F )}. (5)

Proposition 1. ([4])
(a) g∗N ≤ g+, N ≤ g∗.

(b) g+, N ≤ g+, N+1; g
∗
N ≤ g∗N+1.

(c) If M(F ) is archimedean, then lim
N→∞

g∗N = g∗. Hence lim
N→∞

g+, N = g∗.

Proposition 2. Problem (4) is SDP.

Proof. Without loss generality, we assume fi 6≡ 0 and deg fi ≤ N, i = 1, . . . ,m.
Because if deg(σifi) ≤ N and deg fi > N, then σi = 0, so σifi = 0 : not have any
contribution to MN (F ). We see R[x]N generated by the basic set {xα | |α| ≤ N},
number of elements of that basic is CNn+N . We consider linear mapping

L : R[x]N −→ R, L(p) = L

 ∑
|α|≤N

pαx
α

 =
∑
|α|≤N

pαL(xα).
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Putting yα = L(xα), |α| ≤ N then L corresponds to a vector (yα), |α| ≤ N, yα ∈ R.
We have y0 = 1. L ≥ 0 on MN (F ) is equivalent to

L

(
m∑
i=0

σifi

)
≥ 0, σi ∈

∑
R[x]2,deg(σifi) ≤ N,

or
m∑
i=0

L(σifi) ≥ 0, σi ∈
∑

R[x]2,deg(σifi) ≤ N,

or
L(σifi) ≥ 0, ∀i, σi ∈

∑
R[x]2,deg(σifi) ≤ N,

or

L(p2fi) ≥ 0, p ∈ R[x], deg p ≤ N − deg(fi)

2
.

Test

deg p ≤ N − deg fi
2

.

Indeed, since p2fi ∈MN (F ) we have

deg(p2fi) ≤ N,

or
deg p2 + deg fi ≤ N,

or
2 deg p+ deg fi ≤ N,

or

deg p ≤ N − deg fi
2

.

We write g =
∑
|α|≤N

gαx
α, thus

L(g) =
∑
|α|≤N

gαL(xα) =
∑
|α|≤N

gαyα = g0 +
∑

|α|≤N,α6=0

gαyα.

If p =
∑
α
pαx

α, then p2 =
∑
α, β

pαpβx
α+β, therefore

L(p2) =
∑
α, β

pαpβL(xα+β) =
∑
α, β

pαpβyα+β.

130



P.V. Tri, T.V.Q. Sy – Minimizing polynomials on noncompact sets

We write fi =
∑
γ
fiγx

γ . Similar to the above, we have

p2fi =
∑
α, β

pαpβx
α+βfi =

∑
α, β, γ

pαpβfiγx
α+β+γ

vL(p2fi) =
∑

α, β, γ

pαpβfiγyα+β+γ =
∑
α, β

(∑
γ
fiγyα+β+γ

)
pαpβ. Putting

M(fi ∗ y) =

(∑
γ

fiγyα+β+γ

)
α, β

.

Then, M(fi ∗ y) is the matrix which size is Di ×Di, where

Di = #{α | |α| ≤ N − deg fi
2

}.

Note that M(1 ∗ y) = M(y). Then

L(p2fi) =
∑
α, β

(∑
γ

fiγyα+β+γ

)
pαpβ = pTM(fi ∗ y)p.

Therefore, condition L(p2fi) ≥ 0 is equivalent to pTM(fi∗y)p ≥ 0. This is equivalent
to M(fi ∗ y) � 0. Thus

L ∈ χN ⇔

{
L(1) = 1,

L ≥ 0 on MN (G)
⇔

{
y0 = 1,

M(fi ∗ y) � 0, i = 0, . . . ,m.

Putting G(y) := diag(M(fi ∗ y), . . . ,M(fi ∗ y)). The size of the matrix G(y) is
m∑
1=0

Di ×
m∑
1=0

Di. Then,

{
y0 = 1,

M(fi ∗ y) � 0, i = 0, . . . ,m
⇔

{
y0 = 1,

G(y) � 0.

For |α| ≤ N, we define e(α) := (e
(α)
β ), where

e
(α)
β :=

{
0, if β 6= α

1, if β = α.
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So {e(α), α 6= 0} is basic vector of freedom variables space y = (yα), |α| ≤ N,α 6= 0,
that is y =

∑
yαe

(α),∀ y = (yα), |α| ≤ N,α 6= 0. Then G(y) = G0 +
∑

|α|≤N,α6=0

yαG
α,

Gα := G(e(α)), and{
y0 = 1,

G(y) � 0
⇔

y0 = 1,

G0 +
∑

|α|≤N,α6=0

yαG
α � 0.

So g+, N := inf {L(g)|L ∈ χN} = inf{g0 +
∑
α 6=0

gαyα} = g0 + inf
∑
α 6=0

gαyα. We see

that problem calculate g+, N with constrain L ∈ χN same as problem calculate
g0 + inf

∑
α 6=0

gαyα with constrain

y0 = 1,

G0 +
∑

|α|≤N,α6=0

yαG
α � 0,

or with constrain G(y) � 0. Therefore Problem (4) is SDP.

Proposition 3. Problem (5) is duality of Problem (4).

Proof. Take γ ∈ R so that g − γ = σ0 + σ1f1 + · · ·+ σmfm, where

σi ∈
∑

R[x]2,deg σi ≤
N − deg fi

2
, i = 0, . . . ,m.

For σi ∈
∑

R[x]2, there exists a positive semidefinite (PSD for short) matrix which

size is Di ×Di : A(i) = (A
(i)
δβ)δ, β so that σi =

∑
δ, β

A
(i)
δβx

δ+β. Then

g − γ =
m∑
i=0

σifi =
m∑
i=0

∑
δ, β

A
(i)
δβx

δ+βfi.

We write fi =
∑
γ
fiγx

γ . Then

g − γ =
m∑
i=0

∑
δ, β

∑
γ

A
(i)
δβfiγx

δ+β+γ .

For
g =

∑
α

gαx
α = g0 +

∑
α 6=0

gαx
α,
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we have

g0 +
∑
α 6=0

gαx
α − γ =

m∑
i=0

∑
δ, β

∑
γ

A
(i)
δβfiγx

δ+β+γ ,

or

g0 − γ +
∑
α 6=0

fαx
α =

m∑
i=0

∑
δ, β

∑
γ

A
(i)
δβfiγx

δ+β+γ .

Identify coefficients two sides the above equation, we get
g0 − γ =

m∑
i=0

A
(i)
00fi0 = 〈G0, A〉,

gα =
m∑
i=0

∑
δ+β+γ=α

A
(i)
δβfiγ = 〈Gα, A〉, for α 6= 0,

where A := diag(A(0), . . . , A(m)), Gα := G(e(α)). We have A is PSD and

g∗N = sup{γ | g − γ ∈MN (F )}
= sup{g0 − 〈G0, A〉|A � 0, gα = 〈Gα, A〉, α 6= 0}
= g0 + sup{−〈G0, A〉|A � 0, gα = 〈Gα, A〉, α 6= 0}.

Thus, Problem (5) is duality of Problem (4).

Remark 6. Can happen case g∗N 6= g+, N . However, if M(F )∩−M(F ) = {0}, then
g∗N = g+,N . (See [5, Proporition 10.5.1]).

Example 4. [3, Problem 4.6, 4.7] We consider the optimization problem
inf
x
g(x) := −x1 − x2,

x2 ≤ 2x41 − 8x31 + 8x21 + 2,

x2 ≤ 4x41 − 32x31 + 88x21 − 96x1 + 36,

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4.

Then g∗4 = g∗ = −5.5079.

Example 5. [3, Problem 4.6, 4.7] We consider the optimization problem
inf
x
g(x) := −12x1 − 7x2 + x22,

−2x41 + 2− x2 = 0,

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3.

Then g∗5 = g∗ = −16.73889.
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5. The case M(F ) is not archimedean

We have the same results as above if we replace the quadratic module MN (F ) by
the preordering

PN (F ) :=

 ∑
e∈{0,1}m

σef
e|σe ∈

∑
R[x]2, deg σef

e ≤ N, e ∈ {0, 1}m
 .

We denote

χN := {L : R[x]N → R linear |L(1) = 1 and L ≥ 0 on PN (F )},

g+, N := inf{L(g) |L ∈ χN}, (6)

g∗N := sup{γ ∈ R | g − γ ∈ PN (F )}. (7)

Proposition 4.
(a) g∗N ≤ g+, N ≤ g∗.

(b) g+, N ≤ g+, N+1; g
∗
N ≤ g∗N+1.

(c) If S(F ) is compact, then lim
N→∞

g∗N = g∗. Hence lim
N→∞

g+, N = g∗.

Proof. (a)We prove g+, N ≤ g∗. Taking arbitrary a ∈ S(F ), define

La : R[x]N → R, La(q) = q(a).

We have La(1) = 1, La

( ∑
e∈{0,1}m

σef
e

)
=

∑
e∈{0,1}m

La(σef
e) =

∑
e∈{0,1}m

σefe(a) ≥ 0.

Then La ∈ χN . Because

g+, N := inf{L(g)|L ∈ χN},

we get
g+, N ≤ La(g) = g(a).

By a ∈ S(F ) is arbitrary, we have

g+, N ≤ inf
a∈S(F )

g(a) = g∗.

Next, we prove g∗N ≤ g+, N . Take γ ∈ R such that g − γ ∈ PN (F ) and L ∈ χN is
arbitrary. We have

0 ≤ L(g − γ) = L(g)− L(γ) = L(g)− γ.
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Then L(g ≥ γ. Therefore

inf{L(g) |L ∈ χN} ≥ sup{γ ∈ R | g − γ ∈ PN (F )},

that is g+, N ≥ g∗N .

(b) We have PN (F ) ⊆ PN+1(F ) and χN+1 ⊆ χN . Take γ ∈ R such that

g − γ ∈ PN (F ),

we get g − γ ∈ PN+1(F ). Thus g∗N ≤ g∗N+1.

Next, we prove g+, N ≤ g+, N+1. Take L ∈ χN+1 is abitrary. Put

L′ := L|R[x]N ,

then L′ ∈ χN and L′(g) = L(g). Therefore

inf{L(g) |L ∈ χN} ≤ inf{L(g) |L ∈ χN+1},

that is g+, N ≤ g+, N+1.

(c) Take γ ∈ R, γ < g∗. We have g − γ > 0 on S(G). From Theorem 1, we get

g − γ ∈ P (F ), that is g − γ =
∑

e∈{0,1}m
σef

e,

where σe ∈
∑

R[x]2. Choose N = max deg(σef
e), then g − γ ∈ PN (F ), so γ ≤ g∗N .

Thus
γ ≤ g∗N ≤ g∗.

For γ ↑ g∗, then g∗N ↑ g∗. From g∗N
N→∞−−−−→ g∗ and g∗N ≤ g+, N ≤ g∗, we obtain

g+, N
N→∞−−−−→ g∗.

Proposition 5. Problem (6) is SDP.

Proof. Similar to the proof of Proposition 2.

Proposition 6. Problem (7) is duality of Problem (6).

Proof. Similar to the proof of Proposition 3.

135



P.V. Tri, T.V.Q. Sy – Minimizing polynomials on noncompact sets

Example 6. We consider problem inf
(x,y)∈S

(x, y) = x+ y,

S = {(x, y) ∈ R2 |x ≥ 1
2 , y ≥

1
2 , xy ≤ 1}.

Then
g∗2 = g∗ = 1.

Example 7. Problem inf
(x,y)∈S

g(x, y) = −x− y,

S = {(x, y) ∈ R2 |x ≥ 1
2 , y ≥

1
2 , xy ≤ 1}

has
g∗2 = g∗ = −2, 5.

6. Conclusion

The paper found out the problem of minimizing a polymonial g∗ = inf
x∈S(F )

g(x) in

case S(F ) is compact, where g ∈ R[x] and S(F ) is the basic closed semialgebraic set
generated by F.
The paper presented positive performed theorems:
• Putinar,
• Schmüdgen.

Using results of positive performed theorems of Putinar ([9]) and Schmüdgen ([10]),
we can build a series of positive semidefinited programming which their optimal
values converge monotonically increasing to the optimum value g∗. Finally, the nu-
merical results show that the proposed method works effectively.
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