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ABSTRACT. In this research work, we prove a new integral representations for
the generalized classes of concave univalent functions defined by Salagean operator
denoted by C,(0), Cp(p) and Cy, (), using a function of positive real part.Our results
unify the ealier ones.
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1. INTRODUCTION

The study of concave univalent functions was introduced in [2], where a meromorphic
and injective function f of the form

f(2) :z—i—Zanz". (1)
n=2

denoted by Cp,was considered in a neighborhood of the origin and map the unit disk
denoted as U = {|z| < 1} onto a concave domain E which is the exterior of a convex
domain.

Avkhadiev and Wirths, studied the inner and the outer radius of the ring domain
which is the domain of variability of as for such function f and that f € Cy implies

that ,
f(z)
f(z)

B(2) =242 (2)

is holomorphic in U and maps U to itself.
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This concept was further studied by researchers (see [1], [4], [8]), where concave
univalent function was classified in to three different classes define as follows:

Definition 1[8]
A meromorphic, univalent function f is said to be in the class C,(0), has a simple
pole at the origin and the representation

f) =S+ Y ane g
n=0

Definition 2[8]
A meromorphic, univalent function f is said to be in the class C,(p) for p € (0,1)
has a simple pole at p.

Definition 3[8]
An analytic, univalent function f of the form (1) is said to be in the class C,(«), if
f(1) = oo and an opening angle of f(E) at oo is less than or equal to ar.

The geometric properties of the functions in the above definitions were given in
[5, 7, 8] as follows:

Theorem 1. Let f : U — E, f(z) =
The function f is said to be in the clas

Re <1 + z?, ((j)

1 oo n . .
S+ Do an2™ be a meromorphic function.
S Lo

(0) if and only if the inequality

~—

><0,26U (4)

holds

Theorem 2. Let f : U — E be a meromorphic function. The function f is said to
be in the class Cy(p), if and only if for z € U

Re(1+zf,(z)+z+p—1+pz><0. (5)

fi(z2) z—-p 1-pz

Theorem 3. Let o € (1,2]. An analytic function f with f(0) = f0)—1=0is
said to be in the class Co(), if and only if for z € U

') a+1l1+z
Re(l—l—zf,(z)— 5 1_Z><o. (6)
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A factor % has to be added to the characterization in case a normalization is
required and this was considered in [3], which showed that an analytic function f
maps the unit disk U onto a concave domain E of angle 7w« if and only if Rep(z) > 0,
z € U, where

2 |a+11+=z f(2)

p(z):a—l 2 1-=2 1_zf’(z) ' Q

The salagean differential operator denoted as D" is define as DUf(z) = f(2),
D'f(z) = zf (2), D"f(2) = D(D"'f(2)),(n € N = 1,2,...) and its integral op-
erator define as I°f(z) = f(z), I' f(z) = [ @dt, I"f(z) = II"1f(2)),(n € N).
Both appeared in [10].

We use the above operator to define new classes of concave univalent function.

Definition 4
Let f:U—=E, f(2) = % + > 02y anz™ be a meromorphic function. The function f
is said to be in the class C,,(0) if and only if the inequality

D"+1f(z) B o
Re (an(z) > <0,z€eU,n>1. (8)

holds.

Definition 5
Let f: U — E be a meromorphic function. Then the function f is said to be in the
class Cp(p), if and only if for z € U, n > 1.

n+1
Re D"t f(z) z+p_1+pz <0
Dnf(z) z—p 1—pz

9)

Definition 6
An analytic function f with f(0) = f (0
and only if for z € U, n > 1 and « € (1,

D" f(z) a+11+z
R6<D"f(z) 2 12><O'

/

— 1 =0 is said to be in the class Cy (), if

)
2]

(10)

We note that the geometric inequalities of the classes Cy,(0), Cy,(p) and Cy,(«) belong
to the class P which is of the form

p(2) =14crz+c2® +--- (11)
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with Rep(z) > 0 and that

o= [ U u(t). u(0)(0 < t < 2), (12)

which is known as Herglotz formula see([9]). It has been shown in [8], that the
function ¢ : U — U, expressed as z — }f;ﬁg;, holomorphic in U, maps the unit

disk onto itself, normalized by 0 — 1 and that

1+ zp(2) _/’T et + 2
L—2p(2) ) et

S au(t). (13)

In the next section, we prove the integral representations for the classes C,(0), Cy,(p)
and C),(«) using the function of positive real part .
1+ zp(2)

S O]

(14)

2. MAIN RESULTS

Theorem 4. Letn € N, f: U — E, where f(z) = %"‘Zk:o arz® be a meromorphic
function. f € Cn(0) if and only if there exists a function ¢ : U — U holomorphic in
U, such that for z € U, then

£(2) = I, {iexp (- /0 %dt) } . (15)

Proof. The function f € C,(0), if and only if there exists the function ¢ such that

D) 1+ 2p(2)
DfE) 1)

From the relation
D" f(z) = 2(D" f(2))
We have that

2D f(2)) 1+ 20(2)
)

Df(z) 11— zp(z
ADvf(2) . 22p(2)
Dif(z) T T ap(z)
1) 20()
D) T 1o 2p(2)
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; ) _ 20(2)
%log(z(D f(2)) = _?90(2)
log(z(D"f(z)) = — /OZ 1 i(pt(;)(t) o
L 7 20(t)
2(D"f(z)) = exp <_/0 1—tg0(t)dt>

D" (z) = éexp (— /0 %dt) .

f(z)=1In {ie:rp (— /OZ %dt)}.

Conversely, if ¢ : U — U is holomorphic function, the function
1 5 20(t)
=1I,4— — ———dt| ;. 16
@) {Zemp< /0 1 —t(t) )} (16

Corollary 5. If n =1, then we have

_ 71 *_20(t)
= [ e (- 25 %) "
which is the result obtained in [8].

Theorem 6. Letp € (0,1), n € N, f: D — E be a meromorphic function. f €
Cn(p) if and only if there exists a function ¢ : U — U holomorphic in U, such that
for z € U, then

1=t eppir e e ) 18)

Proof. Let p € (0,1). The function f € C,(p), if and only if there exist the function
 such that

D" f(z) z4+p 14zp 14 20(2)
Dnf(z) z—p l—2zp  1—2z20(2)

Dt f(2) 2z 2zp o 2zp(2)

i (05 1) - (25 +1) + = -5y
DL f(2) 2z 22p o 2z0(2)
Dfe) Taop L Tom T T T
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DL f(2) 2z ) 2zp 2z0(2)
Dnf(z) +z—p_ T 1—zp 1—zp(2)

From the relation

D" f(z) = 2(D" f(2))

then
T
DriG) £Tp L —zp 1 — zp(2)
e 2 1w %
Dnf(z) Z—p =z 1—zp 1—Z<,D(z)
d% {logD" f(z) + 2log(z — p) + 2log(1 — pz) — logz} = _%
logan(z)( Z) 1—pz /0 2 (;t »

Dre) == >f1—pz < /0 1—t<;tdt>

10=t{ e~ [ T

Conversely, if ¢ : U — U is holomorphic function, the function
z “ 20(2)
f(z :In{ ea:p{—/ dt}}.
= Gy T ke

Corollary 7. If n = 1,then

R e el 19)

which is the result obtained in [8].

Theorem 8. Let a € (1,2], n € N and f be an analytic function with f(0) =
f(0)—=1=0. Then f € Cy(a) if and only if there exists a function ¢ : U — U
holomorphic in U, such that for z € U then

F(2) = I {G‘Z)Mexp <—(a —1) /O %dt) } . (20)
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Proof. The function f € C,(a), if and only if there exist a function ¢ such that

2 {D"Hf(z) a+11+z} 14 z(z

_ (
Dnf(z) 21—z 1-2z0(z
(
(

2 [D”‘Hf(z) a+11+z]_ 1+ zp(2

Ca—1

)
)
)

a—1| D"f(z) 2 1—z|  1—zp(2)
2 [D"Flf(z) a+1[ 2z 1+ zp(2)
a1 [ DG 2 [1—z“” T I 2p(2)
2 [D”Hf(z) (et Dz a+ 1] _ 1 + 2¢(2)
a—1| Df(z) 1—=2 2 1—zp(2)
2 D"f(z)  2z(e+1) a+l 17_1+zg0(z)+1
a—1 Dnf(z) (a—1)(1—-2) a-1 11— z0(2)
2 D"f(z)  22(e+l) 2 _ 22¢(2)
a—1 Df(z (a—1D(1-2) a-1 1—zp(2)
D f(z (a1l o zp(z)
D) (e T
From the relation ,
D™ f(2) = 2(D" f(2))
e (D) _ 2ot 1) )
(D" f(z zao+1 ~ zp(z
D) a0
OUE) (a4 1 ele)
D) (1-2) 1= 29(2)
d n _ p(2)
- [logD" f(z) + (e + 1)log(1l — z) — logz] = —(av — 1) T 20(2)

DYy [t
0

log
z
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Conversely, if ¢ : U — U is holomorphic function, the function
z 5 et
=1 —— —(a—1 ————dt ) . 21
10 =t =gmrear (a0 [ 5 550) 2y

Corollary 9. If n =1, then

£(z) = /0 {(l_i)aﬂesvp <—(a ) /0 %dt) } . (22)

which is the result obtained in [8]
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