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Nonarithmetic superrigid groups:
Counterexamples to Platonov’s conjecture

By Hyman Bass and Alexander Lubotzky*

Abstract

Margulis showed that “most” arithmetic groups are superrigid. Platonov
conjectured, conversely, that finitely generated linear groups which are super-
rigid must be of “arithmetic type.” We construct counterexamples to Platonov’s
Conjecture.

1. Platonov’s conjecture that rigid linear groups are aritmetic

(1.1) Representation rigid groups. Let Γ be a finitely generated group. By
a representation of Γ we mean a finite dimensional complex representation, i.e.
essentially a homomorphism ρ : Γ −→ GLn(C), for some n. We call Γ linear if
some such ρ is faithful (i.e. injective). We call Γ representation rigid if, in each
dimension n ≥ 1, Γ admits only finitely many isomorphism classes of simple
(i.e. irreducible) representations.

Platonov ([P-R, p. 437]) conjectured that if Γ is representation rigid and
linear then Γ is of “arithmetic type” (see (1.2)(3) below). Our purpose here is to
construct counterexamples to this conjecture. In fact our counterexamples are
representation superrigid, in the sense that the Hochschild-Mostow completion
A(Γ) is finite dimensional (cf. [BLMM] or [L-M]).

The above terminology is justified as follows (cf. [L-M]): If Γ = 〈s1, . . . , sd〉
is given with d generators, then the map ρ 7→ (ρ(s1), . . . , ρ(sd)) identifies
Rn(Γ) = Hom(Γ,GLn(C)) with a subset of GLn(C)d. In fact Rn(Γ) is eas-
ily seen to be an affine subvariety. It is invariant under the simultaneous
conjugation action of GLn(C) on GLn(C)d. The algebraic-geometric quotient
Xn(Γ) = GLn(C)\\Rn(Γ) exactly parametrizes the isomorphism classes of
semi-simple n-dimensional representations of Γ. It is sometimes called the
n-dimensional “character variety” of Γ.

With this terminology we see that Γ is representation rigid if and only if
all character varieties of Γ are finite (or zero-dimensional). In other words,
there are no moduli for simple Γ-representations.
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(1.2) Examples and remarks. (1) If Γ′ ≤ Γ is a subgroup of finite in-
dex then Γ is representation rigid if and only if Γ′ is representation rigid
(cf. [BLMM]). Call groups Γ and Γ1 (abstractly) commensurable if they have
finite index subgroups Γ′ ≤ Γ and Γ′1 ≤ Γ1 which are isomorphic. In this case
Γ is representation rigid if and only if Γ1 is so.

(2) Let K be a finite field extension of Q, S a finite set of places containing
all archimedean places, and K(S) the ring of S-integers in K. Let G be a
linear algebraic group over K, and G(K(S)) the group of S-integral points in
G(K). Under certain general conditions, for semi-simple G (see (2.1) below),
the Margulis superrigidity theorem applies here, and it implies in particular
that G(K(S)) is representation rigid.

(3) Call a group Γ of “arithmetic type” if Γ is commensurable (as in (1))
with a product

n∏
i=1

Gi
(
Ki(Si)

)
,

where each factor is as in (2) above.
(4) Call Γ of “Golod -Shafarevich representation type” if Γ is residually

finite (the finite index subgroups have trivial intersection) and ρ(Γ) is finite for
all representations ρ. Such groups are representation rigid. (More generally,
Γ is representation rigid if and only if ρ(Γ) is so for all representations ρ

(cf. [BLMM] and the references therein).) On the other hand, such groups are
linear if and only if they are finite.

Any torsion residually finite Γ is of Golod-Shafarevich representation type
(see Burnside’s proof of the Burnside conjecture for linear groups). See [Go]
for examples of finitely generated infinite residually finite p-groups.

(5) In [BLMM] one can find a much larger variety of nonlinear represen-
tation rigid groups.

(1.3) The Platonov conjecture. Platonov ([P-R, p. 437]) conjectured that:

A rigid linear group is of arithmetic type (in the sense of (1.2)(3) above).

An essentially equivalent version of this was posed much earlier as a question
in [B, Question (10.4)].

The principal aim of this paper is to construct counterexamples to
Platonov’s conjecture (see (1.4) below). Ironically, the method we use is in-
spired by a construction that Platonov and Tavgen [P-T] invented to construct
a counterexample to a conjecture of Grothendieck (see Section 4 below).

Our examples also refute Grothendieck’s conjecture. They further have
the following properties: They are representation reductive (all representations
are semi-simple) and they are representation superrigid. (Γ is representation
superrigid if, for all representations ρ of Γ, the dimension of the Zariski closure
of ρ(Γ) remains bounded.)
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It is known (cf. [LM], [BLMM] and the references therein) that each of the
conditions — representation reductive and representation superrigid — implies
representation rigid.

Concretely, our counterexample to Platonov’s Conjecture takes the fol-
lowing form.

(1.4) Theorem. Let Γ be a cocompact lattice in the real rank 1 form
G = F4(−20) of the exceptional group F4.

(a) There is a finite index normal subgroup Γ1 of Γ, and an infinite index
subgroup Λ of Γ1 × Γ1, containing the diagonal, such that the inclusion
v : Λ → Γ1 × Γ1 induces an isomorphism v̂ : Λ̂ → Γ̂1 × Γ̂1 of profinite
completions.

(b) Any representation ρ : Λ→ GLn(C) extends uniquely to a representation
Γ1 × Γ1 → GLn(C).

(c) Λ (like Γ1×Γ1) is representation reductive and representation superrigid.

(d) Λ is not isomorphic to a lattice in any product of groups H(k), where H
is a linear algebraic group over a local (archimedean or non-archimedean)
field k.

The proof of Theorem 1.4 relies on the remarkable fact that Γ simulta-
neously satisfies two qualitatively opposing conditions. On the one hand, Γ is
superrigid in G, because G = F4(−20) is among the real rank 1 groups for which
Corlette [Cor] and Gromov-Schoen [G-S] have proved a Margulis type super-
rigidity theorem. This implies that the images ρ(Γ) under representations ρ
are quite restricted.

On the other hand, Γ is a hyperbolic group, in the sense of Gromov. Such
groups share some important properties (small cancellation theory) with free
groups, which are the farthest thing from rigid. In particular (nonelementary)
hyperbolic groups admit many exotic quotient groups. A particular kind of
quotient, furnished by a theorem of Ol’shanskii and Rips (see (3.2) below), per-
mits us, using a construction inspired by Platonov-Tavgen [P-T], to construct
the group Λ of Theorem 1.4 satisfying (1.4)(a). In this we must also make use
of the finiteness of Hi(Γ,Z) (i = 1, 2). This follows from results of Kumaresan
and Vogan-Zuckerman (see [V-Z]), and it is this result that singles F4(−20) out
from the other real rank 1 groups for which superrigidity is known.

With (1.4)(a), (1.4)(b) then follows from a remarkable theorem of
Grothendieck ((4.2) below). Then (1.4)(c) and (d) follow from (1.4)(b) and
the superrigidity properties of Γ1.

It is instructive to compare our result (1.4) with earlier efforts to produce
superrigid nonlattices.
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Let H be a connected Lie group and Λ ≤ H a subgroup. Call Λ Margulis
superrigid in H if, given a homomorphism ρ : Λ −→ G′(k), where G′ is an
absolutely simple algebraic group over a local field k, ρ(Λ) is Zariski dense
in G′, and ρ(Λ) is not contained in a compact subgroup of G′(k), then ρ

extends uniquely to a continuous homomorphism ρH : H −→ G′(k).
Let G be a connected semi-simple real linear Lie group without compact

factors, and let Γ be an irreducible lattice in G. The Margulis Superrigidity
Theorem ([Mar, VII, (5.6)]) says that, if real rank (G) ≥ 2, then Γ is Margulis
superrigid in G.

A potential source of superrigid nonlattices is groups Γ sandwiched be-
tween two superrigid arithmetic lattices Γi (i = 1, 2), Γ1 ≤ Γ ≤ Γ2. The
following kinds of examples have been studied:

(a) Γi = SLn(Ai), n ≥ 3, i = 1, 2, where A1 = Z and A2 = either Z[1/q] for
some prime q, or A2 = the integers in a real quadratic extension of Q.

(b) Γ1 = SLn(Z), n ≥ 3, and Γ2 = SLn+1(Z).

In each case it can be shown that Γ satisfies superrigidity. However it has
been further shown that Γ must be commensurable with either Γ1 or Γ2 ([V1],
[V2], [LZ]).

Venkataramana [V2] also proved the following results, which exclude cer-
tain generalizations of (1.4) to higher rank groups.

Let G be a connected semi-simple real linear Lie group without compact
factors, and let Γ be an irreducible lattice in G. Define ∆ : G −→ G × G,
∆(x) = (x, x). Let Λ ≤ G×G be a discrete Zariski dense subgroup containing
∆(Γ).

(1.5) Theorem ([V2, Th. 1]). If real rank (G) ≥ 2 then Λ ≤ G × G is
Margulis superrigid.

(1.6) Theorem ([V2, Th. 2]). If real rank (G) ≥ 2 and if G/Γ is not
compact then Λ is a lattice in G×G.

Suppose that G = F4(−20), and that Γ1 and Λ are as in (1.4). Then the
representation superrigidity of Λ could be deduced from (1.5) except for the
fact that real rank (G) = 1. Venkataramana’s proof of (1.5) uses the methods
of Margulis, whereas our (completely different) proof of (1.4) uses the facts
that Γ1 is superrigid, Λ̂ = Γ̂1 × Γ̂1, and also uses Grothendieck’s Theorem 4.2
below.

We were greatly aided in this work by communication from E. Rips, Yu.
Ol’shanskii, Armand Borel, Gregg Zuckerman, and Dick Gross, to whom we
express our great appreciation.
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2. Margulis superrigidity

(2.1) The case of lattices in real Lie groups. Let G be a connected semi-
simple algebraic R-group such that G(R)0 (identity component) has no com-
pact factors. Let Γ ≤ G(R) be an irreducible lattice. Margulis superrigidity
refers to the following property (cf. discussion following (1.4) above):

Let k be a local (i.e. locally compact nondiscrete) field. Let H be a con-
nected k-simple k-group. Let ρ : Γ −→ H(k) be a homomorphism with Zariski
dense image ρ(Γ). Then either the closure ρ(Γ) (in the k-topology) is com-
pact, or else k is archimedean (k = R or C) and ρ extends uniquely to a k-
epimorphism ρG : G −→ H, and a continuous homomorphism G(R) −→ H(k).

Margulis ([Mar, VII, (5.9)]) proves this (and much more) when

R− rank (G) ≥ 2.

Margulis further shows that his superrigidity implies that Γ is “arith-
metic,” in the following sense:

There are a connected, simply connected, and semi-simple Q-group M in
which M(Z) is Zariski dense, and a surjective homomorphism σ : M(R)◦ −→
G(R)◦ such that

ker(σ) is compact ,

and
σ
(
M(Z) ∩M(R)◦

)
is commensurable with Γ.

Since M(Z)∩ker(σ) is finite (being discrete and compact), it follows that there
is a finite index subgroup ΓM ≤M(Z), contained in M(R)◦, which σ maps iso-
morphically to a finite index subgroup ΓG = σ(ΓM ) ≤ Γ. Thus Γ is abstractly
commensurable with the arithmetic group ΓM ≤ M(Z). Further, it follows
from Margulis ([Mar, VII, (6.6)]) that any homomorphism ρ : ΓM −→ GLn(C)
extends, on a subgroup of finite index, to a unique algebraic homomorphism
ρM : M(C) −→ GLn(C). Therefore the identity component of the Zariski
closure of ρ(ΓM ) is ρM (M(C)). Consequently, ΓM , and so also Γ, is represen-
tation reductive (M is semi-simple) and representation superrigid, in the sense
of (1.3) above. In particular, the identity component of the Hochschild-Mostow
completion A(Γ) is M(C).

Another consequence of Margulis superrigidity is the following property:

(FAb) If Γ1 ≤ Γ is a finite index subgroup then Γab1 (= Γ1/(Γ1,Γ1)) is finite.

(2.2) When R-rank (G) = 1. Keep the notation of (2.1), but assume now
that,

R− rank(G) = 1.
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Then it is well-known that, in general, Margulis superrigidity fails completely.
For example the lattice Γ = SL2(Z) in G = SL2(R) is virtually a free group,
hence the farthest thing from rigid. On the other hand, Margulis superrigidity
has been established for the following rank 1 groups.

G = Sp(n, 1) (n ≥ 2)

= the group of isometries of quaternionic hyperbolic space,

and

G = F4(−20) (the real rank-1 form of F4)

= the group of isometries of the hyperbolic Cayley plane.

Margulis superrigidity was established in the above cases by K. Corlette
[Cor], who treated the case when the local field k is archimedean, and by
M. Gromov and R. Schoen, who treated the case of non-archimedean k ([G-S]).

3. Exotic quotients of hyperbolic groups; Ol’shanskii’s theorem

(3.1) Normal Subgroups: The contrast between rank ≥ 2 and rank 1. Keep
the notation of (2.1). Then Margulis has shown ([Mar, VIII, (2.6)]):

Assume that R-rank (G) ≥ 2. If N / Γ (N a normal subgroup of Γ) then
either N or Γ/N is finite.

Further, one has, in “most” (and conjecturally all) of these cases, a qualitative
form of the congruence subgroup theorem, which implies that the finite groups
Γ/N occurring above are a very restricted family.

Now suppose that G = Sp(n, 1)(n ≥ 2) or F4(−20) and let X denote the
corresponding hyperbolic space of which G(R) is the group of isometries. This
is a space of constant negative curvature. Let Γ ≤ G(R) be a uniform (i.e.
cocompact) lattice. Then Γ acts properly discontinuously on X with compact
quotient Γ\X. It follows (cf. [G-H, I, (3.2)]) that Γ is “quasi-isometric” to X,
and so Γ is a “hyperbolic group,” in the sense of Gromov.

The point we wish to emphasize here is that a hyperbolic group which is
not elementary (i.e. virtually cyclic) has an “abundance” of normal subgroups.
This results from an extension of “small cancellation theory” (originally for
free groups) to all nonelementary hyperbolic groups. From this it follows that
a nonelementary hyperbolic group has many “exotic” quotient groups.

The particular kind of quotient needed for our construction of a coun-
terexample to the Platonov conjecture was not in the literature, and so we
asked two well-known experts, E. Rips and Yu. Ol’shanskii. Rips (oral com-
munication) outlined a proof, and, independently, Ol’shanskii communicated
a different proof.
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(3.2) Theorem (Ol’shanskii [Ol], Rips). Let Γ be a nonelementary hy-
perbolic group. Then Γ has a quotient H = Γ/N 6= {1} which is finitely
presented and such that the profinite completion Ĥ = {1}.

4. Grothendieck’s theorem and question

(4.1) Representations and profinite completion. For a group Γ and a com-
mutative ring A, let

RepA(Γ) = the category of representations ρ : Γ −→ AutA(E), where E

is any finitely presented A-module.
Let

u : Γ1 −→ Γ

be a group homomorphism. It induces a “restriction functor”

u∗A : RepA(Γ) −→ RepA(Γ1)

ρ 7−→ ρ ◦ u.

It also induces a continuous homomorphism of profinite completions

û : Γ̂1 −→ Γ̂.

Grothendieck discovered the following remarkable close connection be-
tween profinite completions and representation theory.

(4.2) Theorem (Grothendieck, [Gr, (1.2) and (1.3)]). Let u : Γ1 → Γ
be a homomorphism of finitely generated groups. The following conditions are
equivalent :

(a) û : Γ̂1 → Γ̂ is an isomorphism.

(b) u∗A : RepA(Γ) → RepA(Γ1) is an isomorphism of categories for all com-
mutative rings A.

(b′) u∗A is an isomorphism of categories for some commutative ring A 6= {0}.

(4.3) Corollary. If û is an isomorphism then any properties defined
in representation theoretic terms (like representation rigid, representation su-
perrigid, representation reductive, . . .) are shared by Γ and Γ1.

(4.4) Grothendieck ’s question. Consider a group homomorphism

(1) u : Γ1 −→ Γ

such that

(2) û : Γ̂1 −→ Γ̂ is an isomorphism.
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Grothendieck [Gr] investigated conditions under which one could conclude
that u itself is an isomorphism.

If p : Γ → Γ̂ is the natural homomorphism, then p : Γ → p(Γ) induces
an isomorphism p̂ : Γ̂ → p̂(Γ). Thus, for the above question, it is natural to
assume that Γ is residually finite, i.e. p is injective, and likewise for Γ1. So we
shall further assume that

(3) Γ1 and Γ are residually finite.

Conditions (2) and (3) imply that u is injective, so we can think of Γ1 as
a subgroup of Γ:

Γ1 ≤ Γ ≤ Γ̂ = Γ̂1.

Grothendieck [Gr] indicated a large class of groups Γ1 such that (2) and (3)
imply that u is an isomorphism.

In [Gr, (3.1)], Grothendieck posed the following:

Question. Assume (2), (3), and
(4) Γ1 and Γ are finitely presented.

Must u then be an isomorphism?

To our knowledge this question remains open. On the other hand, if
in (4), one relaxes “finitely presented” to “finitely generated,” then Platonov
and Tavgen [P-T] have given a counterexample. It follows from [Gru, Prop.
B], that Γ1 in the Platonov-Tavgen example is not finitely presentable. Since
we also make use of their construction, we recall it below (Section 6).

For later reference we record here the following observation.
(5) Let M ≤fi Γ be a finite index subgroup, and M1 = u−1(M) ≤ Γ1. Then

(∗) [Γ1 : M1] ≤ [Γ : M ].

Moreover if û : Γ̂1 → Γ̂ is an isomorphism then u|M1 induces an isomor-
phism M̂1 → M̂ . In this case (*) is an equality.

In fact, the projection Γ → Γ/M induces an injection Γ1/M1 → Γ/M , which
is surjective if û : Γ̂1 → Γ̂ is surjective. Moreover, M ≤ Γ induces an inclusion
M̂ ≤ Γ̂ with the same index, and similarly for M1 ≤ Γ1. It follows easily that
if û : Γ̂1 → Γ̂ is an isomorphism then so also is M̂1 → M̂ .

Using the Ol’shanskii-Rips Theorem 3.2 and a construction of Platonov-
Tavgen (see Section 6 below), we shall prove the following result in Section 7.

(7.7) Theorem. Let L be a nonelementary hyperbolic group such that
H1(L,Z) and H2(L,Z) are finite. Then there is a finite index normal subgroup
L1 of L, and an infinite index subgroup Q of L1×L1, containing the diagonal,
such that the inclusion v : Q → L1 × L1 induces an isomorphism v̂ : Q̂ →
L̂1 × L̂1.
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Then, in Section 8, we shall quote results of Kumaresan and Vogan-
Zuckerman ([V-Z, Table 8.2]) that allow us to take L above to be any co-
compact lattice in G = F4(−20). In view of the Corlette-Gromov-Schoen su-
perrigidity theorem (2.2) it follows that L1 and L1 × L1 are representation
superrigid, and hence so also is Q, by Grothendieck’s Theorem 4.2. It is easily
seen that Q cannot be isomorphic to a lattice in any product of archimedean
and non-archimedean linear algebraic groups, and so Q will be the desired
counterexample to Platonov’s conjecture.

5. G. Higman’s group, and variations

A well-known construction due to G. Higman ([H], see also [S, pp. 9–10])
gives an infinite group H with four generators and four relations such that
H has no nontrivial finite quotient groups. Higman’s idea inspired Baumslag
([Baum]) to construct the group-theoretic word,

w(a, b) = (bab−1)a(bab−1)−1a−2,

with the following remarkable property: Let a and b be elements of a group L,
and M a finite index normal subgroup of L. If w(a, b) belongs to M then so
also does a.

Platonov and Tavgen used the Higman group H to give a counterexample
to Grothendieck’s conjecture. The crucial properties of H they needed were
that: (a) H is finitely presented; (b) Ĥ = {1}; and (c) H2(H,Z) = 0. Our
counterexample to the Platonov conjecture is modeled on the Platonov-Tavgen
construction. Where Platonov-Tavgen use the Higman group, as a quotient of
the four generator free group, we need a group H with similar properties as
a quotient of a hyperbolic group L. To this end we need the Ol’shanskii-Rips
Theorem (3.2), which furnishes many such H, with properties (a) and (b), as
quotients of any nonelementary hyperbolic group L. Ol’shanskii makes clever
use of the Baumslag word in his construction. If we use the Schur universal
central extension of H to achieve condition (c) (Section 7), this already suffices
to produce an abundance of counterexamples to Grothendieck’s conjecture.

In Section 6 we present the Platonov-Tavgen fiber square construction. We
want to apply this to a hyperbolic superrigid lattice L. However, Theorem 3.2
still does not provide us with condition (c) above, the vanishing of H2(H,Z).
To achieve this we pull back to the universal central extension of H. But then,
to return to a group closely related to our original lattice L, we are obliged
to make use of some cohomological finiteness properties of L (see Section 7).
It is these latter cohomological properties that turn out to be available only
for uniform lattices in F4(−20). We cite the cohomology calculations needed in
Section 8, then assemble all of the above ingredients in Section 9 for the proof
of Theorem 1.4.
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6. The Platonov-Tavgen fiber square

(6.1) The fiber square. Let L be a group and p : L→ H = L/R a quotient
group. Form the fiber product

P −→ Ly yp
L

p−→ H
where

P = L×H L

= {(x, y) ∈ L× L | p(x) = p(y)}.

Let
u : P −→ L× L

be the inclusion, and consider the diagonal,

∆ : L −→ L× L, ∆(x) = (x, x).

Clearly

P = (R, 1) ·∆L = (1, R) ·∆L
∼= R o L

(the semi-direct product with conjugation action).

(6.2) Lemma. If L is finitely generated and H is finitely presented then
P is finitely generated.

Proof. The hypotheses easily imply that R is finitely generated as a normal
subgroup of L, whence P ∼= R o L is finitely generated.

A result of Grunewald ([Gru, Prop. B]) suggests that P is rarely finitely
presented (unless H is finite).

The following result is abstracted from the argument of Platonov-Tavgen
[P-T]. It provides a source of counterexamples to Grothendieck’s question (4.4).

(6.3) Theorem. Assume that :

(a) L is finitely generated ;

(b) Ĥ = {1}; and

(c) H2(H,Z) = 0.

Then û : P̂ −→ L̂× L̂ is an isomorphism.
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This was proved in [P-T] when L is a free group and H the Higman
quotient (5.1). Then condition (c) follows from the fact that Hab = {1} and
the fact that H has a “balanced presentation” (number of generators = number
of relations).

(6.4) Some notation. For groups U, V , we write U ≤ V (resp., U / V )
to indicate that U is a subgroup (resp., a normal subgroup) of V . Putting
a subscript “fi” further denotes that U has finite index in V . For example,
U /fi V signifies that U is a finite index normal subgroup of V .

When U and V are subgroups of a common group we write

ZV (U) = {v ∈ V |vu = uv for all u ∈ U}, and

Z(U) = ZU (U).

We denote the integral homology groups of U by

Hi(U) = Hi(U,Z) (i ≥ 0).

Recall that
H1(U) ∼= Uab = U/(U,U),

and H2(U) is called the Schur multiplier of U (see Section (7.2)).

(6.5) Proof of (6.3); first steps. Given R / L with H = L/R we have the
exact canonical sequences

(1) 1 −→ R
j−→ L

p−→ H −→ 1

and

(2) R̂
ĵ−→ L̂

p̂−→ Ĥ −→ 1.

We are interested in

u : P = L×H L −→ L× L,

which we can rewrite as a homomorphism of semi-direct products,

(3) u : P = R o L −→ L o L,

where L acts by conjugation on both sides. In this form,

(4) û = q o IdL̂ : R̃ o L̂ −→ L̂ o L̂,

where R̃ is the completion of R in the topology induced by the profinite topol-
ogy of R o L. In fact three natural topologies on R figure here, with corre-
sponding completions.

(5) R̂ −→−→ R̃
q−→−→ R̄ E L̂.



     

1162 HYMAN BASS AND ALEXANDER LUBOTZKY

The topologies are defined, respectively, by the following families of finite index
normal subgroups of R.

(6) Λ̂ = {U |U / fi R} ⊃ Λ̃ = {U ∈ Λ̂|U / L} ⊃ Λ̄ = {V ∩R|V / fi L}.

In each case the completion above is the inverse limit of the corresponding
family of R/U ’s.

It is clear from (4) that,

û and q : R̃ −→ L̂, have the “same kernel and cokernel.” In particular,(7)

û is surjective (resp., injective) if and only if q is so.

Putting C = ker(q), we have an exact sequence of profinite groups,

(8) 1 −→ C −→ R̃
q−→ L̂

p̂−→ Ĥ −→ 1.

Now Theorem 6.3 follows from (7) and Corollary 6.7 below.

(6.6) Proposition. (a) There is a natural action of L̂ on C so that (8)
is an exact sequence of L̂-groups.

(b) q : R̃ −→ L̂ is surjective if and only if Ĥ = {1}.

Assume now that Ĥ = {1}.

(c) C is central in R̃ and has trivial L̂-action.

(d) If L is finitely generated then there is an epimorphism

\H2(H) −→ C,

where H2(H) = H2(H,Z) is the Schur multiplier of H.

(6.7) Corollary. If Ĥ = {1} and H2(H) = 0 then q : R̃ → L̂ is an
isomorphism.

We first give a short direct proof of Corollary 6.7, which suffices for the
applications in this paper. Since there is potential interest in the fiber square
construction even when we do not know that H2(H) = 0, we offer also the
more detailed analysis provided by Proposition 6.6.

Proof of (6.7). First note that (6.6)(b) follows from (6.5)(8), and so our
assumption that Ĥ = {1} yields an exact sequence 1→ C → R̃

q→ L̂→ 1. To
show that C = {1} we must show, with the notation of (6.5)(6), that Λ̃ = Λ̄.
In other words, given U /fiR,U /L, we must find V ≤fi L such that V ∩R ≤ U .
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The finite group R/U / L/U has centralizer ZL/U (R/U) = W/U /fi L/U ,
and (W/U) ∩ (R/U) = Z(R/U). Since W/fi. L and Ĥ = {1}, the projection
L→ H = L/R maps W onto H. Thus

1→ R/U → L/U → H → 1

restricts to a finite central extension

1→ Z(R/U)→W/U → H → 1.

Since H2(H) = 0 (by assumption) the latter extension splits (see (7.2) below),
so we have W/U = Z(R/U)× (V/U) where V /fiW /fi L and V ∩R = U . This
proves (6.7).

Proof of (6.6). Let e : L −→ L̂ be the canonical homomorphism. (We are
not assuming that L is residually finite.) For U ∈ Λ̃ = {U |U /fi R,U / L} (see
(6.5)(6)), put

U L̂ = the closure of e(U) in L̂,(1)

UL = e−1(U L̂) = “U L̂ ∩ L”

= the closure of U in the profinite topology of L, and

UR = UL ∩R = the closure of U in the Λ̄-topology of R.

(2)
U L

L

LR

U L. R

RU

U

R

res. fin.

fin. ind.

fin. ind.

Clearly then

(3) UL = (
⋂

U≤V / fiL

V ) / L,

and

(4) C(= ker(q : R̃ −→ L̂)) = lim
←−
U∈Λ̃

UR/U.
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Each U,UL, UR above is normal in L, so that C, as an inverse limit of finite
L-groups, hence L̂-groups, is a profinite L̂-group so that q is equivariant for
the natural action of L̂ on R̃. Thus the sequence (6.5)(8) is an exact sequence
of L̂-groups, whence (6.6)(a).

For U ∈ Λ̃, the L-action on the finite group R/U is continuous for the
profinite L-topology, and U acts trivially; hence UL acts trivially, i.e.

(5) (UL, R) ≤ U.

Since UR = UL ∩R it follows that

UR/U ≤ Z(R/U) ∩ Z(UL/U).

Thus,

(6) (UL ·R)/U ≤ ZL/U (UR/U).

Next we claim that:

(7) If Ĥ = {1} then UL · R = L, UR/U ≤ Z(L/U), and L/UL(∼= R/UR) is
finite.

The hypothesis implies that RL = L. Since U / fiR we have UL/ fiR
L = L.

It follows that L/UL · R is a finite quotient of L/R = H, with Ĥ = {1}, and
so UL · R = L. Thus L/UL ∼= R/UR, and this group is finite. Finally, from
(6), UR/U centralizes UL ·R/U = L/U ; i.e., UR/U ≤ Z(L/U).

(8) Assume now that Ĥ = {1}.

From (6) and (7) it follows that the conjugation induced actions of R, R̃, L
and L̂ on UR/U are all trivial. Taking the inverse limit over all U ∈ Λ̃ we
conclude from (4) that R̃ and L̂ act trivially on C, whence (6.6)(c).

It further follows from (7) that, in the exact sequence (6.5)(1), we have
p(UL) = H. Thus we have from (6.5)(1) an induced central extension mod U ,

(9) 1 −→ UR/U −→ UL/U
p1−→ H −→ 1.

The spectral sequence of integral homology of (9) gives an exact sequence of
low order terms,

(10) H2(H) −→ UR/U −→ H1(UL/U) −→ H1(H) −→ 0.

Assume further that L is finitely generated. Then so also is H = L/R. Since
Ĥ = {1} it further follows that H1(H) = 0.

Consider (UL/U,UL/U) = (UL, UL) · U/U . Since H1(H) = 0 we have
p1((UL/U,UL/U)) = H. The exact sequence

1 −→ UL/(UL, UL) · U −→ L/(UL, UL) · U −→ L/UL −→ 1
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shows that the finitely generated group L/(UL, UL) ·U is abelian-by-finite (in
view of (7)), and hence residually finite. Thus (UL, UL) · U is closed in the
profinite topology of L, whence (UL, UL) ·U = UL. Thus H1(UL/U) = 0, and
it follows from (10) that

(11) H2(H) −→ UR/U is surjective.

Passing to the inverse limit over U ∈ Λ̃, we obtain a surjection

\H2(H) −→ C = lim
←−
U∈Λ̃

UR/U,

whence (6.6)(d).

7. Schur’s universal central extension

(7.1) Application of Theorem 6.3. Let L be a nonelementary hyperbolic
group. Such groups include, for example, irreducible uniform lattices in rank
1 real Lie groups. Moreover, the Corlette-Gromov-Schoen Superrigidity The-
orem (see (2.2)) assures us that certain of these are representation reductive
and representation superrigid.

For any nonelementary hyperbolic L as above, the Ol’shanskii-Rips The-
orem 3.2 furnishes us with a finitely presented quotient

(1) p : L −→ H = L/R 6= {1}, with Ĥ = {1}.

As in (6.1), consider the inclusion of the fiber square,

(2) u : P = L×H L −→ L× L.

Since hyperbolic groups are finitely presented (see [G-H, I, (3.6)]) it follows
from (6.2) that

(3) P is finitely generated.

We have all the hypotheses of Theorem (6.3) except for

(4) H2(H) = 0.

Given (4), we could conclude from (6.3) that û is an isomorphism. In the
case that L is a superrigid lattice in a Lie group G, this would give

P < L× L < G×G

with P having, in view of Grothendieck’s Theorem 4.2, the same representation
theory as L × L, hence satisfying the same superrigidity properties as L × L.
Yet, for these same reasons, it is easy to see that P could not be a lattice
in any product of real and non-archimedean linear algebraic groups. (See
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Section 9 below.) Thus P would furnish a strong counterexample to Platonov’s
conjecture 1.3.

Unfortunately this procedure assumes condition (4), and we cannot
reasonably expect this to be provided by the Ol’shankii-Rips Theorem or its
methods.

Instead we shall lift p : L → H to the universal central extension of H.
We next review Schur’s theory which we use for this purpose.

(7.2) Schur ’s theory (see, for example, [Mil]). Let H be a group. As in
(6.4), we abbreviate

Hi(H) = Hi(H,Z) (i ≥ 0).

We have
H1(H) = Hab,

and
H2(H) =

R ∩ (L,L)
(L,R)

if H = L/R,L free.

(1) If H is finitely presented then H2(H) is finitely generated (as a group).

Consider an exact sequence

(2) 1 −→ C −→ E
q−→ H = E/C −→ 1.

(3) IfH and C are finitely presented then so also is E. (See [Ha, §2, Lemma 1]).

(4) If Ĥ = {1}, H1(E) = 0, and C is abelian, then Ê = {1}.

In fact, if M / fi E then M · C = E since Ĥ = {1}, so E/M ∼= C/C ∩M
is (like C) abelian, and hence trivial, since H1(E) = 0.

We call (2) a central extension of H if C ≤ Z(E). For any group U we
shall write

U ′ = (U,U).

(5) Suppose that (2) is central and H1(H) = 0. Then q(E′) = H and
H1(E′) = 0.

Clearly q(E′) = H ′ = H. For x, y ∈ E, the commutator (x, y) depends
only on q(x) and q(y), since C is central. We can choose x′, y′ ∈ E′ so that
q(x) = q(x′) and q(y) = q(y′). Then (x, y) = (x′, y′) ∈ (E′, E′), whence
E′(= (E,E)) = (E′, E′), as was to be shown.

Schur’s theory tells us that:

If H1(H) = 0 then there is a “universal central extension,”

(6) 1 −→ H2(H) −→ H̃
π−→ H −→ 1

which is characterized by the following equivalent properties.



    

NONARITHMETIC SUPERRIGID GROUPS 1167

(a) (6) is a central extension, and, given any central extension (2), there is
a unique homomorphism h : H̃ → E such that π = q ◦ h.

(b) (6) is a central extension, H1(H̃) = 0, and any central extension 1 →
C → E → H̃ → 1 splits.

(c) (6) is a central extension and H1(H̃) = 0 = H2(H̃).

(7.3) Lifting the fiber square. As in (6.1), consider a quotient group

(1) p : L −→ H = L/R,

and the inclusion

(2) u = u(p) : P = P (p) = L×H L −→ L× L.

We assume that

(3) Ĥ = {1}

and

(4) L is finitely generated.

It follows from (3) and (4) that

(5) H1(H) = 0.

Let

(6) 1 −→ H2(H) −→ H̃
π−→ H −→ 1.

be the universal central extension. Form the fiber product

(7)

L̃
p̃−→ H̃

πL

y yπ
L

p−→ H

.

In (7), all arrows are surjective, ker(πL) ∼= ker(π) = H2(H), both are central,
and ker(p̃) ∼= ker(p) = R.

Passing to the commutator subgroups L′ and L̃′ we obtain a commutative
diagram

(8)

L̃′
p̃′−→ H̃

π′L

y yπ
L′

p′−→ H
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in which all arrows are still surjective (since H1(H) = 0 = H1(H̃)) and

(9) ker(π′L) = ker(πL) ∩ L̃′ is isomorphic to a subgroup of H2(H).

By abelianizing the central extension

1 −→ ker(πL) −→ L̃ −→ L −→ 1

one is led to the exact homology sequence of low order terms in the spectral
sequence,

H2(L) −→ ker(πL) −→ L̃ab −→ Lab −→ 0.

It follows from this and (9) that

(10) ker(π′L)(= ker(πL) ∩ L̃′) is isomorphic to a quotient of H2(L).

We now assemble some conclusions.

(7.4) Proposition. Assume that :

(i) H is finitely presented and Ĥ = {1}; and

(ii) L is finitely generated and H1(L) is finite.

Then:

(a) H̃ is finitely presented, ˆ̃H = {1} and H2(H̃) = 0.

(b) L̃′ is finitely generated, L′ / fi L, and there is a central extension

1 −→ D −→ L̃′
π′L−→ L′ −→ 1

with D isomorphic to a subgroup of H2(H) (and hence finitely generated)
and to a quotient group of H2(L).

(7.5) Corollary. By (i) and (ii) of (7.4),

p̃′ : L̃′ −→ H̃

satisfies the hypotheses of Theorem 6.3. Hence

u(p̃′) : P (p̃′) = L̃′ ×H̃ L̃′ −→ L̃′ × L̃′

induces an isomorphism [u(p̃′) of profinite completions.

Proof of (7.4). The only assertion not directly covered by the discussion
above is that L̃′ is finitely generated. Since L is finitely generated (by as-
sumption) and H1(L) is finite, L′ / fi L is also finitely generated. Since D is
isomorphic to a subgroup of H2(H), which is finitely generated, it follows that
D is finitely generated.
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To produce a counterexample to Platonov’s conjecture we need conditions
to insure that L̃′ is commensurable with L, or at least “close to” being so.

(7.6) Residually finite quotients. Let Q be a group and e : Q −→ Q̂ the
canonical homomorphism to its profinite completion. We write Q∗ = e(Q),
and call this the residually finite quotient of Q. Clearly e : Q −→ Q∗ induces
an isomorphism ê : Q̂ −→ Q̂∗.

Let u : P −→ Q be a group homomorphism. This induces a homomor-
phism u∗ : P ∗ −→ Q∗, and clearly û : P̂ −→ Q̂ and û∗ : P̂ ∗ −→ Q̂∗ are
isomorphic. Hence û is an isomorphism if and only if û∗ is an isomorphism.

(7.7) Theorem. Let L be a residually finite nonelementary hyperbolic
group such that H1(L) and H2(L) are finite. Then there exist L1 / fi L and a
monomorphism

v : Q −→ L1 × L1

of infinite index such that vQ contains the diagonal subgroup of L1 × L1, and

v̂ : Q̂ −→ L̂1 × L̂1

is an isomorphism.

Proof. The Ol’shanskii-Rips Theorem 3.2 gives p : L −→ H so that
we have the hypotheses of (7.4). From (7.4) and (7.5) we then obtain the
monomorphism

(1) u(p̃′) : P (p̃′) −→ L̃′ × L̃′

of infinite index such that [u(p̃′) is an isomorphism, and also a central extension

(2) 1 −→ D −→ L̃′
π′L−→ L′ −→ 1

with D a quotient of H2(L) and hence finite, since H2(L) is assumed to be
finite.

Pass to the residually finite quotient of (1).

(3) u(p̃′)∗ : P (p̃′)∗ −→ L̃
′∗ × L̃′∗.

Then, by (7.6), u(̂p̃′)∗ is still an isomorphism.
Since L, hence also its subgroup L′ ∼= L̃′/D, is residually finite (by as-

sumption), L̃
′∗ = L̃′/D0 for some D0 ≤ D. In the residually finite group L̃

′∗,
the finite group D/D0 is disjoint from some M ≤fi L̃

′∗. We can even choose
M so that it projects isomorphically mod D/D0 to a characteristic subgroup
L1 ≤fi L

′. Since by our hypothesis that H1(L) is finite, L′ = (L,L) / fi L, it
follows that L1 / fi L.

Now, in (3), M ×M / fi L̃
′∗ × L̃′∗ and we put Q = u(p̃′)∗−1(M ×M) /fi

P (p̃′)∗, and let
v : Q −→M ×M



      

1170 HYMAN BASS AND ALEXANDER LUBOTZKY

be the inclusion, clearly still of infinite index and containing the diagonal
subgroup of M × M . It follows from (4.4) (5) that v̂ is an isomorphism.
Since M ∼= L1 / fi L, this completes the proof of (7.7).

8. Vanishing second Betti numbers

(8.1) Let G be a connected semi-simple real Lie group with finite center,
and Γ ≤ G a uniform (cocompact) lattice. The Betti numbers of Γ are

bi(Γ) = dimRH
i(Γ,R).

Since Γ is virtually of type (FL) ([Br, VIII, 9, Ex. 4]),

Hi(Γ,Z) is a finitely generated Z-module,

and
H i(Γ,R) ∼= HomR(Hi(Γ,Z),R).

Thus,
Hi(Γ,Z) is finite if and only if bi(Γ) = 0.

(8.2) Rank 1 groups. We are interested in the case where G is one of the
rank 1 groups — Sp(n, 1), n ≥ 2, or F4(−20) — for which Γ is a hyperbolic
group, and we have the Corlette-Gromov-Schoen Superrigidity Theorem 2.2.
In this case b1(Γ) = 0 because of superrigidity. We also need b2(Γ) = 0 in
order to apply Theorem 7.7.

According to Kumaresan and Vogan and Zuckerman, [V-Z], this is the
case for F4(−20).

(8.3) Theorem ([V-Z, Table 8.2]). If Γ is a uniform lattice in F4(−20)

then
b1(Γ) = b2(Γ) = b3(Γ) = 0.

In fact, as pointed out to us by Dick Gross, these are essentially the only
examples. For, Gross indicated that it follows from result of J.-S. Li ([Li, Cor.
(6.5)]), that if Γ is a uniform lattice in Sp(n, 1) then b2(Γ1) 6= 0 for some
Γ1 ≤fi Γ.

9. Proof of Theorem 1.4

Let L1 be a cocompact lattice in G = F4(−20)

(1) L1 is a nonelementary hyperbolic group (cf. (3.1)).

(2) H1(L1) and H2(L1) are finite (Theorem 8.3).
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Hence:

(3) There exists a finite index normal subgroup L /fi L1, and an infinite
index subgroup Q < L × L, containing the diagonal subgroup of L × L
such that Q̂ −→ L̂× L̂ is an isomorphism (Theorem 7.7).

Hence:

(4) Any representation ρ : Q −→ GLn(C) extends uniquely to a representa-
tion ρ : L× L −→ GLn(C) (Theorem 4.2).

(5) L× L, hence also Q (by (4)), is representation reductive and superrigid
in G×G (cf. (2.1)).

To conclude the proof of Theorem 1.4 we establish:

(6) Q is not isomorphic to a lattice in any product of linear algebraic groups
over archimedean and non-archimedean fields.

To prove (6), suppose that Q is embedded as a lattice in H = H1×...×Hn,
where Hi = Hi(Fi) is a linear algebraic group over a local field Fi, and so that
the image of the projection pi : Q −→ Hi is Zariski dense in Hi. (Otherwise
replace Hi by the Zariski closure of piQ.) Since the representation theory of
Q, like that of L × L (by ((4)), is semi-simple and rigid, it follows that each
Hi is semi-simple, and so we can even take the Hi to be (almost) simple. At
the cost perhaps of factoring out a finite normal subgroup of Q, we can further
discard any Hi that is compact. We further have that the (topological) closure
Ki of piQ is not compact. For, say that K1 was compact. Then H/Q would
project to the quotient H1/K1 = H/(K1×H2× ...×Hn); but H1/K1 does not
have finite invariant volume, and this contradicts the assumption that Q is a
lattice in H.

Now it follows from (5) that pi : Q −→ Hi extends to pi : L × L −→ Hi.
Let L1 = (L, 1) and L2 = (1, L), so that L × L = L1L2. The Zariski closures
of piL1 and piL2 commute and generate Hi (piQ is Zariski dense). Hence,
since Hi is (almost) simple, one of piLj , say piL2, is finite (and central). Then
piL1 is Zariski dense, with noncompact closure. Now, by the Corlette-Gromov-
Schoen superrigidity Theorem 2.1, there is a continuous homomorphism qi :
G1 = (G, 1) −→ Hi agreeing with pi on a finite index subgroup L′ ≤ L1.

If Fi is non-archimedean then Hi is totally disconnected , so that qi must
be trivial (G is connected), contradicting the fact that piL1 is not relatively
compact.

Thus Fi is archimedean (R or C). Since G is simple, ker(qi) is finite.
Moreover qiG1, like piQ, is Zariski dense in H◦i (identity component of Hi).
Since H◦i is simple, the adjoint representation of H◦i on Lie(H◦i ) is irreducible.
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Hence it is also an irreducible qiG1-representation. But Lie(qiG1) in Lie (H◦i )
is qiG1 invariant. Hence Lie (qiG1) = Lie(H◦i ), so that qiG1 = H◦i .

Conclusion. We can identify H◦i with G/Z, Z finite, so that, on a finite
index subgroup of Q, pi : Q −→ Hi agrees with the composite G × G

pr1−→
G −→ G/Z.

Now this happens for each i, except that we may sometimes use pr2 in
place of pr1. In fact this must happen, since otherwise Q ∩ L2, an infinite
group, would have finite image under the map p : Q −→ H, which has at most
finite kernel.

If, say, pi factors (virtually) through pri(i = 1, 2), then

p′ = (p1, p2) : L× L −→ H1 ×H2

virtually agrees with the projection G×G −→ (G/Z1)×(G/Z2), each Zi finite.
It follows that the image of L× L in H1 ×H2 is a lattice, and the image of Q
has infinite index in that of L × L. Hence (H1 ×H2)/p′Q cannot have finite
volume, contradicting the assumption that pQ < H is a lattice.
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