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GENERALIZED VISCOSITY APPROXIMATION METHOD FOR
EQUILIBRIUM AND FIXED POINT PROBLEMS
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ABSTRACT. In this paper, we introduce a new iterative scheme by the generalized
viscosity approximation method for finding a common element of the set of solutions
of an equilibrium problem and the set of common fixed points of infinitely many
nonexpansive mappings in a Hilbert space. Then, we prove a strong convergence
theorem which improves and extends some recent results.
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1. INTRODUCTION

Let H be a real Hilbert space, let A be a bounded operator on H. In this paper,
we assume that A is strongly positive; that is, there exists a constant ¥ > 0 such
that (Az,z) > 7||z||?,Vz € H. Let C be a nonempty closed convex subset of H
and ¢ : C' x C — R be a bifunction of C' x C' into R. The equilibrium problem for
¢:C xC — Ris to find u € C such that

¢(u,v) >0 for all v € C. (1)

The set of solutions of (1) is denoted by EP(¢). The equilibrium problem (1) in-
cludes as special cases numerous problems in physics, optimization and economics.
Some authors have proposed some useful methods for solving the equilibrium prob-
lem (1); see [6], [10] and [18].

A mapping T of H into itself is called nonexpansive if ||[Tz — Ty|| < ||z — y|| for
all z,y € H. Let F(T) denote the fixed points set of T'. Also, a contraction on H is
a self-mapping f of H such that ||f(z) — f(y)|| < allz — y|| for all z,y € H, where
a € [0,1) is a constant. In 2000, Mudafi [15] proved the following strong convergence
theorem.
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Theorem 1. [15] Let C' be a nonempty closed convex subset of a Hilbert space H
and let T be a nonexpansive self-mapping on C' such that F(T) # 0. Let f : C — C
be a contraction and let {x,} be a sequence defined as follows: 1 = x € C and

g
o1 = 7T+ 7
n n

for alln > 1, where e, C (0,1) satisfies

- 1 1
lim e, =0, an =00 and lim |— — —|=0.
n=1

n—00 n—00 Ent1 En

Then, the sequence {x,} converges strongly to z € F/(T), where z = Pp(r)f(z) and
Pr(y is the metric projection of H onto F(T).

Such a method for approximation of fixed points is called the viscosity approxi-
mation method.

Finding an optimal point in the intersection F' of the fixed points set of a family
of nonexpansive mappings is one that occurs frequently in various areas of math-
ematical sciences and engineering. For example, the well-known convex feasibility
problem reduces to finding a point in the intersection of the fixed points set of a
family of nonexpansive mappings; see, e.g.,[2] and [5]. The problem of finding an
optimal point that minimizes a given cost function ©® : H — R over F is of wide
interdisciplinary interest and practical importance see, e.g., [1], [4], [8] and [24].
A simple algorithmic solution to the problem of minimizing a quadratic function
over F' is of extreme value in many applications including the set theoretic signal
estimation, see, e.g., [11] and [24]. The best approximation problem of finding the
projection Pr(a) (in the norm induced by inner product of H) from any given point
a in H is the simplest case of our problem.

Yao et al. [22] introduced the iterative sequence:

Tnt1 = anVf(zn) + Bnxn + (1 = Bp) — an A)Wya, for all n > 0.

where f is a contraction on H, A : H — H is a strongly positive bounded linear
operator, v > 0 is a constant, {a,} and {f,} are two sequences in (0,1), W, is the
W-mapping generated by an infinite countable family of nonexpansive mappings
Ty, To, ..., Ty, ... and A1, Ag, ..., Ap, ... such that the common fixed points set F' :=
Moo, F(T,,) # 0. Under very mild conditions on the parameters, it was proved that
the sequence {x,} converges strongly to p € F where p is the unique solution in F
of the following variational inequality:

(A=~f)p,p—2*) <0 forall z* € F,
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which is the optimality condition for minimization problem

1
gg}r} §<A$7 ZL‘> - h(ZL‘),
where h is a potential function for vf (i.e., '(x) = vf(x) for z € H).
On the other hand, Ceng and Yao [7] introduced an iterative scheme by
d(un, ) + %(ac — Up, Uy — Tp) >0, forallxeC,
Yn = (1 - 7n>37n + Y Whtin, (2)
Ip41 = IBanyn + anf(yn) + (1 - Bn - O‘n)ana

where {ay,}, {fn} and {7, } are three sequences in (0, 1) such that a,, + 5, <1 and
W,, is the W-mapping generated by an infinite countable family of nonexpansive
mappings 11,15, ..., T,,... and A1, Aa, ..., Ap, .- .
Razani and Yazdi [16], motivated by Yao et al. [22] and Ceng and Yao [7],
introduced a new iterative scheme by the viscosity approximation method:
O(up, ) + %(x — Up, Uy, — Tp) >0, forall zeC,
Yn = (1 = )an + WmWatin, (3)
Tn+1 = an7f(yn) + Bnn + ((1 - Bn)l - anA)Wnyna

where {a,},{8,} and {v,} are three sequences in (0,1), f is a contraction, A is
a strongly positive bounded linear operator, v > 0 is a constant and W,, is the
W-mapping generated by an infinite countable family of nonexpansive mappings
T1,15,...,1,,... and A, Ao, ..., Ay, ... such that the common fixed points set F' :=
Mo, F(T,,) # 0. They proved the sequences {z,} and {u,} generated iteratively
by (3) converge strongly to p € F', where p = Pr>  r)nEPS) (I —A+~f)(p).

Moreover, Duan and He [9] combined a sequence of contractive mappings { f,,}
and proposed a generalized viscosity approximation method. They considered the
following iterative algorithm:

Tpt1 = O fol(rn) + (1 — an)Tan,

where T' is a nonexpansive mapping and {a,} is a sequence in (0,1). They proved
the sequence {x,} converges strongly to p € F(T) which is a unique solution of a
variational inequality.

In this paper, inspired by above results, we introduce a new iterative scheme
for finding a common element of the set of solutions of the equilibrium problem (1)
and the set of common fixed points of infinitely many nonexpansive mappings in a
Hilbert space. Then, we prove a strong convergence theorem which improves the
main results of [7] and [16].
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2. PRELIMINARIES

Let H be a real Hilbert space with inner product (.,.) and the norm ||.||. We denote
weak convergence and strong convergence by notation — and —, respectively. Let
C be a nonempty closed convex subset of H. Then, for any x € H, there exists a
unique nearest point in C', denoted by Po(z), such that

|z — Po(x)|| < ||z —yl for all y € C.

Such a P is called the metric projection of H onto C'. It is known that Po is
nonexpansive. Further, for x € H and z € C,

z2=PFPo(r) & (r—2,2z—y)>0foralyeC.

Now, we collect some lemmas which will be used in the proofs for the main
results.

Lemma 2. /3] Let C' be a nonempty closed convex subset of H and ¢ : C x C' — R
be a bifunction satisfying (A1) — (A4). Let r > 0 and x € H. Then, there exists
z € C such that

¢(27y)+%<:€—2,z—x> > 0 forally e C.

Lemma 3. [6] Assume that ¢ : C x C — R satisfies (A1) — (A4). For r > 0 and
x € H, define a mapping T, : H — C' as follows:

T,,x:{zEC:(b(Z,y)—i-%@—z,z—x)ZOforallyeC}

for all x € H. Then, the following hold:
(i) T, is single-valued;
(ii) T, is firmly nonerpansive, i.e., for any x,y € H

HTTZ' - Try||2 < <Tr$ - Ty, x — y);

(iii) F(T,) = EP(¢);
(iv) EP(¢) is closed and convez.

Lemma 4. [1}] Assume A is a strongly positive bounded linear operator on a Hilbert
space H with coefficient ¥ > 0 and 0 < p < ||A||=1. Then, |I — pA|| <1 — p7.

Lemma 5. [20] Let H be a real Hilbert space. Then, for all x,y € H and X € [0,1],

Az + (1= Nyll* = Az ]* + (1 = Vyll* = A0 = V]l - yll.
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Lemma 6. [19] Let {x,,} and {yn} be bounded sequences in Banach space X and let
{Bn} be a sequence in [0,1] with 0 < liminf, _, 5, < limsup,,_,., Bn < 1. Suppose
Tnt1 = (1 = Bn)yYn + Buxn for all integers n > 0 and limsup,,_, o (|yn+1 — ynl —
|Tnt1 — znl]) < 0. Then, limy o0 ||Zn, — ynl| = 0.

Lemma 7. [21] Assume {a,} is a sequence of nonnegative real numbers such that
An+1 < (1 - ’Yn)an + YnUn,

where {7, } is a sequence in (0,1) and {vy,} is a sequence in R such that (i) Y o2 1 Y =
00;

(ii) Hmsup,, o vn < 0 07 Y 07 | [7tn] < 00.

Then, lim,_ . a, = 0.

Lemma 8. [15] Assume A is a strongly positive bounded linear operator on a Hilbert
space H with coefficient ¥ > 0 and 0 < p < ||A[|7L. Then |I — pAl| <1 — p7.

Lemma 9. [12] Each Hilbert space H satisfies Opial’s condition, i. e., for any
sequence {x,} C H with x, — x, the inequality

liminf ||z, — x| < liminf ||z, — y||
n—oo n—oo

holds for each y € H with x # y.

Let H be a real Hilbert space and A be a strongly positive bounded linear
operator on H with coefficient ¥ > 0. Let f be a contraction of C' into itself
with constant o € [0,1) and 0 < ay < 7 where ~ is some constant. Let {7,,}5°
be a sequence of nonexpansive self-mappings on H and {\,} 2, be a sequence of
nonnegative numbers in [0, 1]. For any n > 1, define a mapping W,, of H into itself

as follows:
Un,n—l—l = I>
Un,n — )\nTnUn,nJrl + (1 - )\TL)I7

Ui = MTkUp 1 + (1 = M),
Unji—1 = MNe—1Th—1Up s + (1 = Xp—1) 1,

Unz = MToUns + (1 — Ag)1, (4)
Wy = Up1 = MT1Upno + (1 — A1) 1.

Such a mapping W, is called the W —mapping generated by T),,T,,—1, ...,T1 and
Any An—1, -, A1; see [13].
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Lemma 10. [17] Let C be a nonempty closed convexr subset of a strictly convex
Banach space X, {T,}°°, be a sequence of nonexpansive self-mappings on C such
that (o1 F(T,) # 0 and {\,}32, be a sequence of positive numbers in [0,b] for
some b € (0,1). Then, for every x € C and k > 1, the limit lim,,_,oc Uy, y exists.

Remark 1. /23] It can be known from Lemma 10 that if D is a nonempty bounded
subset of C, then for € > 0 there exists ng > k such that for all n > ng

sup ||Up px — Upz|| < e.
zeD

Remark 2. /23] Using Lemma 10, one can define mapping W : C — C' as follows:

Wz = lim Wyz = lim Uz,
n—oo n—oo
for all x € C. Such a W is called the W—mapping generated by {1}, and
{An}22,. Since W, is nonexpansive, W : C — C' is also nonexpansive.
If {z,,} is a bounded sequence in C, then we put D = {x,, : n > 0}. Hence, it is
clear from Remark 1 that for an arbitrary € > 0 there exists Ng > 1 such that for
all n > Ny

Wiy — Way|| = ||Upizn — Urzy|| < sup [|[Up1z — Urz| < e.
zeD

This implies that lim, o |Wha, — Wa,|| = 0.

Throughout this paper, we always assume that {\,,}>°; is a sequence of positive
numbers in [0, b] for some b € (0, 1).

Lemma 11. [17] Let C be a nonempty closed convexr subset of a strictly convex
Banach space X, {T,}:°, be a sequence of nonexpansive self-mappings on C such
that (o2 F(T) # 0 and {)\,}32, be a sequence of positive numbers in [0,b] for
some b € (0,1). Then, F(W) =2, F(Ty).

3. MAIN RESULT

In this section, we prove the following strong convergence theorem for finding a
common element of the set of solutions of the equilibrium problem (1) and the set of
common fixed points of infinitely many nonexpansive mappings in a Hilbert space.
Suppose the contractive mapping sequence { f,,(x)} is uniformly convergent for any
x € D, where D is any bounded subset of C.
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Theorem 12. Let C' be a nonempty closed conver subset of a real Hilbert space
H. Let ¢ : C x C — R be a bifunction satisfying (A1) — (Ag), A be a strongly
positive bounded linear operator on C with coefficient 7 > 0 and ||A| < 1 and
{T,}52, be an infinite family of nonexpansive self-mappings on C which satisfies
F = (2, F(T,)EP(¢) # 0. Suppose {an},{Bn} and {vn} are sequences in
(0,1) and {rp} C (0,00) is a real sequence satisfying the following conditions:
(i) lim, ooy =0 and > 07 5y = 00;
(i) 0 < liminf, o Bp < limsup,,_,. Bn < 1;
(i4i) 0 < liminf, o0 ¥ < limsup,, . ¥n < 1 and lim, o0 [Yn+1 — Yn| = 0;
(iv) 0 < liminf, o 7 and limy, o0 [Tpt1 — 0| = 0.

Let {fn} be a sequence of p,—contractive self-maps of C with

0 < p; = liminf p, <limsup p, = p, < 1.
n—oo

n—oo

Assume g € C, 0 < v < piu where 7y is some constant, {fn(x)} is uniformly
convergent for any x € D, where D is any bounded subset of C' and {\,}32 is
a sequence of positive numbers in [0,b] for some b € (0,1). If one define f(x) :=
limy, 00 fn(z) for all x € C, then the sequences {xy,} and {u,} generated iteratively
by

O (up, ) + %(:13 — Up, Uy, — Tp) >0 for all z € C,

Yn = (1 - 7n>$n + ﬂ)/anuna (5)

Tnt1 = an')/fn(yn) + Bnan + ((1 - ﬁn)l - anA)Wnym

converge strongly to x* € F, where 2* = P~ p(r,ynEP@) L — A+ 7f)(@").

Proof. Let Q = Pp. Then

QU = A+~f)(x) = QU = A+~7f) (W)l
<N =A+~f)(@) = (T = A+7/)(»)ll
<|[I(I = A)(x) = (I = A)()]| + /(=) -
(1 =Nz =yl + yallz -y

(1= 7 =)z -yl

Wl

IIA

for all ,y € F. Therefore, Q(I — A + ~vf) is a contraction of F' into itself.
So, there exists a unique element z* € F such that z* = Q(I — A+ ~vf)(z*) =
Pre  rerynepg) — A+ 7f)(z"). Note that from the condition (i), we may as-
sume, without loss of generality, a;, < (1 — 3,,)||A[| 7. Since A is strongly positive
bounded linear operator on H, we have

[All = sup{[{Az, )| : & € H, [lz] = 1}.
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Observe that

(1 =) — anA)z, x) (1 —Bn) — ap(Azx, z)
- (6)

B — an Al =0,

vl

that is to say (1 — B,)I — ay, A is positive. It follows that

H(l - /Bn)I - anAH

=sup{(((1 = pn)I — anA)z,z) : x € H, ||z| =1}
=sup{l — B, — an(Az,z) : x € H, ||z|| = 1}
<1- B, —any.

Let p € F. From the definition of 7, we know that u,, = T, x,. It follows that

|un — pll = [T, 20 — Tr,pll < |20 — pll,

and hence
lyn —pll = |1 =) (@n —p) + 1 (Wyun — p)||
< (I =v)llzn = pll + Yl Waun — ||
< (1 =v)llzn —pll + nlun —pl|
< (T =w)llzn =2l + wllzn — 2l = |20 — Pl

First, we claim that {x,} and {y,} are bounded. Indeed, from (4), (3) and (6), we
obtain

|Zn1 — pll
lotn (7 fr(yn) — Ap) + Bn(zn — p) + (1 = Bu)I — an A)(Wayn — )|
(1= Bn — an¥)|lyn — 2l + Bullzn — 2l + anl|vfr(yn) — Ap|| (7)

(1 = an¥)[lzn = pll + any|| falyn) — fa(@)] + anllvfulp) — Ap|l
(1 - O‘n(ﬁ - pn')’))Hxn - p” + O‘n”’an(p) - Ap”

INIAIA

By induction, ||z, — pl| < max{||zo - pl, 5517 fa(p) — Ap[l}, n > 1. From the

uniform convergence of {f,} on any bounded subset of C, we conclude {f,(p)} is

bounded. Hence {x,,} is bounded, so are {u, }, {yn}, {fn(yn)}, {Whun} and {W,y,}.
Define

Tn+l1l = (1 - Bn)zn + /BTL‘TTL) n > 0.
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Then
PR zn+21—_ﬁé;++1lmn+1 _ xn+11_—ﬂ[inzn
_ 1Vt D) F((A=Bry ) =t 1 A) Wit 1Ynt1
- 1—Bn+1
_ anYfn(yn)+((1=Bn)I—anA)Wnyn
1_Bn
= 1%%:; Y fr(Yn+1) — ﬁﬁ'}’fn(yn) + Wht1Ynt1 (8)
—Whyn + 12%,1 AWpyn — 12%:11 AW 41Yn+1
= 12%111 [’an(ynJrl) - AWnJrlynJrl] + 15%71 [AWnyn*
’an(yn)] + Wit1Yn+1 — War1yn + Wat1yn — Wayn,
and
Wat1Yns1 — Was1ynl|
< |Yn+1 — Yl
= [[(1 = yn+1)Zn1 + a1 Waritns1 — (L= vn)Tn — Wt |
< (T =mr)lTnst1 — 2ol + [Yns1 — alllzn |l (9)
Y+ 1 Wit 1tnt1 — Watn | + [vnt1 — Yol Waun ||
< (= )lzns1 — 2ol + [vnr1 — alllzn |l

Y1 ([Whartnt1 — Wapata|l + [[Wagiun — Whug||)
+’7n+1 - ’7n|||Wnun”

From (4), Since T; and U,,; are nonexpansive, we have for each n > 1

[Whg1un — Whuy|| M T1Ung1,2un — MT1Up 2y ||
)\1||Un+1,2un - n,2un||
M| A2 ToUp 41 31 — A ToUp 3wy ||

MA2||Uns1,3un — Up 3un || (10)

)\l>\2 . )\nHUn—&-l,n—i-lun - n,n—&-lunH
MH?:I Ais

A VA VAN VAN IR VAN |

and similarly

n
||Wn+1yn - WnynH <A .. )\nHUn+1,n+1yn - n,n+1yn|| < MH)\iy (11)
=1
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for some constant M > 0. On the other hand, from w, = 7, z, and u,+1 =

Trn+1$n+17
1
¢(un7y) + 7(3/ — Up, Up — xn> >0, forallyed, (12)
and
P(Un+1,y) + — (Y = Un+1,Unt1 — Tpy1) > 0, forally e C. (13)
n+

Putting y = up+1 in (12) and y = u,, in (13), we obtain

1
¢(Um un—‘rl) + 7<Un+1 — Unp, Up — xn> >0,
n
and
1
¢(un+1> un) + <un — Up+41, Un+1 — xn+1> > 0.
Tn+1

So, from (Az2)

Up — Tpn  Unitl — Tpil

<un+1 — Unp, > 2 07

Tn Tn+1
and hence

Tn

(Un+1 = Un, Un — Un41 + Unt1 — Tn — (Uns1 — Tny1)) > 0.

Tn41

Without loss of generality, we may assume that there exists a real number r such
that 0 < r < 7, for all n > 0. Therefore

[ unH2

< (Ung1 = Un, Tt — Tn + (1= 727) (Ung1 — Znga))
< lunga = unl{llena = znll + 11 = 25 lunn — 20l
So
[tnt1 = unll < flents = 2nll + 11 = 2 lunr — 2ol (14)

< ||xn+1 - an + %’rrn - Tn+1|L7

where L = sup{||u, — || : n > 0}. Substituting (10) and (14) in (9), we have

Wit 1Ynt1 — Wara1ynll
< (1= r)lZn+1 — zull + [vnt1 — Walllzn |l
Y1 ([|Tns1 — 2n| + %’rn —rny1|L) (15)
+’Yn+1M H:‘L:I )‘i + |’7n+1 - ’Yn’HWnunH
< #ns1 — 2ol + [ntr — lllonl + %‘Tn — Tnt1|L
+M HZT‘L:I Ai + |’Yn+1 - ’Yn‘”WnunH
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Combining (8),(11)and (15), we obtain

1zn+1 = 2nll = [[2n+1 = za|l
=y (I fa(ynr DIl + 1AW 1941 1)

IN

+1i‘{%n (HAWnynH + ||7fn(yn)||)

+HWn+1yn+1 - Wn—l—lynH + HWTH—lyn - WnynH

—[|Tny1 — an

12%:11 (||’7fn(yn+1)” + ||AWn+1yn+1||) (16)

12 (| AWyl + 17 o () )
+[||xn+1 - xn” + |’Yn+1 — ’yn|H1;nH
tylrn = gt | L+ MTTZ ) Ni + [

—Tnll[Waua||] + MH?:1 Xi = [Tt — x|

< iU faune) T+ 1AW 1ynaa )

122 (| AWyl + 7o () )
+|’Yn+l - ’7n|||55nH + %|Tn - Tn+1|L

HYns1 — Wl [Waun || + 2M H?:l Ai-

Thus it follows from (16) and condition (i) — (iv) that (noting that 0 < A; <b < 1
for all i > 1)
limsup(||zn41 = znl| = [[#n41 — znl]) < 0.

n—oo
Hence by Lemma 6, we have lim,,_,o ||z, — || = 0. Consequently
nh—>H;o [Zns1 — 20l = nh_?;o(l = Bn)llzn — xn| = 0.

From (14) and lim,, o0 [Tpt1 — rn| = 0, limy oo || unt1 — un || = 0. From (5),

|Tn — Woynll < |Tn1 — znll + anl|v fu(yn) — AWnynll + Ballzn — Waynll-
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That is ||z, — Wyynl|| < ﬁ”xnﬂ = Zpll+ 12517 fn(yn) — AWnynl|. It follows that
lim ||z, — Whyn|| = 0. (17)
n—oo

For p € F, since T, is firmly nonexpansive, we have

l|n — pH2 = T, zn — Trnp||2 §1<Trnxn — 17,0, Tn — D)
= (un —p,2n = p) = 5(lun = plI? + [lzn — p||?
_H'/'Un - UnHQ)a

and hence [lu, — p||* < ||, — pl|* = [|#n — up|*. Therefore

201 — plI?

= Nanyfa(yn) + Bntn + (1 = Bn)I — an A)Wyyn — p|?

= ||(1 - 5n)(Wnyn - p) + 5n(In - p) + Oén'an(yn)
—an AWnynll?

= O‘%H’an(yn) - AWnynH2 + Hﬁn(xn - p)
+(1 - Bn)(Wnyn _p)||2 + 204n</8n($n _p)
+(1 = Bn) Wayn — p), v fu(yn) — AWnyn)

ar%”’?fn(yn) - AWnynH2 + Bnllzn — p||2 + (1 = Bn) [[Whyn
—plI* + 200 (1 = Bn) (Wit — 2,7 fn(yn) — AWnyn)
200 Bn (T — P, Y fr(Yn) — AWnyn)

(1= Ba)llyn = Pl + Bullzn = plI* + a2 v fuyn) — AWnynl|®
+20n (1 = Bn)(Wayn — 0, Y fn(Yn) — AWnyn)
+2anﬁn<xn - D ’an(yn) - AWnyn>

= (1=B8)I(1 = m)(@n = p) + ¥ (Wnun — p)|| + Bullzn — p||2
+O‘721”7fn(yn) - AWnynH2
20 (1 = Bn) (Wayn — 0, Y fn(Yn) — AWnyn)

200 Bn (T — P,V fr(Yn) — AWnyn)

(1= B) (1 = v)llzn = pl* + (1 = Ba)mllun — plI* + Ballzs
_pH2 + O‘%H’an(yn) - AWnynH2 + 200 (1 = Bn) (Wnyn — D,
7fn(yn) - AWnyn> + 2anﬁn<xn - D, ’an(yn) - AWn?Jn)

(1= B =) l|zn = plI* + (1 = Ba) a0 — p?

—lzn — unHQ) + Bnlln — sz + O‘%H'an(yn) - AWnynH2
200 (1 = Bn) (Wayn — 0,V fn(yn) — AWnyn)
+2anﬁn<xn 'z ’an(yn) - AWnyn>

20 = plI* + a2 [7fa(Yn) = AWpynl® + 200 (1 = B) (|20 — pl|

17 fn(yn) = AWnyn|l) + 200 Bnllzn — pll[l7vfn(yn) — AWnya||
_(1 - 677,)771”3371, - un||2

= |lzn =l + a2 7 fo(yn) — AWpynl* + 200 (||2n — pl|

H’an(yn) - AWnyn”) - (1 - /Bn)'yonn - un”Z‘

IN

IN

IN

IN

IN

130



M. Yazdi — Generalized viscosity approximation method ...

Thus
(1= Bn)Vnllzn — un||2

< Hxn _pH2 - Hxn-‘rl _pH2 + a?z”’)/fn(yn) - AWnynH2
+2anl|zn — IV fr(yn) — AWnys||

= ([lzn = pll = 41 = pI)(lzn = pll + [[#n4+1 — pII)
+a%”’}’fn(yn) - AWnyn”2
+2an|[zn — plll[7fa(yn) — AWnya||

< lon = zpga||([[en = pll + [[#n41 = p)

+O‘721||7fn(yn) - AWnyn”2
+2an”xn - p” H’an(%l) - AWnynH
Since liminf,, o (1 — 8,) > 0 and liminf,,_, o vy, > 0, it is easy to see that
liminf, o0 (1 — Bn)yn > 0. So
lim ||z, — uy,|| = 0. (18)

n—oQ

Observe that

[y = unll < Nyn — 2ol + [[20 — unll

< ’YnHWnun - xn” + an - un”
Yol lWntin = Wayn + Waoyn — 2ol + |20 — s |
Yllyn — unll + [Wayn — znll] + llzn — uall,

and hence (1 — v,)|lyn — un|l < [[Wayn — xn|| + |20 — un||. So, from (17),(18) and
lim sup,, _yoo Yn < 1,
lim ||y, — unl| =0 (19)
n—oo

and so limy, o0 || — yn|| = 0. Since

Watn —un|| < ||Watn — Woyn|l + |Wayn — 2| + |20 — un ||
< yn = unll + (IWayn — za|| + |20 — unl|,

we also have lim,, o [|[Whtn — uy|| = 0. On the other hand, observe that
Wy, — || < [[Waun — W || + [[Waun — |- (20)
It follows from (20) and Remark 2, we obtain lim,_, ||[Wu, — uy|| = 0.

Next, we claim that

limsup(yf(z*) — Az, x,, — ™) <0, (21)

n—o0

where ©* = Ppayynep(g) (I — A+7f)x*. First, we can choose a subsequence {u, }
of {uy} such that

lim (yf(2") — Ax", u,, — ") = limsup(y f(2*) — Az", u, — z%).

Jj—roo n—00
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Since {uy, } is bounded, there exists a subsequence of {u,, } which converges weakly
to w. Without loss of generality, we can assume u,, — w. From [[Wu, — u,| — 0,
Wau,, — w. Now, we show w € EP(¢). By u, = T, ,, we have

1
¢(un,y) + 7<y — Unp, Up — $n> >0 for all y € C.

n

Un,; — T ;

From (Aj), %(y—un,un —Tp) = ¢(yY,un), and hence (y — up,;, —4—2>) = d(y, un,)-
n n

T

WUy . — Ly -
L

Since — 0 and u,; — w, from (Ay), we get

'y
P(y,w) <0 for all y € C.

For t with0 <t <1landye C,lety, =ty+ (1 —¢)w. Since y € C and w € C, we
have y; € C' and hence ¢(y, w) < 0. So, from (A1) and (Aa),

0= d(yt, yt) < to(y,y) + (1 —t)p(ys, w) < to(yr, y),

and so ¢(yt,y) > 0. From (A43), ¢(w,y) > 0 for all y € C, and hence w € EP(¢).
Next, we show w € F(W). Assume w ¢ F(W). Since u,; — w and Ww # w, from
Lemma 9 we have

lim inf; o ||un, —w||

lim inf; o0 [|tn, — Ww|

tim inf o [ty — Wt | + [ Wtn, — W)
liminf; o0 [|tn, —w||.

ININ A

This is a contradiction. So, w € F(W) = (2, F(T;,). Therefore, w € F. Since
[L‘* = Pnzozl F(Tn)ﬂEP(¢) (I — A + ’Yf)CC*, we obtain

limsup,, o (vf(z*) — Az*, x, — 2*)
= limj o (vf(2*) — Az*, 20, — T7)
lim, oo (1/(a") — Ax* 1, — )
= (yf(z*) — Az*,w —x*) <0.

From (17),

limsup,,_,. (vf(z*) — Az*, Wy, — x*) (22)
= limsup,, o (7f(z*) — Az*, 2, — %) <0.

Finally, we prove that {x,} converges strongly to 2* = Prw)nepg) ([ —A+~f)z"

132



M. Yazdi — Generalized viscosity approximation method ...

Indeed, from (3),

[Zn1 — %2
= |’an(7fn(yn) - A:L'*) + 5n(xn - .%'*>
(1= Ba)I — anA)(Wyyn — )|
= apllvfalyn) — Az*|]? + [|Bn(zp — 2¥)
H((1 = B — anA)(Wyyn — )|
+2Bnan(Tn — 2,7 fr(yn) — Az™)
+2an<((1 - /Bn)l - anA)(Wnyn - x*), ’an(yn) - Al‘*>
< (1= Bn = W) [ Wayn — 2% + Ballzn — 2*))?
+a%z”’7fn(yn) - A‘T*H2 + Zﬁnan7<xn - 37*7 fn(yn) - fn(m*»
+2ﬁnan<xn - ."L‘*,’an(l'*) - A$*>
+2(1 = Bu)yan(Wanyn — o*, fu(yn) — fu(2*))
+2(1 - ﬂn)an<Wnyn — ¥, an(l'*) - A$*>
_2O‘$L<A(Wnyn - .Z'*), an(yn) - A.’L‘*>,

Which implies that

241 — 2|2

< [(1 - O‘ni)2 + 2pufnany + 2pu<1 - Bn)an’}/mxn - x*HQ
+25nan<$n -7, ’an(x*) - Al'*>
+ap |1V fu(yn) — Az*|?
+2(1 - Bn)an<Wnyn - x*a’an(x*) - A.’L‘*>
=200 (AWpyn — %), 7 fn(yn) — Az*)

(1 =20, (¥ = pu)]l|zn — x*HZ + O‘72172H$n - x*||2
+2Bnan(zy — o,y fula*) — Ax*) + ap |7 fulyn) — Az*|?
+2(1 - Bn)an<wnyn - IL’*, ’an(x*) - A.T*>
+2ap |7 fu(yn) — Az*|[|| AWpys — 2*)]|

= [1=20.(7 = puy)llzn — 2*|1* + can{an(F?||lzn — 2*|?

v falyn) — Az*[]* + 2[|v fu(yn) — Az*[[[| AWnyn — 2*)]))
20 (an — a*, yful(2”) — Az”)+
+2(1 = Bn) (Whoyn — x*, v frn(x*) — Ax*)}.

IN

(23)

By Schwartzs inequality,

hmsupn—>oo<xn - .I‘*,"yfn(l'*) - A$*> < limpseo 7”'7}71 - .T}*Han(JJ*) - f(fL'*)H
+limsup,,_, oo (xn — ™, v f(2*) — Az™).

From (21),
lim sup(z,, — z*,vfn(z*) — Az*) <0. (24)

n—oo
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Since {zn}, {fn(yn)} and {W,y,} are bounded, we can take a constant M; > 0 such
that 72(|z, — ¥ + |7 fn(yn) — Az*|* + 2|7 fn(yn) — Az*|[ | AWyyn — 2*)|] < My,
for all n > 0. From (23),

zn41 = 21 < [1 = 2007 = pun)lllzn — 2°|* + anén, (25)

where &, = 26, (x, — 2*, v fn(x*) — Ax*) + 2(1 — Bn) (Wpyn — x*,
Yfu(x*) — Az*) + anMy. By (4), (22) and (24), we get limsup,, . & < 0. Now
applying Lemma 7 to (25) concludes that x,, — z* as n — oco. This completes the
proof.

Taking f, = f for all n € N where f is a contraction on C' into itself in Theorem
12, we get

Remark 3. Theorem 12 is a generalization of [16, Theorem 2.11].

Remark 4. Let T,z = = for alln € N and for all x € C in (4). Then, Wpx = x
for all x € C in Theorem 12. Therefore, Theorem 12 is a generalization of [16,
Corollary 2.12].

Remark 5. Let ¢(x,y) = 0 for all z,y € C and r, = 1 in Theorem 12, then
Theorem 12 is a generalization of [16, Corollary 2.13].

Remark 6. Let A = I (identity map) with constant ¥ = 1, v = 1 and n, =
1—ay, — By in Theorem 12, then Theorem 12 is a generalization of [7, Theorem 3.1].

4. NUMERICAL TEST

In this section, we give an example to illustrate the scheme (5) given in Theorem
12.

Example 3.1 Let C = [-1,1] C H = R and define ¢(z,y) = —bx? +xy+4y>. It is
easy to see verify that ¢ satisfies the conditions (A1) — (A4). From Lemma 2.2, T, is
single-valued for all v > 0. Now, we deduce a formula for T,.(z). For anyy € [—1,1]
and r > 0, we have

1
¢(z,y)+;<y—z,z—ac> 20@4ry2+((r+1)z—az)y+$z—(5r+1)2220.

Set G(y) = 4ry*> + ((r + Dz — 2)y + zz — (5r + 1)22. Then G(y) is a quadratic
function of y with coefficients a = 4r,b = (r + 1)z — x and ¢ = xz — (5r + 1)22. So
its discriminate A = b* — dac is

A= [(r+1)z—x)?—16r(zz — (5r +1)2?)
= (r+1222 =2(r + D)z + 2% — 16722 + (80r? + 167)22
= [(9r+ 1)z — )%

134



M. Yazdi — Generalized viscosity approximation method ...

Since G(y) > 0 for all y € C, this is true if and only if A < 0. That is, [(9r+ 1)z —
z]?2 < 0. Therefore, z = gr1s which yields T, (z) = G- S0, from Lemma 3, we
get EP(¢) = {0}. Let iy = &, B0 = 527, A = B € (0,1),7, = 3,7 = LT}, = I,
for allm € N, Az = x with coefficient ¥ = 1, fu(x) = z2=x and v = % Hence,

3n+1
F =N, F(Tn) N EP(¢) = {0}. Also, W,, = I. Indeed, from (4), we have

Wi=Uip= MOU2+ 1 —X)I=MNT1+ (1 — M),
Wy = U271 = )\1T1U272 + (1 — )\1)[ =M1 ()\QTQUZ,?, + (1 — /\Q)I)
MAT T + /\1(1 - )\Q)Tl + (1 — )\1)],
W3 =Us1= MTUsz2+ 1=X)I=MT <)\2T2U3’3 + (1 — /\2)[)
+(1 = A1
= )\1)\2T1T2U3’3 + /\1(1 — /\Q)Tl + (1 - /\1)[
= )\1)\2T1T2(>\3T3U3’4 + (1 - )\3)]) + )\1(1 - )\2)T]_

—I—(l — Al)l
= MM A3TIYT5 + )\1)\2(1 — )\3)T1T2 + )\1(1 — )\Q)Tl
+(1 = A1

By computing in this way by (4), we obtain

Wp=Un1= M. \TiTs... T,
+A1 ... )\n,1(1 — )\n)TlTQ T
FAi A A2 (=N )) T . T
+A (1= X)) + (1 — A1) 1.

Since T, = I, \, = 8 for alln € N, we get
Wo=(8"+8""1(1=B)+...+ (1= B)+ (1 =PI =1I.
Then, from Lemma 7, the sequences {x,} and {uy}, generated iteratively by

_ 1
Up = Trnwn = 10%n,

1 1I7[7 11
Yn = 3Tn + s Wnpln = 55Tn, (26)
T — wx
ntl = "T40n(E3n+1)

converges strongly to 0 € F, where 0 = Pp(31)(0).
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