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1. Introduction

In his leading paper, Moreau [19] proposed and studied the following differential
inclusion governed by sweeping process of first order:{

−u′(t) ∈ NC(t)(u(t)) a.e. on I = [0, T ],

u(0) = u0,
(1)

where C : I → H is a set-valued map with nonempty closed convex subsets of a
Hilbert space H and NC(t)(u(t)) is the normal cone of the subset C(t) at the point
u(t). The problem (1) corresponds to several important mechanical problems [19].

Since then, important improvements have been developed by weaken assump-
tions in order to obtain the most general result of existence for sweeping processes
(see for example [5, 9, 10, 16, 22, 23]) in Hilbert spaces setting and [2, 7, 8, 18] in
Banach spaces setting. We observe that all these papers except [2, 5] were without
perturbation (like [7]) or with compact valued perturbation.

In [5], Aitalioubrahim proved the existence of solutions for the following delayed
sweeping process:

u(t) = ϕ(t), for t ∈ [−r, 0];

u(t) = ϕ(0) +
t∫
0

u′(s)ds, for t ∈ I;

u(t) ∈ C(t), for t ∈ I;
u′(t) ∈ −NC(t)(u(t)) + F (t, τ(t)u), a.e. for t ∈ I,

139

http://www.uab.ro/auajournal/


M.S. Abdo, A.G. Ibrahim, S.K. Panchal – Sweeping Process in Banach Spaces

where C : I → H is a set-valued map with nonempty compact values of a Hilbert
space H, r is a positive real number, Cr = C([−r, 0], H) is the Banach space of
continuous functions from [−r, 0] to H endowed with the uniform norm ||u||∞ =
sup{||u(t)|| : t ∈ [−r, 0]} and F : I × Cr → H is a set-valued map with noncon-
vex noncompact values. This result is very interested because the values of the
perturbation F are not necessarily compact.

AL-Adsani and Ibrahim in [2], extended Aitalioubrahim’s result in [5] to infinite
dimensional Banach spaces and considered the following sweeping process:

u(t) = J(ϕ(t)), w(t) = J(ψ(t)) for t ∈ [−r, 0];

u(t) = J(ϕ(0)) +
∫ t
0 u
′(s)ds, for t ∈ I = [0, T ];

J∗(u(t)) ∈ C(t, w(t)), for t ∈ I;

w(t) = ψ(0) +
∫ t
0 J
∗u(s)ds, for t ∈ I;

u′(t) ∈ −NC(t,w(t))(J
∗u(t)) + F (t, τ(t)w, τ(t)J∗u), a.e. for t ∈ I,

where C :I × X → X is a set-valued map with nonempty closed convex values of
Banach space X and F : I × Cr × Cr → X∗ is a set-valued map with nonconvex
noncompact values in the dual space X∗ of X.

In [17], Ibrahim and AL-Adsani, considered the following sweeping process with
noncompact valued perturbation and with delay

u(t) = ψ(t) for t ∈ [−r, 0];

u(t) = ψ(0) +
∫ t
0 u
′(s)ds, for t ∈ I = [0, T ];

u(t) ∈ C(t), for t ∈ I;
u∗(t) = J(u(t)), for t ∈ I;
(u∗)′(t) ∈ −NC(t)(u(t) + F (t, τ(t)u), a.e. for t ∈ I,

where C a set-valued map from I to the family of nonempty closed convex subsets
of E, and F : I × Cr → E∗ is a set-valued map with nonempty closed values in the
dual space E∗ of E. They also overcame the arising problem from the nonlinearity
of the normalized mappings by based on Hausdorff measure of noncompactness.

Motivated by the above studies, and inspired by [5] and [17], in this paper, we give
an existence result for another sweeping process with a noncompact perturbation in
Banach spaces. Indeed, we find the sufficient conditions that guarantee the existence
of two continuous functions u : [−r, T ]→ X and w : [−r, T ]→ X, I = [0, T ] (T > 0)
such that u and w are absolutely continuous functions on I and that the following
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delayed perturbed sweeping process is satisfied

u(t) = ϕ(t), w(t) = ψ(t), for t ∈ [−r, 0];

u(t) = ϕ(0) +
t∫
0

u′(s)ds, for t ∈ I;

u′(t) ∈ C(t, w(t)), for a.e. t ∈ I;

w(t) = ψ(0) +
t∫
0

u(s)ds, for t ∈ I;

J(u′(t)) ∈ −NC(t,w(t))(u
′(t)) +G(t, τ(t)w, τ(t)u), a.e. for t ∈ I,

(2)

where C : I × X → X is a set-valued map with nonempty closed convex values
and G : I × Cr × Cr → X∗ is a set-valued map with nonconvex noncompact values,
ϕ,ψ ∈ Cr are given with ϕ(0) ∈ C(0, ψ(0)), J is the normalized duality map in
X and for each t ∈ [0, T ], τ(t) : CX([−r, T ]) −→ Cr, (τ(t)f)(s) = f(s + t), ∀s ∈
[−r, 0].

In order to explain the mathematical motivation for this work, we mention some
recent results in this domain. Castaing et al. [11] considered a second order sweeping
process without delay in a separable Hilbert space H in the case when C is a
Lipschitz set-valued map defined on I×H, and taking a closed ρ-prox-regular (ρ > 0)
values in H and G is a convex weakly compact valued scalary u.s.c defined on
I ×H ×H and satisfying the growth condition

G(t, x, y) ⊆ (1 + ||x||+ ||y||)BH ,

for all (t, x, y) ∈ I ×H ×H. Bounkhel et al.[8] considered various sweeping process
with compact valued perturbations in Banach spaces and the values of the pertur-
bations are contained in a fixed convex compact subset of X∗.

The fundamental importance in the present paper is that the values of the per-
turbations are neither compact nor convex and that the space is infinite dimensional
Banach space. Moreover our technique allows to consider many sweeping process
with noncompact perturbations in Banach spaces.

The paper is organized as follows. Section 2 is devoted to some definitions and
notations needed later. In section 3, we prove the main result (Theorem 8).

2. Preliminaries and notations

In the following, we present some basic definitions, and preliminary facts which are
used throughout this paper. Let I = [0, T ] (T > 0), and X be a Banach space
with topological dual space X∗. Let B = {x ∈ X : ||x|| ≤ 1} and B∗ = {z ∈
X∗ : ||z|| ≤ 1}. For x ∈ X and for nonempty subsets A, B of X we denote d(x,A)
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the real inf{‖y − x‖; y ∈ A}, e(A,B) := sup{d(x,B); x ∈ A} and dH(A,B) =
max{e(A,B), e(B,A)}. Let K be a nonempty subset of X, for every x∗ ∈ X∗,
δ∗(x∗,K) = sup {〈x∗, x〉 : x ∈ K } is called the support function of K.

Definition 1. ([1], Def. 2.2.1). A Banach space X is said to be uniformly convex
if for any ε, 0 < ε ≤ 2, the inequalities ||x|| ≤ 1, ||y|| ≤ 1 and ||x− y|| ≥ ε imply
there exists a δ = δ(ε) such that ||12(x+ y)|| ≤ 1− δ.

Definition 2. A Banach space X is said to be strictly convex if x, y ∈ SX with
x 6= y =⇒ ‖(1− λ)x+ λy‖ < 1 for 0 < λ < 1, where SX = {z ∈ X : ‖z‖ = 1} is
called the unit sphere on X.

Definition 3. ([1], Def. 2.4.1). Let X∗ be the topological dual of a Banach space
X, then the set-valued map

J : X → 2X
∗
,

J(x) = {y ∈ X∗ : 〈x, y〉 = ||x||2 = ||y||2}

is said to be the normalized duality map (or duality map) in X. Moreover, the
set-valued map

J∗ : X∗ → 2X ,

J∗(y) = {x ∈ X : 〈y, x〉 = ||x||2 = ||y||2}

is called the normalized duality map (or duality map) in X∗.
Many properties of the normalized duality map J have been studied. For the

details, one may consult [1, 3, 21]. We list in the following some properties of J
that we needed.

1. If X is a Hilbert space, then J(x) = {x} for all x ∈ X.

2. For each x ∈ X, J(x) is nonempty closed convex and bounded subset of X∗.

3. J(λx) = λJ(x), ∀x ∈ X and ∀λ ∈ R.

4. If X∗ is strictly convex, J is single valued.

5. If X is strictly convex, J is one to one, i.e. x 6= y ⇒ J(x) ∩ J(y) = φ.

6. If X∗is uniformly convex, then J is uniformly continuous on each bounded set
in X, i.e. ∀ε > 0 and α > 0 there is a δ = δ(ε, α) > 0 such that

||x|| ≤ α, ||y|| ≤ α, ||x− y|| < δ ⇒ ||J(x)− J(y)|| < ε.

Note that if X∗ is uniformly convex, then it is strictly convex and hence J is
single-valued map.
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7. If X is reflexive, then J is a map from X onto X∗, that is

∪{J(x) : x ∈ X} = X∗.

8. If X is reflexive strictly convex space with strictly convex conjugate space X∗,
then J and J∗ are one-to-one, onto and single-valued map and

J−1 = J∗, JJ∗ = IX∗ and J∗J = IX ,

where IX is the identity map on X and IX∗is the identity map on X∗.

Definition 4. ([1], Def. 2.8.1). The Banach space X is said to be uniformly smooth
if

ρ′X(0) = lim
t→0

ρX(t)

t
= 0,

where ρX : [0,∞[−→ [0,∞[ is called the modulus of smoothness of X, and defined
by

ρX(t) = sup{1

2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ = 1, ‖y‖ = t }

= sup{1

2
(‖x+ ty‖+ ‖x− ty‖)− 1 : ‖x‖ = 1, ‖y‖ = 1; t ≥ 0}.

Lemma 1. ([1, 3, 21]). Let X be a Banach space.

1. X is uniformly smooth if and only if X∗is uniformly convex.

2. X is uniformly convex if and only if X∗is uniformly smooth.

3. If X is uniformly smooth, then X is reflexive.

4. Every uniformly convex space is reflexive.

5. Every Hilbert space is uniformly convex.

6. Every uniformly convex space is strictly convex.

Now, let X be a Banach space and X∗ be its topological dual. Let V : X∗×X →
R, V ∗ : X ×X∗ → R be two functions defined by:

V (ϕ, x) = ||ϕ||2 − 2〈ϕ, x〉+ ||x||2,
V ∗(x, ϕ) = V (ϕ, x).

Based on the functional V , the generalized projection of a point ϕ in X∗onto a
nonempty subset E of X can be defined as:
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Definition 5. ([3, 4]). Let X be a Banach space, E be a nonempty subset of X and
ϕ ∈ X∗. If there exists a point z ∈ E satisfying

V (ϕ, z) = dVE(ϕ),

then z is called a generalized projection of ϕ onto E. Where dVE(ϕ) = inf
x∈E

V (ϕ, x).

The set of all such points is denoted by πE(ϕ), i.e.

πE(ϕ) = {z ∈ E : V (ϕ, z) = dVE(ϕ)} ⊆ X.

Now, we list in the following Lemma some properties of V and πE(ϕ) (see [4]).

Lemma 2. Let X be a Banach space and X∗be its topological dual.

1. V (J(x), x) = 0.

2. If X is uniformly convex or uniformly smooth, then

V (ϕ, x) = 0⇔ ϕ = J(x), ∀x ∈ X and ϕ ∈X∗.

3. If X is a Hilbert space, then

V (ϕ, x) = ||ϕ− x||2.

4. If X is reflexive and E is a nonempty closed and convex subset of X, then

(a) πE(ϕ) 6= φ, ∀ϕ ∈X∗.
(b) X is strictly convex if and only if πE(ϕ) is singleton for all ϕ ∈X∗.
(c) If X is also smooth, then for any given ϕ ∈X∗,

z ∈ πE(ϕ)⇔ 〈ϕ− J(z), x− z〉 ≤ 0, ∀x ∈ E.

For more details about the convex normal cone (see [12, 13]).

Lemma 3. ([13]). Let E be a nonempty, closed and convex subset of Banach space
X and z ∈ E. Then

1. NE(z) ∩ B∗ = ∂dE(z), where ∂dE(z) is the subdifferential of the function z →
dE(z), and dE(z) is the distance from z to E.

2. If X is reflexive and smooth, then

z ∈ πE(ϕ)⇔ ϕ− J(z) ∈ NE(z), ∀ϕ ∈X∗ and ∀z ∈ X.
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Lemma 4. ([8], Prop. 2.2). Let Ω be an open subset in a normal vector space Z,
X be a Banach space and C be a Hausdorff continuous set-valued map defined on Ω
and with nonempty compact convex values in X. Let (ϕn) be a sequence of X∗ that
converges weakly to ϕ in X∗, (xn) be a sequence in X that converges strongly to x in
X such that (tn) be a sequence in Ω that converges to t in Ω. If ϕn ∈ ∂dC(tn)(xn),
then ϕ ∈ ∂dC(t)(x).

Definition 6. ([6], Def. 1, sec. 4, ch. 1). Let X and Y be two normed spaces.
We say that a set-valued map F : X −→ P (Y ) − {φ} is upper hemicontinuous at
x0 ∈ X if and only if for every p ∈ Y ∗, the function x −→ δ∗(p, F (x)) is upper
semicontinuous at x0 ∈ X.

Obviously, if F is upper semicontinuous at x0, then it is upper hemicontinuous
at x0.

Theorem 5. ([6], Th. 1, sec. 4, ch. 1). (Convergence Theorem)
Let F be a upper hemicontinuous map from a Hausdorff locally convex space X to
the closed convex subsets of a Banach space Y . Let I be an interval of R and xk(.)
and yk(.) be measurable functions from I to X and Y respectively satisfying:

for almost all t ∈ I, for every neighborhood N of 0 in X × Y there exists
k0 = k0(t,N ) such that ∀ k ≥ k0, (xk(t), yk(t)) ∈ graph(F ) +N . If

(i) xk(.) converges almost everywhere to a function x(.) from I to X,

(ii) yk(.) ∈ L1(I, Y ) and converges weakly to y(.) in L1(I, Y ),

then for almost all t ∈ I, (x(t), y(t)) ∈ graph(F ), i.e. y(t) ∈ F (x(t)).

Lemma 6. ([24], Th. 2.2). Let Ω be a subset of a Banach space X. Assume that
G : [a, b]× Ω→ 2X is a set-valued map such that

1. for every x ∈ Ω, the set-valued map G(., x) is measurable on [a, b].

2. for every t ∈ [a, b], the set-valued map G(t, .) is continuous on Ω .

Then for any measurable function x(.) : [a, b]→ Ω, the set-valued map G(., x(.))
is measurable on [a, b].

Lemma 7. ([24], Lem. 2.3). Let X be a separable Banach space, F : [a, b]→ 2X a
measurable set-valued map and z : [a, b] → X a measurable function. Then for any
positive measurable function r : [a, b]→ R+, there exists a measurable selection f of
F such that for almost t ∈ [a, b]

||f(t)− z(t)|| ≤ d(z(t), F (t)) + r(t).
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3. Main result

In this section, we prove the existence result for the probelm 2.

Theorem 8. Let X be a separable uniformly convex and uniformly smooth Banach
space, I = [0, T ] (T > 0), C be a set-valued map defined from I ×X to the family
of nonempty compact convex subsets of X and G be a set-valued map defined from
I×Cr ×Cr with nonempty closed values in X∗. Assume that the following hypotheses
hold:

(C1) C is Hausdorff continuous;
(C2) there is a compact convex subset K of X such that

C(t, x) ⊂ K, ∀(t, x) ∈ I ×X;

(G1) for each f, g ∈ Cr, t→ G(t, f, g) is a measurable;
(G2) there is a nondecreasing continuous function Λ : I → R+ such that for all

t, s ∈ I, and for all ψ1, ϕ1, ψ2, ϕ2 ∈ Cr

dH(G(t, ψ1, ϕ1), G(s, ψ2, ϕ2)) ≤ |Λ(s)− Λ(t)|(||ψ1 − ψ2||+ ||ϕ1 − ϕ2||);

(G3) there is a continuous function p : I → R+, such that for all f, g ∈ Cr,

||G(t, f, g)|| ≤ p(t)(1 + ||f(0)||+ ||g(0)||), a.e. t ∈ I.

Then for any ϕ,ψ ∈ Cr with ϕ(0) ∈ C(0, ψ(0)), there exist two continuous func-
tions u : [−r, T ]→ X, w : [−r, T ]→ X such that u and w are absolutely continuous
functions on I and that (2) is satisfied.

Proof. At first, we note that, since the Banach space X is uniformly convex, then
by Lemma 1, it is reflexive and strictly convex. Moreover, since X is uniformly
smooth then, again by Lemma 1, X∗ is uniformly convex, and hence X∗ is strictly
convex. Then, by properties (6) and (8) which follow Definition 3, J and J∗ are
one to one, onto, single-valued maps and JJ∗ = IX∗ and J∗J = IX . Furthermore,
J is uniformly continuous on bounded sets. Let k > 0 be such that K ⊂ kB, and
µ = β(1 + ‖ψ(0)‖+ 4k) where β = max

t∈I
|p(t)| .

For notational convenience, we take T = 1. In order to make it easier for the
reader we will divide the proof into the following steps:
Step 1. In this step we prove that for each natural number m and for each z ∈
L1(I,X∗), there exist two continuous functions um, wm : [−r, 1]→ X, gm ∈ L1(I,X∗)
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and two step functions θm, δm : I → I such that um and wm are absolutely contin-
uous functions on I, lim

m→∞
θm(t) = lim

m→∞
δm(t) = t and that

(i) um(t) = ϕ(t), wm(t) = ψ(t), for t ∈ [−r, 0];
(ii) gm(t) ∈ G(t, τ(δm(t))wm, τ(δm(t))um), for t ∈ I;
(iii)||gm(t)− z(t)|| ≤ d(z(t), G(t, τ(δm(t))wm, τ(δm(t))um))

+ 1
m2 , for t ∈ I;

(iv) wm(t) = wm(δm(t)) + (t− δm(t))um(δm(t)), for t ∈ I;

(v) um(t) = ϕ(0) +
∫ t
0 u
′
m(s)ds, for all t ∈ I;

(vi) u′m(t) ∈ C(θm(t), wm(θm(t))) ∩ B(0, k), for a.e. t ∈ I;
(vii) ‖um(δm(t))‖ ≤ 2k, for t ∈ I;
(viii) ‖J(u′m(t))− gm(δm(t))‖ ≤ k + µ, a.e. for t ∈ I;
(ix) J(u′m(t))− gm(δm(t)) ∈ −NC(θm(t),wm(θm(t)))(u

′
m(t)), a.e. for t ∈ I.

(3)

Consider a partition of I = [0, 1] by the points tmi = iem, em = 1
m , 0 ≤ i ≤ m.

Let Im0 = {tm0 } = {0}, Imi+1 =
]
tmi , t

m
i+1

]
, 0 ≤ i ≤ m − 1. For t ∈ [−r, 0], we put

um(t) := ϕ(t) and wm(t) := ψ(t). Note that, in view of Lemma 6 and Lemma 7, there
exists a function gm0 ∈ L1([tm0 , t

m
1 ], X∗) such that gm0 (t) ∈ G(t, τ(tm0 )ψ, τ(tm0 )ϕ) and

||gm0 (t)− z(t)|| ≤ d(z(t), G(t, τ(0)ψ, τ(0)ϕ)) +
1

m2
, for all t ∈ [tm0 , t

m
1 ].

Set xm0 = ϕ(0) ∈ C(0, ψ(0)) and for t ∈ [tm0 , t
m
1 ] we define

wm(t) := ψ(tm0 ) + (t− tm0 )xm0 ,

and

um(t) :=
tm1 − t
em

xm0 +
t− tm0
em

xm1 ,

where
xm1 := xm0 + emπC(tm1 ,wm(tm1 ))(g

m
0 (tm0 )).

Note that xm1 is well defined since the generalized projection π exists by Lemma
2. From the definition of um, the choice xm1 and (C2) we get, by Lemma 3, for
t ∈]tm0 , t

m
1 [

u′m(t) =
xm1 − xm0

em
∈ C(tm1 , wm(tm1 )) ∩ B(0, k),

and
J(u′m(t))− gm0 (tm0 ) ∈ −NC(tm1 ,wm(tm1 )) (u′m(t)).

Now by Lemma 6, Lemma 7 and by induction we can define

wm(t) := wm(tmi ) + (t− tmi )um(tmi ), t ∈ Imi+1, (4)
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and

um(t) :=
tmi+1 − t
em

xmi +
t− tmi
em

xmi+1, t ∈ Imi+1, (5)

where
xmi+1 := xmi + emπC(tmi+1,wm(tmi+1))

(gmi (tmi )), (6)

and for any 1 ≤ i ≤ m− 1, gmi ∈ L1(]tmi , t
m
i+1], X

∗) such that

gmi (t) ∈ G(t, τ(tmi )wm, τ(tmi )um),

and

||gmi (t)− z(t)|| ≤ d(z(t), G(t, τ(tmi )wm, τ(tmi )um)) +
1

m2
, for all t ∈]tmi , t

m
i+1]. (7)

The existence of such gmi is ensured by Lemma 6. Moreover, let θm(0) = 0,
θm(t) = tmi+1, for all t ∈]tmi , t

m
i+1] (0 ≤ i ≤ m−1), δm(t) = tmi for all t ∈ [tmi , t

m
i+1[ (0 ≤

i ≤ m−1) and δm(1) = tmm . Clearly wm and um are absolutely continuous on I and
differentiable on I \{tmi ; i = 0, 1, 2, ...,m } and for all t ∈]tmi , t

m
i+1[

u′m(t) =
xmi+1 − xmi

em
∈ C(tmi+1, wm(tmi+1)) ∩ B(0, k). (8)

On the other hand, by recalling the definition of the generalized projection we
have

J(u′m(t))− gmi (tmi ) ∈ −NC(tmi+1,wm(tmi+1))
(u′m(t)), for a.e. t ∈ Imi+1. (9)

Next, let us define a function gm : I → X∗ as gm(t) = gm0 (t) for t ∈ [tm0 , t
m
1 ] and

gm(t) = gmi (t) for t ∈]tmi , t
m
i+1], i = 1, 2, ...,m− 1.

Then, from (4), (7), (8), (9) and definitions of θm, δm and gm, one obtains

wm(t) = wm(δm(t)) + (t− δm(t))um(δm(t)), for t ∈ I, (10)

u′m(t) ∈ C(θm(t), wm(θm(t))) ∩ B(0, k), for a.e. t ∈ I, (11)

J(u′m(t))− gm(δm(t)) ∈ −NC(θm(t),wm(θm(t))) (u′m(t)), for a.e. t ∈ I, (12)

gm(t) ∈ G(t, τ(δm(t))wm, τ(δm(t))um), for t ∈ I, (13)

and

||gm(t)− z(t)|| ≤ d(z(t), G(t, τ(δm(t))wm, τ(δm(t))um)) +
1

m2
, t ∈ I. (14)

In order to prove the properties (vii) and (viii) of (3) we observe that, from (11)
for any i = 0, 1, 2, ...,m− 1 and for any t ∈]tmi , t

m
i+1[∥∥∥∥xmi+1 − xmi

em

∥∥∥∥ =
∥∥u′m(t)

∥∥ ≤ k.
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So, ∥∥xmi+1

∥∥ ≤ ‖xmi ‖+ emk, ∀i = 0, 1, 2, ...,m− 1.

Then ∥∥xmi+1

∥∥ ≤ ‖xmi ‖+ emk

≤
∥∥xmi−1∥∥+ 2emk.

We reiterate this process to get∥∥xmi+1

∥∥ ≤ ‖xm0 ‖+ (i+ 1)emk

≤ 2k.

So, (vii) is true. Also, from (4) and (5) for i = 0, 1, 2, ...,m− 1 we have∥∥wm(tmi+1)
∥∥ ≤ ‖wm(tmi )‖+

∣∣tmi+1 − tmi
∣∣ ‖um(tmi )‖

= ‖wm(tmi )‖+
∣∣tmi+1 − tmi

∣∣ ‖xmi ‖
≤ ‖wm(tmi )‖+ 2emk

≤
∥∥wm(tmi−1)

∥∥+ 4emk.

We reiterate this process to get∥∥wm(tmi+1)
∥∥ ≤ ‖ψ(0)‖+ 2memk

= ‖ψ(0)‖+ 2k.

This inquality with the condition (G3), the property (vii) of (3) and (13) for
i = 0, 1, 2, ...,m− 1, we have

||gm(t)|| ≤ p(t)(1 + ‖(τ(δm(t))wm)(0)‖+ ‖(τ(δm(t))um)(0)‖)
= p(t)(1 + ‖wm(δm(t))‖+ ‖um(δm(t))‖)
≤ p(t)(1 + ‖ψ(0)‖+ 2k + 2k)

= β(1 + ‖ψ(0)‖+ 4k)

= µ. (15)

Therefore, for t ∈ I \{tmi ; i = 0, 1, 2, ...,m}∥∥J(u′m(t))− gm(δm(t))
∥∥ ≤

∥∥J(u′m(t))
∥∥+ ‖gm(δm(t))‖

≤
∥∥u′m(t)

∥∥+ µ

≤ k + µ.
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So, (viii) is satisfied and our goal in this step has been achieved.
Step 2. In this step we prove that for each natural number n there are two con-
tinuous functions un, wn: [−r, 1] → X, gn ∈ L1(I,X∗) and θn, δn ∈ S(I, I), where
S(I, I) denotes the space of step functions from I to I, such that un and wn are
absolutely continuous functions on I, lim

n→∞
θn(t) = lim

n→∞
δn(t) = t and that

(i) un(t) = ϕ(t), wn(t) = ψ(t), for t ∈ [−r, 0];
(ii) gn(t) ∈ G(t, τ(δn(t))wn, τ(δn(t))un), for t ∈ I;
(iii)||gn+1(t)− gn(t)|| ≤ d(gn(t), G(t, τ(δn+1(t))wn+1, τ(δn+1(t))un+1))+

1
(n+1)2

, ∀ n ≥ 1, for t ∈ I;

(iv) wn(t) = wn(δn(t)) + (t− δn(t))un(δn(t)), for t ∈ I;

(v) un(t) = ϕ(0) +
∫ t
0 u
′
n(s)ds, for all t ∈ I;

(vi) u′n(t) ∈ C(θn(t), wn(θn(t))) ∩ B(0, k), for a.e. t ∈ I;
(vii) ‖un(δn(t))‖ ≤ 2k, for t ∈ I;
(viii) ‖J(u′n(t))− gn(δn(t))‖ ≤ k + µ, a.e. for t ∈ I;
(ix)J(u′n(t))− gn(δn(t)) ∈ −NC(θn(t),wn(θn(t))(u

′
n(t)), a.e. for t ∈ I.

(16)
We use the induction to prove our goal in this step. From Step 1 for m = 1

there are two continuous functions u1, w1: [−r, 1] → X, g1 ∈ L1(I,X∗) and θ1,
δ1 ∈ S(I, I) such that u1 and w1 are absolutely continuous functions on I and all
the properties (i), (ii), (iv)→ (ix) in the relation (16) are satisfied.

Next, assume that for each m ≤ n there are two continuous functions um, wm:
[−r, 1] → X, gm ∈ L1(I,X∗) and θm, δm ∈ S(I, I) such that um and wm are
absolutely continuous functions on I and all the properties (i), (ii), (iv) → (ix) in
the relation (16) are satisfied for each m ≤ n and

||gm(t)− gm−1(t)||

≤ d(gm−1(t), G(t, τ(δm(t))wm, τ(δm(t))um)) +
1

m2
, ∀ m = 2, ..., n.

In order to define un+1, wn+1, gn+1, θn+1 and δn+1 we consider a partition for I
by the points tn+1

i = ien+1, en+1 = 1
n+1 , 0 ≤ i ≤ n + 1. Let In+1

0 =
{
tn+1
0

}
= {0},

In+1
i+1 =

]
tn+1
i , tn+1

i+1

]
, 0 ≤ i ≤ n. For t ∈ [−r, 0], we put un+1(t) := ϕ(t) and

wn+1(t) := ψ(t). Note that, in view of Lemma 6 and Lemma 7, there exists a
function gn+1

0 ∈ L1([tn+1
0 , tn+1

1 ], X∗) such that gn+1
0 (t) ∈ G(t, τ(t(0))ψ, τ(t(0))ϕ)

and for all t ∈ [tn+1
0 , tn+1

1 ]

||gn+1
0 (t)− gn(t)|| ≤ d(gn(t), G(t, τ(0)ψ, τ(0)ϕ)) +

1

(n+ 1)2
.

Set xn+1
0 = ϕ(0) ∈ C(0, ψ(0)) and for t ∈ [t

n+1

0 , t
n+1

1 ] we define

wn+1(t) := ψ(tn+1
0 ) + (t− tn+1

0 )xn+1
0 ,
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and

un+1(t) :=
tn+1
1 − t
en+1

xn+1
0 +

t− tn+1
0

en+1
xn+1
1 ,

where
xn+1
1 := xn+1

0 + en+1πC(tn+1
1 ,wn+1(t

n+1
1 ))(g

n+1
0 (tn+1

0 )).

Next, as in Step 1, for t ∈]tn+1
0 , tn+1

1 [

u′n+1(t) =
xn+1
1 − xn+1

0

en+1
∈ C(tn+1

1 , wn+1(t
n+1
1 )) ∩ B(0, k),

and
J(u′n+1(t))− gn+1

0 (tn+1
0 ) ∈ −NC(tn+1

1 ,wn+1(tm1 )) (u′n+1(t)).

Also, by induction we can define

wn+1(t) := wn+1(t
n+1
i ) + (t− tn+1

i )un+1(t
n+1
i ), t ∈ In+1

i+1 ,

and

un+1(t) :=
tn+1
i+1 − t
en+1

xn+1
i +

t− tn+1
i

en+1
xn+1
i+1 , t ∈ I

n+1
i+1 ,

where
xn+1
i+1 := xn+1

i + en+1πC(tn+1
i+1 ,wn+1(t

n+1
i+1 ))(g

n+1
i (tn+1

i )),

and for any 1 ≤ i ≤ n, gni ∈ L1(]tn+1
i , tn+1

i+1 ], X∗) such that

gn+1
i (t) ∈ G(t, τ(tn+1

i )wn+1, τ(tn+1
i )un+1),

and

||gn+1
i (t)− gn(t)|| ≤ d(gn(t), G(t, τ(tn+1

i )wn+1, τ(tn+1
i )un+1)) +

1

(n+ 1)2
,

for all t ∈]tn+1
i , tn+1

i+1 ].

Now we define gn+1 : I → X∗ as gn+1(t) = gn+1
0 (t) for t ∈ [tn+1

0 , tn+1
1 ] and

gn+1(t) = gn+1
i (t) for t ∈]tn+1

i , tn+1
i+1 ], 1 ≤ i ≤ n. Moreover, θn+1 and δn+1 are

defined as follows: θn+1(0) = 0, θn+1(t) = tn+1
i+1 for all ]tn+1

i , tn+1
i+1 ] (0 ≤ i ≤ n)

δn+1(t) = tn+1
i for all [tn+1

i , tn+1
i+1 [ (0 ≤ i ≤ n) and δn+1(1) = tn+1

n+1.
By arguing as in Step 1 we can show that the functions un+1, wn+1, gn+1, θn+1

and δn+1 satisfy all the properties (i)→ (ix) in (16).
Step 3. In this step we show that the sequences (un) and (wn) have subsequences
(still denoted by (un) and (wn)) converging uniformly to continuous functions u :
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[−r, 1] → X, w : [−r, 1] → X, respectively, such that u(t) = ϕ(t), w(t) = ψ(t) for
t ∈ [−r, 0] u and w are absolutely continuous on [0, 1] and u′(t) ∈ C(t, w(t)) for a.e.
t ∈ I.

Indeed, by the property (vi) of (16) for t, s ∈ I (t < s) and for any n ≥ 1, we get

||un(s)− un(t)|| ≤
∫ s

t
||u′n(η)||dη ≤ k |s− t| ,

which means that the set {un : n ≥ 1} is equicontinuous on I.
Moreover, by the property (vi) of (16) for any n ≥ 1 and almost for t ∈ I, we

have
u′n(t) ∈ C(θn(t), wn(θn(t))), (17)

which implies
u′n(t) ∈ K, a.e. t ∈ I.

Hence, for all t ∈ I
un(t) = ϕ(0) +

∫ t
0 u
′
n(s)ds ∈ ϕ(0) + I ×K = L which is compact.

Then, for any t ∈ I, the set {un(t) : n ≥ 1} is relatively compact subset in X.
Thus, by Arzela-Ascoli’s Theorem, we can select a subsequence of un, again denoted
by un, which converges uniformly to a continuous function u on I.

Note that, because (u′n) is uniformly bounded, we can extract a subsequence (still
denoted by (u′n) ), converging σ(L∞(I,X), L1(I,X∗)) to a function z ∈ L∞(I,X).
This means that for any h ∈ L1(I,X∗) we have lim

n→∞
〈h, u′n〉 = 〈h, z〉.

Since L∞(I,X∗) ⊆ L1(I,X∗), then lim
n→∞

〈h, u′n〉 = 〈h, z〉, ∀ h ∈ L∞(I,X∗). That

is u′n → z in σ(L1(I,X), L∞(I,X∗)).
Now, for any t ∈ I and any v ∈ X∗, consider the function h = vχ[0,t]. Then

lim
n→∞

v(

∫ t

0
u′n(s)ds) = lim

n→∞

∫ t

0
v(u′n(s))ds

= lim
n→∞

〈h, u′n〉

= 〈h, z〉

= v(

∫ t

0
z(s)ds).

This means that for any t ∈ I the sequence
∫ t
0 u
′
n(s)ds converges weakly to∫ t

0 z(s)ds in X, and hence for all t ∈ I

lim
n→∞

un(t) = ϕ(0) +

∫ t

0
u′n(s)ds,
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weakly in X. But lim
n→∞

un(t) = u(t), for all t ∈ I. Then

u(t) = ϕ(0) +

∫ t

0
z(s)ds, ∀t ∈ I.

This equality implies u′(t) = z(t), a.e. Therefore, u′n converges to u′ in σ(L1(I,X), L∞(I,X∗))
and u is absolutely continuous function. That is

u(t) = ϕ(0) +

∫ t

0
u′(s)ds,∀t ∈ I.

Now let t ∈ I be any fixed point. Then there is a natural number n such that
t ∈ Ini+1 for some i ∈ {0, 1, 2, ..., n−1}. According to the definition of wn one obtains

wn(t) = wn(tni ) + (t− tni )un(tni )

= wn(tni ) +

∫ t

tni

un(δn(s))ds

= wn(tni−1) + (tni − tni−1)un(tni−1) +

∫ t

tni

un(δn(s))ds

= wn(tni−1) +

∫ tni

tni−1

un(δn(s))ds+

∫ t

tni

un(δn(s))ds.

We reiterate this process to get

wn(t) = ψ(0) +

∫ t

0
un(δn(s))ds. (18)

Next, let w : I → X be such that w(t) = ψ(0) +
∫ t
0 u(s)ds. For any t ∈ I, we

have

‖wn(t)− w(t)‖ ≤
∫ t

0
‖un(δn(s))− u(s)‖ ds

≤
∫ t

0
‖un(δn(s))− un(s)‖ ds+

∫ t

0
‖un(s)− u(s)‖ ds

≤ sup
s∈I
‖un(δn(s))− un(s)‖+ sup

s∈I
‖un(s)− u(s)‖

≤ k sup
s∈I
|δn(s)− s|+ ‖un − u‖∞

≤ k

n
+ ‖un − u‖∞ .

This shows that (wn) converges uniformly to w.
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Now, from (17) and Theorem 5 we infer that u′(t) ∈ C(t, w(t)) for a.e. t ∈ I.
Step 4. Our aim in this step is to show that for any t ∈ I, the sequence τ(δn(t)un
converges to τ(t)u and the sequence τ(δn(t)wn converges to τ(t)w in Cr.

Let t ∈ I, we have

||τ(δn(t))un − τ(t)u||
≤ ||τ(δn(t))un − τ(t)un||+ ||τ(t)un − τ(t)u||
≤ sup

−r≤s≤0
||un(δn(t) + s)− un(t+ s)||+ ||τ(t)un − τ(t)u||

≤ sup
−r ≤ s1 ≤ s2 ≤ 1
|s1 − s2| ≤ 1

n

||un(s1)− un(s2)||+ ||τ(t)un − τ(t)u||

≤ sup
−r ≤ s1, s2 ≤ 0
|s1 − s2| ≤ 1

n

||un(s1)− un(s2)||+ sup
−r ≤ s1 ≤ 0 ≤ s2 ≤ 1
|s1 − s2| ≤ 1

n

||un(s1)− un(s2)||

+ sup
0 ≤ s1 ≤ s2 ≤ 1
|s1 − s2| ≤ 1

n

||un(s1)− un(s2)||+ ||τ(t)un − τ(t)u||

≤ sup
−r ≤ s1, s2 ≤ 0
|s1 − s2| ≤ 1

n

||ϕ(s1)− ϕ(s2)||+ sup
−r ≤ s1 ≤ 0
|s1| ≤ 1

n

||un(s1)− un(0)||

+ sup
0 ≤ s2 ≤ 1
|s2| ≤ 1

n

||un(0)− un(s2)||+ sup
0 ≤ s1 ≤ s2 ≤ 1
|s1 − s2| ≤ 1

n

||un(s1)− un(s2)||

+||τ(t)un − τ(t)u||
≤ 2 sup

−r ≤ s1, s2 ≤ 0
|s1 − s2| ≤ 1

n

||ϕ(s1)− ϕ(s2)||+ 2 sup
0 ≤ s1, s2 ≤ 1
|s1 − s2| ≤ 1

n

||un(s1)− un(s2)||

+||τ(t)un − τ(t)u||.

By the continuity of ϕ, the uniform convergence of un towards u and the pre-
ceding estimate, we get

lim
n→∞

||τ(δn(t))un − τ(t)u|| = 0.

Similarly, we can show that

lim
n→∞

||τ(δn(t))wn − τ(t)w|| = 0.
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Step 5. In this step we prove that the sequence (fn) defined by fn(t) = gn(δn(t))
converges pointwise to a function f ∈ L1(I,X∗) with f(t) ∈ G(t, τ(t)w, τ(t)u), a.e.
for t ∈ I.

Let t ∈ I be fixed. In view of the properties (ii), (iii) of (16) and condition (G2)
we obtain, for n ≥ 1

||fn+1(t)− fn(t)||
= ||gn+1(δn+1(t))− gn(δn(t))||

≤ d(gn(δn(t)), G(δn+1(t), τ(δn+1(δn+1(t)))wn+1, τ(δn+1(δn+1(t)))un+1)) +
1

(n+ 1)2

= d(gn(δn(t)), G(δn+1(t), τ(δn+1(t))wn+1, τ(δn+1(t))un+1)) +
1

(n+ 1)2

≤ dH(G(δn(t), τ(δn(t))wn, τ(δn(t))un), G(δn+1, τ(δn+1(t))wn+1, τ(δn+1(t))un+1))

+
1

(n+ 1)2

≤
∣∣Λ(δn(t))− Λ(δn+1(t))

∣∣ (‖τ(δn(t))wn − τ(δn+1(t))wn+1‖

+ ‖τ(δn(t))un − τ(δn+1(t))un+1‖) +
1

(n+ 1)2

≤
∣∣Λ(δn(t))− Λ(δn+1(t))

∣∣ (2 ‖ϕ(0)‖+ ‖ψ(0)‖+ 2k) +
1

(n+ 1)2
.

Then for any two natural numbers n,m (n < m) we get

||fn(t)− fm(t)||
≤ ||fn(t)− fn+1(t)||+ ||fn+1(t)− fn+2(t)||+ ........+ ||fm−1(t)− fm(t)||
≤ (2 ‖ϕ(0)‖+ ‖ψ(0)‖+ 2k)[

∣∣Λ(δn(t))− Λ(δn+1(t))
∣∣

+
∣∣Λ(δn+1(t))− Λ(δn+2(t))

∣∣+ ........+ |Λ(δm−1(t))− Λ(δm(t))|]

+
1

(n+ 1)2
+

1

(n+ 1)2
+ ........+

1

m2

≤ (2 ‖ϕ(0)‖+ ‖ψ(0)‖+ 2k) |Λ(δn(t))− Λ(δm(t))|+ m

(n+ 1)2
. (19)

From the fact that Λ is continuous and lim
n→∞

δn(t) = lim
m→∞

δm(t) = t , the right-

hand side of (19) tends to zero when n,m→∞. Hence, (fn(t)) is a Cauchy sequence
in X∗ and (fn) converges pointwise to a function f ∈ L1(I,X∗). Moreover, by (ii),
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(iii) of (3) and Condition (G2) we get

d(f(t), G(t, τ(t)w, τ(t)u))

≤ ||f(t)− fn(t)||+ d(fn(t), G(t, τ(t)w, τ(t)u))

= ||f(t)− fn(t)||+ d(gn(δn(t)), G(t, τ(t)w, τ(t)u))

≤ ||f(t)− fn(t)||+ dH(G(δn(t), τ(δn(t))wn, τ(δn(t))un), G(t, τ(t)w, τ(δn(t))u))

≤ ||f(t)− fn(t)||+ |Λ(δn(t))− Λ(t)| (||τ(δn(t))wn − τ(t)w||+ ||τ(δn(t))un − τ(t)u||).

Again, by Step 4 and from the fact that Λ is continuous, the right-hand side of
this inequality tends to zero when n→∞. Hence, f(t) ∈ G(t, τ(t)w, τ(t)u), t ∈ I.
Step 6. We prove that J(u′(t))− f(t) ∈ −NC(t,w(t))(u

′(t)), for a.e. t ∈ I.
Since X is uniformly smooth, the duality map J is uniformly continuous on

bounded set, then the sequence J(u′n) − fn converges weakly towards J(u′) − f
in L1(I,X∗), where J(u′n)(t) = J(u′n(t)) and J(u′)(t) = J(u′(t)). It follows by the
Mazur’s Lemma

J(u′(t))− f(t) ∈ ∩
n
co{J(u′j(t))− fj(t) : j ≥ n}, for a.e. t ∈ I.

Fix any t such that the preceding relation is satisfied and consider ζ ∈ X. The
last relation above yields

〈J(u′(t))− f(t), ζ〉 ≤ inf
n

sup
j≥n
〈J(u′j(t))− fj(t), ζ〉. (20)

Moreover, the relations (viii), (ix) of (16) and definition of fn tell us for a.e.
t ∈ I

J(u′n(t))− fn(t) ∈ −NC(θn(t),wn(θn(t)))(u
′
n(t)) ∩ B(0, k + µ).

Hence, by Lemma 3, for a.e. t ∈ I we have

J(u′n(t))− fn(t) ∈ −(k + µ)∂dC(θn(t),wn(θn(t)))(u
′
n(t)). (21)

In view of (20) and (21) for ζ ∈ X and for a.e. t ∈ I one obtains

〈J(u′(t))− f(t), ζ〉
≤ lim

n→∞
sup 〈J(u′n(t))− fn(t), ζ〉

≤ (k + µ) lim
n→∞

sup δ∗(ζ,−∂dC(θn(t),wn(θn(t)))(u
′
n(t))).

From the u.s.c property, Lemma 4 and the last relation above yield for ζ ∈ X,
a.e. t ∈ I

〈J(u′(t))− f(t), ζ〉 ≤ (k + µ)δ∗(ζ,−∂dC(t,w(t))(u
′(t))).
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As the set ∂dC(t,w(t))(u
′(t)) is closed and convex and u′(t) ∈ C(t, w(t)) we get

J(u′(t))− f(t) ∈ −(k + µ)∂dC(t,w(t))(u
′(t)), for a.e. t ∈ I.

Therefore,

J(u′(t))− f(t) ∈ −NC(t,w(t))(u
′(t)), for a.e. t ∈ I.

Finally, by Steps 5 and 6 we have, for almost t ∈ I

J(u′(t)) ∈ −NC(t,w(t))(u
′(t)) +G(t, τ(t)w, τ(t)u).

Which completes the proof.

Remark 1. we can prove the relation u′(t) ∈ C(t, w(t)), for a.e. t ∈ I as follows:
Since the sequence (u′n) converges weakly to u′ in L1(I,X), then invoking Remark

3.1 in [20], we get for a.e. t ∈ I,

u′(t) ∈ convw( lim
n→∞

supu′n(t))

⊆ convw( lim
n→∞

supC(θn(t), wn(θn(t)))).

From the upper semicontinuity of C, we infer that u′(t) ∈ C(t, w(t)), for a.e.
t ∈ I .
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